WO2021246288A1 - Cement admixture and cement composition - Google Patents

Cement admixture and cement composition Download PDF

Info

Publication number
WO2021246288A1
WO2021246288A1 PCT/JP2021/020245 JP2021020245W WO2021246288A1 WO 2021246288 A1 WO2021246288 A1 WO 2021246288A1 JP 2021020245 W JP2021020245 W JP 2021020245W WO 2021246288 A1 WO2021246288 A1 WO 2021246288A1
Authority
WO
WIPO (PCT)
Prior art keywords
cement
mass
admixture
cement admixture
parts
Prior art date
Application number
PCT/JP2021/020245
Other languages
French (fr)
Japanese (ja)
Inventor
大樹 島崎
一也 本間
泰一郎 森
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2022528781A priority Critical patent/JPWO2021246288A1/ja
Priority to CN202180035644.2A priority patent/CN115667176A/en
Publication of WO2021246288A1 publication Critical patent/WO2021246288A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/06Oxides, Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/14Acids or salts thereof containing sulfur in the anion, e.g. sulfides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention mainly relates to cement admixtures and cement compositions used in the fields of civil engineering and construction.
  • an admixture made by mixing a calcium sulfoluminate compound and a calcined white clay product (see Patent Document 1) or a water repellent agent for example, an admixture made by mixing a calcium sulfoluminate compound and a calcined white clay product (see Patent Document 1) or a water repellent agent.
  • cement concrete has a risk of cracking due to hardening shrinkage and drying shrinkage, and it has been difficult to impart waterproofness to cement concrete.
  • An object of the present invention is to provide a cement admixture and a cement composition that enhance the waterproofness of concrete.
  • the present inventors have found that the problem can be solved by a combination of a specific hydraulic compound, free lime, anhydrous gypsum and alumina silica powder, and have completed the present invention. That is, the present invention is as follows.
  • One or more hydraulic compounds selected from the group consisting of (A) elimite, calcium silicate, and calcium aluminoferrite, (B) free lime, (C) anhydrous gypsum, and (D).
  • a cement admixture containing alumina silica powder [2] The cement admixture according to [1], which has a specific surface area of 4,500 cm and 2 / g or more.
  • CaO is 40-65 parts by weight as a chemical component, Al 2 O 3 5 to 15 parts by weight, SiO 2 of 5 to 30 parts by weight, SO 3 is 20 to 30 parts by weight [1] or [2 ] The cement admixture described in.
  • a Hydraulic compound is 15 to 20% by mass
  • B) Free lime is 25 to 43% by mass
  • C) Anhydrous gypsum is 25 to 35% by mass
  • D) Alumina silica powder is 17 to 28% by mass.
  • a cement composition comprising the cement admixture according to any one of [1] to [4] and cement.
  • cement concrete is a general term for cement paste, mortar, and concrete.
  • the cement admixture of the present embodiment contains one or more hydraulic compounds selected from the group consisting of (A) elimite, calcium silicate, and calcium aluminoferrite, (B) free lime, and (C) anhydrous. It contains gypsum and (D) alumina silica powder.
  • the hydraulic compound of the present embodiment is one or more selected from the group consisting of elimite, calcium silicate, and calcium aluminoferrite. According to these hydraulic compounds, ettringite, calcium silicate hydrate, calcium aluminosilicate hydrate, and calcium aluminate hydrate produced by hydration fill the voids to densify the structure and make it waterproof. Can be improved.
  • Irimaito is also called calcium sulfoaluminate and Auin a mineral represented by the chemical formula 3CaO ⁇ 3Al 2 O 3 ⁇ CaSO 4.
  • Elimite is made from, for example, a lime raw material such as limestone, a sulfate raw material such as gypsum, and an alumina raw material such as bauxsite, and has a molar ratio of CaO: CaSO 4 : Al 2 O 3 of 3: 1: 3. It is manufactured by blending in a ratio, firing at about 1500 ° C. using kiln or the like, and crushing.
  • Irimaito is Blaine specific surface area (JIS R5201, hereinafter referred to as Blaine value) is 2,000 ⁇ 4,000cm 2 / g one C1, mixing a C2 ones 5,000 ⁇ 8,000cm 2 / g It is preferable to use it.
  • the mixing ratio C1 / C2 of C1 and C2 is preferably 2 to 5, more preferably 2.5 to 3.5. When it is 2 or more, a good waterproof effect can be expected without reducing the reaction speed. When it is 5 or less, the bleeding water of the cement concrete is reduced, and the waterproof effect can be expected by reducing the cavities caused by the bleeding water.
  • Calcium silicate is a is not particularly limited as to collectively CaO-SiO 2 system, generally, 2CaO ⁇ SiO 2 or 3CaO ⁇ SiO 2 is well known.
  • Calcium silicate from the viewpoint of the reaction rate is preferably 2000 ⁇ 4500cm 2 / g in Blaine value, and more preferably 2500 ⁇ 4000cm 2 / g.
  • the calcium aluminoferrite of the present embodiment is, for example, a kiln obtained by mixing a raw material containing calcia (CaO raw material), a raw material containing alumina (Al 2 O 3 raw material), a raw material containing ferrite (Fe 2 O 3 raw material), and the like. It is obtained by heat treatment such as firing in an electric furnace.
  • Calcium aluminosilicate ferrite from the viewpoint of pot life, it is preferable that in the Blaine value is 2000 ⁇ 7000cm 2 / g, and more preferably from 3000 ⁇ 6000cm 2 / g.
  • hydraulic compounds from the viewpoint of timing of hydration reaction and imparting expansion characteristics, it is preferable to contain 50% or more of elimite, and more preferably 70% or more.
  • Free lime is usually called f-CaO (free lime).
  • f-CaO free lime
  • Fineness of free lime is preferably 2000 ⁇ 7000cm 2 / g in Blaine value, and more preferably 3000 ⁇ 6000cm 2 / g.
  • Anhydrous gypsum may have any crystal structure. By containing anhydrous gypsum, the overall strength from the initial stage to the long term can be improved.
  • Fineness of anhydrite from the viewpoint of reactivity is preferably 2000 ⁇ 5000cm 2 / g in Blaine value, and more preferably 2500 ⁇ 4500cm 2 / g.
  • Alumina silica powder includes, for example, fly ash, blast furnace slag fine powder, metakaolin, silica fume, sewage sludge, volcanic ash, activated clay, and calcined clay.
  • Fineness of alumina silica powder from the viewpoint of the filling of the cured body tissue is preferably 2500 cm 2 / g or more in Blaine value, and more preferably 3500 cm 2 / g or more.
  • the specific surface area of the cement admixture is preferably 4,500 cm 2 / g or more in terms of brain value, and more preferably 4,500 to 5,500 cm 2 / g. When it is 4,500 cm 2 / g or more, a better waterproof effect can be expected.
  • the chemical composition of the cement admixture is 40 to 65 parts for CaO, 5 to 15 parts for Al 2 O 3 , 5 to 30 parts for SiO 2 , and 20 to 30 parts for SO 3 from the viewpoint of good waterproof effect and strength development. Is preferable.
  • the content of the chemical component can be determined by fluorescent X-rays.
  • (A) hydraulic compound is 15 to 20% by mass
  • (B) free lime is 25 to 43% by mass
  • (C) anhydrous gypsum is 25 to 35% by mass in the cement admixture.
  • the (D) alumina silica powder is preferably 17 to 28% by mass.
  • the cement admixture of the present embodiment as described above can improve the waterproofness of cement concrete, it is preferable to use it as a cement admixture for waterproofing. Further, since it also exhibits good expandability, it is more preferable to use it as an expansion material or a waterproof expansion material.
  • the cement composition according to the present embodiment contains the cement admixture of the present invention and cement.
  • the amount of the cement admixture used is preferably 0.6 to 20 parts, more preferably 1.0 to 10 parts with respect to 100 parts of cement. When the amount used is 0.6 to 20 parts, a good waterproof effect and strength can be obtained.
  • the cement is not particularly limited, and ordinary cement can be used.
  • various Portland cements such as ordinary, early strong, Zhao early strong, low heat, and moderate heat, these Portland cements.
  • Various mixed cements mixed with blast furnace slag, fly ash, or silica, filler cement mixed with limestone fine powder and blast furnace slow cooling slag fine powder, waste utilization type cement, so-called eco-cement, etc. are mentioned. One or more of these can be used together.
  • Example 1 A cement admixture (waterproof expansion material) was prepared by mixing (A) hydraulic compound, (B) free lime, (C) anhydrous gypsum, and (D) alumina silica powder so as to have the ratio shown in Table 1. .. 3.5 parts of this admixture is blended with 100 parts of cement, and a concrete blend of slump 12 ⁇ 2.5 cm, air volume 4.5 ⁇ 1.5%, W / C 60%, s / a 48% is used. And kneaded to obtain concrete.
  • the cement 288 kg / m 3 fine aggregate is 865kg / m 3
  • coarse aggregate is 987kg / m 3
  • the water was 173 kg / m 3.
  • the permeability ratio and compressive strength of the obtained concrete were measured. Further, 10 parts of the cement admixture was mixed with 100 parts of cement, and the length change rate of the concrete produced in the same manner was measured. The results are shown in Table 1.
  • Anhydrous gypsum Commercial product (brain value 4000 cm 2 / g)
  • Alumina silica powder Fly ash (Fly ash type II specified in JIS A 6201 "Fly ash for concrete", brain value 3,500 cm 2 / g) Fine aggregate Natural sand from Himekawa, Niigata Prefecture, specific density 2.62 Coarse aggregate: Crushed stone from Himekawa, Niigata Prefecture, maximum size 25 mm, specific density 2.64
  • Permeability ratio After concrete was poured, a cylindrical specimen of ⁇ 100 mm ⁇ 100 mm was used and cured in water at 20 ° C. for 7 days, and a permeability test was performed. The test method was an output method, and a water pressure of 1.0 MPa was applied from the outer surface of the test piece for 500 hours, and the amount of bleeding water was measured and used as the water permeability. The water permeability without the cement admixture was used as the denominator, and the divided value was used as the water permeability ratio.
  • Compressive strength Measured at 28 days of age according to JIS A 1108.
  • Length change rate The length change rate at 7 days of age was measured according to JIS A 6202. In the evaluation, a length change rate of 200 ⁇ 10-6 or more was good, 150 ⁇ 10-6 or more, less than 200 ⁇ 10-6 was acceptable, and less than 150 ⁇ 10-6 was not acceptable.
  • Example 2 A cement admixture in which (A) hydraulic compound, (B) free lime, (C) anhydrous gypsum, and (D) alumina silica powder were mixed at the ratios shown in Table 2 was used to prepare concrete, and various evaluations were performed. Was performed in the same manner as in Example 1. The results are also shown in Table 2.
  • Example 3 Experiment No. Elimite, which is the 1-6 (A) hydraulic compound, was changed to calcium silicate (Experiment No. 3-1) and calcium aluminoferrite (Experiment No. 3-2) to form a cement admixture to prepare concrete. However, it was carried out in the same manner as in Example 1 except that various evaluations were made. The results are shown in Table 3.
  • Example 4 Experiment No. Fly ash, which is 1-6 (D) alumina silica powder, was mixed with blast furnace slag fine powder (Experiment No. 4-1), white clay calcined product (Experiment No. 4-2), and silica fume (Experiment No. 4-3). ) was used as a cement admixture, concrete was prepared, and various evaluations were carried out in the same manner as in Example 1. The results are shown in Table 4.
  • the cement admixture of the present invention can improve the waterproofness of cement concrete, for example, and prevent cracks.
  • the present invention is mainly effective as a cement admixture and a cement composition that promotes waterproofness of cement concrete used in the fields of civil engineering and construction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

Provided are a cement admixture and a cement composition that enhance the waterproofness of concrete. A cement admixture containing: (A) one or more hydraulic compounds selected from the group consisting of ye'elimite, calcium silicate, and calcium aluminoferrite; (B) free lime; (C) anhydrous gypsum; and (D) alumina-silica powder.

Description

セメント混和材およびセメント組成物Cement admixture and cement composition
 本発明は、主に、土木・建築分野などで使用されるセメント混和材およびセメント組成物に関する。 The present invention mainly relates to cement admixtures and cement compositions used in the fields of civil engineering and construction.
 従来、セメントコンクリートの防水性を促進させる方法としては、水/セメント比をできる限り小さくするため、JIS A 6204「コンクリート用化学混和剤」で規定されているように、減水剤や高性能減水剤を使用することが一般的に普及している。 Conventionally, as a method of promoting the waterproofness of cement concrete, in order to make the water / cement ratio as small as possible, as specified in JIS A 6204 "Chemical admixture for concrete", a water reducing agent or a high-performance water reducing agent Is commonly used.
 一方、水粉体比の低減によらず、防水性を向上させる方法としては、例えばカルシウムサルホアルミネート化合物と白土焼成物を混和してなる混和材(特許文献1参照)や、撥水剤と炭酸化混和材をセメントに混合する方法(特許文献2参照)、撥水材を充填材(骨材)に被覆すること(特許文献3参照)、撥水剤をセメントコンクリート硬化体の表面に塗布すること(特許文献4参照)が行われている。 On the other hand, as a method of improving the waterproof property without reducing the water powder ratio, for example, an admixture made by mixing a calcium sulfoluminate compound and a calcined white clay product (see Patent Document 1) or a water repellent agent. A method of mixing a carbonated admixture with cement (see Patent Document 2), coating a filler (aggregate) with a water-repellent material (see Patent Document 3), and applying a water-repellent agent to the surface of a hardened cement concrete. What is done (see Patent Document 4).
 しかしながら、セメントコンクリートは硬化収縮や乾燥収縮などによりひび割れが発生する危険性があり、防水性をセメントコンクリートに付与させることは困難であった。 However, cement concrete has a risk of cracking due to hardening shrinkage and drying shrinkage, and it has been difficult to impart waterproofness to cement concrete.
特開2006-219319号公報Japanese Unexamined Patent Publication No. 2006-219319 特開2012-111640号公報Japanese Unexamined Patent Publication No. 2012-11640 特開平1-317140号公報Japanese Unexamined Patent Publication No. 1-317140 特開2004-231488号公報Japanese Unexamined Patent Publication No. 2004-231488
 本発明は、コンクリートの防水性を増進させるセメント混和材およびセメント組成物を提供することを目的とする。 An object of the present invention is to provide a cement admixture and a cement composition that enhance the waterproofness of concrete.
 本発明者らは、特定の水硬性化合物と遊離石灰と無水石膏とアルミナシリカ粉末との組み合わせにより当該課題を解決できることを見出し、本発明を完成させるに至った。すなわち本発明は下記のとおりである。 The present inventors have found that the problem can be solved by a combination of a specific hydraulic compound, free lime, anhydrous gypsum and alumina silica powder, and have completed the present invention. That is, the present invention is as follows.
[1] (A)イーリマイト、カルシウムシリケート、およびカルシウムアルミノフェライトからなる群より選ばれた一種又は二種以上の水硬性化合物と、(B)遊離石灰と、(C)無水石膏と、(D)アルミナシリカ粉末と、を含有するセメント混和材。
[2] ブレーン比表面積が4,500cm/g以上である[1]記載のセメント混和材。
[3] 化学成分としてCaOが40~65質量部、Alが5~15質量部、SiOが5~30質量部、SOが20~30質量部である[1]又は[2]に記載のセメント混和材。
[4] (A)水硬性化合物が15~20質量%、(B)遊離石灰が25~43質量%、(C)無水石膏が25~35質量%、(D)アルミナシリカ粉末が17~28質量%である、[1]~[3]のいずれかに記載のセメント混和材。
[5] [1]~[4]のいずれかに記載のセメント混和材とセメントとを含有してなるセメント組成物。
[1] One or more hydraulic compounds selected from the group consisting of (A) elimite, calcium silicate, and calcium aluminoferrite, (B) free lime, (C) anhydrous gypsum, and (D). A cement admixture containing alumina silica powder.
[2] The cement admixture according to [1], which has a specific surface area of 4,500 cm and 2 / g or more.
[3] CaO is 40-65 parts by weight as a chemical component, Al 2 O 3 5 to 15 parts by weight, SiO 2 of 5 to 30 parts by weight, SO 3 is 20 to 30 parts by weight [1] or [2 ] The cement admixture described in.
[4] (A) Hydraulic compound is 15 to 20% by mass, (B) Free lime is 25 to 43% by mass, (C) Anhydrous gypsum is 25 to 35% by mass, and (D) Alumina silica powder is 17 to 28% by mass. The cement admixture according to any one of [1] to [3], which is by mass%.
[5] A cement composition comprising the cement admixture according to any one of [1] to [4] and cement.
 本発明によれば、コンクリートの防水性を増進させるセメント混和材およびセメント組成物を提供することができる。 According to the present invention, it is possible to provide a cement admixture and a cement composition that enhance the waterproofness of concrete.
 以下、本発明の実施形態(本実施形態)を詳細に説明するが、本発明は当該実施形態に限定されるものではない。なお、本明細書における「部」や「%」は、特に規定しない限り質量基準とする。また、「セメントコンクリート」とは、セメントペースト、モルタル、コンクリートの総称である。 Hereinafter, an embodiment of the present invention (the present embodiment) will be described in detail, but the present invention is not limited to the embodiment. In addition, "part" and "%" in this specification are based on mass unless otherwise specified. Further, "cement concrete" is a general term for cement paste, mortar, and concrete.
[セメント混和材]
 本実施形態のセメント混和材は、(A)イーリマイト、カルシウムシリケート、およびカルシウムアルミノフェライトからなる群より選ばれた一種又は二種以上の水硬性化合物と、(B)遊離石灰と、(C)無水石膏と、(D)アルミナシリカ粉末と、を含有する。
 上記4種を含有することで、コンクリートの防水性を増進させることが可能で、特に、セメント混和材および当該セメント混和材を含むセメント組成物の反応を適切な時期に活性化させ、セメントコンクリートのひび割れを防ぎ防水性を付与させることができる。
 以下、各成分について説明する。
[Cement admixture]
The cement admixture of the present embodiment contains one or more hydraulic compounds selected from the group consisting of (A) elimite, calcium silicate, and calcium aluminoferrite, (B) free lime, and (C) anhydrous. It contains gypsum and (D) alumina silica powder.
By containing the above four types, it is possible to improve the waterproofness of concrete, and in particular, the reaction of the cement admixture and the cement composition containing the cement admixture is activated at an appropriate time to activate the cement concrete. It can prevent cracks and impart waterproofness.
Hereinafter, each component will be described.
(A)水硬性化合物:
 本実施形態の水硬性化合物は、イーリマイト、カルシウムシリケート、およびカルシウムアルミノフェライトからなる群より選ばれた一種又は二種以上である。
 これらの水硬性化合物によれば、水和によって生成するエトリンガイトやカルシウムシリケート水和物、カルシウムアルミノシリケート水和物、カルシウムアルミネート水和物が空隙を充填することによって、組織を緻密化し防水性を向上させることができる。
(A) Hydraulic compound:
The hydraulic compound of the present embodiment is one or more selected from the group consisting of elimite, calcium silicate, and calcium aluminoferrite.
According to these hydraulic compounds, ettringite, calcium silicate hydrate, calcium aluminosilicate hydrate, and calcium aluminate hydrate produced by hydration fill the voids to densify the structure and make it waterproof. Can be improved.
(イーリマイト)
 イーリマイトはカルシウムサルホアルミネートやアウインとも言われ、3CaO・3Al・CaSOの化学式で示される鉱物である。
(Elimite)
Irimaito is also called calcium sulfoaluminate and Auin a mineral represented by the chemical formula 3CaO · 3Al 2 O 3 · CaSO 4.
 イーリマイトは、例えば、石灰石などの石灰原料、石膏などの硫酸塩原料、およびボーキサイトなどのアルミナ原料などを原料として、例えば、CaO:CaSO:Alのモル比で3:1:3の割合で配合し、キルンなどを用いて1500℃程度で焼成し、粉砕して製造される。 Elimite is made from, for example, a lime raw material such as limestone, a sulfate raw material such as gypsum, and an alumina raw material such as bauxsite, and has a molar ratio of CaO: CaSO 4 : Al 2 O 3 of 3: 1: 3. It is manufactured by blending in a ratio, firing at about 1500 ° C. using kiln or the like, and crushing.
 イーリマイトは、ブレーン比表面積値(JIS R5201、以下、ブレーン値という)が2,000~4,000cm/gのものC1と、5,000~8,000cm/gのものC2とを混合して用いるのが好ましい。C1とC2の混合比C1/C2は2~5が好ましく、2.5~3.5がより好ましい。2以上であることで反応速度が低下することなく良好な防水効果が期待できる。5以下であるとセメントコンクリートのブリーディング水が減少し、ブリーディング水による空洞を減少させることによって防水効果が期待できる。 Irimaito is Blaine specific surface area (JIS R5201, hereinafter referred to as Blaine value) is 2,000 ~ 4,000cm 2 / g one C1, mixing a C2 ones 5,000 ~ 8,000cm 2 / g It is preferable to use it. The mixing ratio C1 / C2 of C1 and C2 is preferably 2 to 5, more preferably 2.5 to 3.5. When it is 2 or more, a good waterproof effect can be expected without reducing the reaction speed. When it is 5 or less, the bleeding water of the cement concrete is reduced, and the waterproof effect can be expected by reducing the cavities caused by the bleeding water.
(カルシウムシリケート)
 カルシウムシリケートは、CaO-SiO系を総称するものであり特に限定されるものではないが、一般的に、2CaO・SiOや3CaO・SiOがよく知られている。
(Calcium silicate)
Calcium silicate is a is not particularly limited as to collectively CaO-SiO 2 system, generally, 2CaO · SiO 2 or 3CaO · SiO 2 is well known.
 カルシウムシリケートは、反応速度の観点から、ブレーン値で2000~4500cm/gであることが好ましく、2500~4000cm/gであることがより好ましい。 Calcium silicate, from the viewpoint of the reaction rate is preferably 2000 ~ 4500cm 2 / g in Blaine value, and more preferably 2500 ~ 4000cm 2 / g.
(カルシウムアルミノフェライト)
 カルシウムアルミノフェライトはCaO、Al、Feを主成分とする化合物を総称するもので、4CaO・Al・Fe(C4AF)、6CaO・2Al・Fe(C6A2F)、6CaO・Al・2Fe(C6AF2)などが知られている。
(Calcium aluminoferrite)
Calcium aluminosilicate ferrite intended to generically compound mainly CaO, the Al 2 O 3, Fe 2 O 3, 4CaO · Al 2 O 3 · Fe 2 O 3 (C4AF), 6CaO · 2Al 2 O 3 · Fe 2 O 3 (C6A2F), 6CaO · Al 2 O 3 · 2Fe 2 O 3 (C6AF2) and the like are known.
 本実施形態のカルシウムアルミノフェライトは、例えば、カルシアを含む原料(CaO原料)、アルミナを含む原料(Al原料)、フェライトを含む原料(Fe原料)などを混合して、キルンや電気炉での焼成などの熱処理をして得られる。 The calcium aluminoferrite of the present embodiment is, for example, a kiln obtained by mixing a raw material containing calcia (CaO raw material), a raw material containing alumina (Al 2 O 3 raw material), a raw material containing ferrite (Fe 2 O 3 raw material), and the like. It is obtained by heat treatment such as firing in an electric furnace.
 カルシウムアルミノフェライトは、可使時間の観点から、ブレーン値で2000~7000cm/gであることが好ましく、3000~6000cm/gであることがより好ましい。 Calcium aluminosilicate ferrite, from the viewpoint of pot life, it is preferable that in the Blaine value is 2000 ~ 7000cm 2 / g, and more preferably from 3000 ~ 6000cm 2 / g.
 以上のような水硬性化合物のうち、水和反応のタイミング、膨張特性付与の観点から、イーリマイトを50%以上含むことが好ましく、70%以上含むことがより好ましい。 Among the above hydraulic compounds, from the viewpoint of timing of hydration reaction and imparting expansion characteristics, it is preferable to contain 50% or more of elimite, and more preferably 70% or more.
(B)遊離石灰:
 遊離石灰とは、通常、f-CaO(フリーライム)と呼ばれるものである。本実施形態に係るセメント混和材中に遊離石灰が含有されることで、水硬性物質の反応に消費されるカルシウム分を供給することができる。また、遊離石灰により膨張特性が付与される結果、乾燥収縮が抑制される。
(B) Free lime:
Free lime is usually called f-CaO (free lime). By containing free lime in the cement admixture according to the present embodiment, it is possible to supply the calcium content consumed in the reaction of the hydraulic substance. In addition, as a result of the expansion property being imparted by the free lime, drying shrinkage is suppressed.
 遊離石灰の粉末度は、長期強度や膨張性の観点から、ブレーン値で2000~7000cm/gであることが好ましく、3000~6000cm/gであることがより好ましい。 Fineness of free lime, from the viewpoint of long-term strength and expansion, is preferably 2000 ~ 7000cm 2 / g in Blaine value, and more preferably 3000 ~ 6000cm 2 / g.
(C)無水石膏:
 無水石膏は何れの結晶構造のものでもよい。無水石膏を含有することで、初期から長期にわたる全体的な強度を良好にすることができる。
(C) Anhydrous gypsum:
The anhydrous gypsum may have any crystal structure. By containing anhydrous gypsum, the overall strength from the initial stage to the long term can be improved.
 無水石膏の粉末度は反応性の観点から、ブレーン値で2000~5000cm/gであることが好ましく、2500~4500cm/gであることがより好ましい。 Fineness of anhydrite from the viewpoint of reactivity, is preferably 2000 ~ 5000cm 2 / g in Blaine value, and more preferably 2500 ~ 4500cm 2 / g.
(D)アルミナシリカ粉末
 アルミナシリカ粉末としては、例えば、フライアッシュ、高炉スラグ微粉末、メタカオリン、シリカフューム、下水汚泥、火山灰、活性白土、白土焼成物が含まれる。
(D) Alumina silica powder Alumina silica powder includes, for example, fly ash, blast furnace slag fine powder, metakaolin, silica fume, sewage sludge, volcanic ash, activated clay, and calcined clay.
 アルミナシリカ粉末の粉末度は硬化体組織への充填性の観点から、ブレーン値で2500cm/g以上であることが好ましく、3500cm/g以上であることがより好ましい。 Fineness of alumina silica powder from the viewpoint of the filling of the cured body tissue, is preferably 2500 cm 2 / g or more in Blaine value, and more preferably 3500 cm 2 / g or more.
 セメント混和材の比表面積は、ブレーン値で4,500cm/g以上であることが好ましく、4,500~5,500cm/gがより好ましい。4,500cm/g以上であることで、より良好な防水効果が期待できる。 The specific surface area of the cement admixture is preferably 4,500 cm 2 / g or more in terms of brain value, and more preferably 4,500 to 5,500 cm 2 / g. When it is 4,500 cm 2 / g or more, a better waterproof effect can be expected.
 セメント混和材の化学成分は、良好な防水効果や強度発現の観点からCaOが40~65部、Alが5~15部、SiOが5~30部、SOが20~30部であることが好ましい。化学成分の含有量は、蛍光X線により求めることができる。 The chemical composition of the cement admixture is 40 to 65 parts for CaO, 5 to 15 parts for Al 2 O 3 , 5 to 30 parts for SiO 2 , and 20 to 30 parts for SO 3 from the viewpoint of good waterproof effect and strength development. Is preferable. The content of the chemical component can be determined by fluorescent X-rays.
 また、より良好な防水効果の観点からセメント混和材中、(A)水硬性化合物は15~20質量%、(B)遊離石灰は25~43質量%、(C)無水石膏は25~35質量%、(D)アルミナシリカ粉末は17~28質量%であることが好ましい。
これらの含有量は、化学成分と粉末X線回折の同定結果に基づいて、計算によって求めることが好ましい。
Further, from the viewpoint of better waterproof effect, (A) hydraulic compound is 15 to 20% by mass, (B) free lime is 25 to 43% by mass, and (C) anhydrous gypsum is 25 to 35% by mass in the cement admixture. %, The (D) alumina silica powder is preferably 17 to 28% by mass.
These contents are preferably determined by calculation based on the identification results of the chemical composition and the powder X-ray diffraction.
 以上のような本実施形態のセメント混和材は、セメントコンクリートの防水性を増進させることができるので、防水用セメント混和材として用いることが好ましい。また、良好な膨張性をも示すため、膨張材、あるいは防水用膨張材として用いることがより好ましい。 Since the cement admixture of the present embodiment as described above can improve the waterproofness of cement concrete, it is preferable to use it as a cement admixture for waterproofing. Further, since it also exhibits good expandability, it is more preferable to use it as an expansion material or a waterproof expansion material.
[セメント組成物]
 本実施形態に係るセメント組成物は、本発明のセメント混和材とセメントとを含有してなる。
 セメント混和材の使用量は、セメント100部に対して、0.6~20部が好ましく、1.0~10部がより好ましい。使用量が0.6~20部であることで、良好な防水効果と強度が得られる。
[Cement composition]
The cement composition according to the present embodiment contains the cement admixture of the present invention and cement.
The amount of the cement admixture used is preferably 0.6 to 20 parts, more preferably 1.0 to 10 parts with respect to 100 parts of cement. When the amount used is 0.6 to 20 parts, a good waterproof effect and strength can be obtained.
 ここで、セメントとしては特に限定されるものではなく、通常のセメントが使用可能であり、具体的には、普通、早強、趙早強、低熱、および中庸熱などの各種ポルトンランドセメント、これらポルトランドセメントに高炉スラグ、フライアッシュ、またはシリカを混合した各種混合セメント、また、石灰石微粉末や高炉徐冷スラグ微粉末を混合したフィラーセメント、廃棄物利用型セメント、いわゆる、エコセメントなどが挙げられ、これらのうちの1種または2種以上が併用可能である。 Here, the cement is not particularly limited, and ordinary cement can be used. Specifically, various Portland cements such as ordinary, early strong, Zhao early strong, low heat, and moderate heat, these Portland cements. Various mixed cements mixed with blast furnace slag, fly ash, or silica, filler cement mixed with limestone fine powder and blast furnace slow cooling slag fine powder, waste utilization type cement, so-called eco-cement, etc. are mentioned. One or more of these can be used together.
 以下、実施例により本発明を詳細に説明する。
(実験例1)
 表1に示す割合になるように(A)水硬性化合物、(B)遊離石灰、(C)無水石膏、(D)アルミナシリカ粉末を混合してセメント混和材(防水用膨張材)を作製した。この混和材を、セメント100部に対して3.5部配合し、スランプ12±2.5cm、空気量4.5±1.5%、W/C60%、s/a48%のコンクリート配合を用いて、混練りしてコンクリートを得た。
 なお、セメントは288kg/m、細骨材は865kg/m、粗骨材は987kg/m、水は173kg/mとした。
 得られたコンクリートの透水比と圧縮強度を測定した。また、セメント混和材をセメント100部に対して10部配合し、同様に作製したコンクリートの長さ変化率を測定した。結果を表1に示す。
Hereinafter, the present invention will be described in detail with reference to Examples.
(Experimental Example 1)
A cement admixture (waterproof expansion material) was prepared by mixing (A) hydraulic compound, (B) free lime, (C) anhydrous gypsum, and (D) alumina silica powder so as to have the ratio shown in Table 1. .. 3.5 parts of this admixture is blended with 100 parts of cement, and a concrete blend of slump 12 ± 2.5 cm, air volume 4.5 ± 1.5%, W / C 60%, s / a 48% is used. And kneaded to obtain concrete.
Incidentally, the cement 288 kg / m 3, fine aggregate is 865kg / m 3, coarse aggregate is 987kg / m 3, the water was 173 kg / m 3.
The permeability ratio and compressive strength of the obtained concrete were measured. Further, 10 parts of the cement admixture was mixed with 100 parts of cement, and the length change rate of the concrete produced in the same manner was measured. The results are shown in Table 1.
<使用材料>
水 :水道水
セメント :普通ポルトランドセメント、比重3.16
(A)水硬性化合物 :イーリマイト(結晶質の3CaO・3Al・CaSO、強熱減量1.0%、ブレーン値5500cm/g)
(B)遊離石灰 :石灰石粉末を電気炉を用いて1300℃で焼成し、粉砕したもの(ブレーン値4500cm/g)
(C)無水石膏 :市販品(ブレーン値4000cm/g)
(D)アルミナシリカ粉末 :フライアッシュ(JIS A 6201「コンクリート用フライアッシュ」に規定されるフライアッシュII種、ブレーン値3,500cm/g)
細骨材 新潟県姫川産天然砂、比重2.62
粗骨材 :新潟県姫川産砕石、最大寸法25mm、比重2.64
<Material used>
Water: Tap water cement: Ordinary Portland cement, specific density 3.16
(A) a hydraulic compound: Irimaito (crystalline 3CaO · 3Al 2 O 3 · CaSO 4 , and ignition loss 1.0%, Blaine 5500cm 2 / g)
(B) Free lime: Limestone powder calcined at 1300 ° C. using an electric furnace and crushed (brain value 4500 cm 2 / g).
(C) Anhydrous gypsum: Commercial product (brain value 4000 cm 2 / g)
(D) Alumina silica powder: Fly ash (Fly ash type II specified in JIS A 6201 "Fly ash for concrete", brain value 3,500 cm 2 / g)
Fine aggregate Natural sand from Himekawa, Niigata Prefecture, specific density 2.62
Coarse aggregate: Crushed stone from Himekawa, Niigata Prefecture, maximum size 25 mm, specific density 2.64
<評価方法>
スランプ :JIS A 1101に準じて測定
空気量  :JIS A 1128に準じて測定
<Evaluation method>
Slump: Measured according to JIS A 1101 Air volume: Measured according to JIS A 1128
透水比  :コンクリート打ち込み後、φ100mm×100mmの円柱供試体を用い、7日間20℃の水中で養生し、透水試験を行った。試験方法はアウトプット法とし、試験体外側面から1.0MPaの水圧を500時間加え、にじみでる水量を測定し透水量とした。セメント混和材無しの透水量を分母とし、除した値を透水比とした。 Permeability ratio: After concrete was poured, a cylindrical specimen of φ100 mm × 100 mm was used and cured in water at 20 ° C. for 7 days, and a permeability test was performed. The test method was an output method, and a water pressure of 1.0 MPa was applied from the outer surface of the test piece for 500 hours, and the amount of bleeding water was measured and used as the water permeability. The water permeability without the cement admixture was used as the denominator, and the divided value was used as the water permeability ratio.
圧縮強度 :JIS A 1108に準じて材齢28日で測定した。
長さ変化率:JIS A 6202に準じて材齢7日の長さ変化率を測定した。評価は、長さ変化率が200×10―6以上を良、150×10―6以上、200×10―6未満を可、150×10―6未満を不可とした。
Compressive strength: Measured at 28 days of age according to JIS A 1108.
Length change rate: The length change rate at 7 days of age was measured according to JIS A 6202. In the evaluation, a length change rate of 200 × 10-6 or more was good, 150 × 10-6 or more, less than 200 × 10-6 was acceptable, and less than 150 × 10-6 was not acceptable.
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000001

 
(実験例2)
 (A)水硬性化合物、(B)遊離石灰、(C)無水石膏、(D)アルミナシリカ粉末を表2に示す割合で混合したセメント混和材とし、コンクリートを作製し、各種評価をしたこと以外は実施例1と同様に行った。結果を表2に併記する。
(Experimental Example 2)
A cement admixture in which (A) hydraulic compound, (B) free lime, (C) anhydrous gypsum, and (D) alumina silica powder were mixed at the ratios shown in Table 2 was used to prepare concrete, and various evaluations were performed. Was performed in the same manner as in Example 1. The results are also shown in Table 2.
Figure JPOXMLDOC01-appb-T000002

 
Figure JPOXMLDOC01-appb-T000002

 
(実験例3)
 実験No.1-6の(A)水硬性化合物であるイーリマイトを、カルシウムシリケート(実験No.3-1)、およびカルシウムアルミノフェライト(実験No.3-2)に変更してセメント混和材とし、コンクリートを作製し、各種評価をしたこと以外は実施例1と同様に行った。結果を表3に示す。
(Experimental Example 3)
Experiment No. Elimite, which is the 1-6 (A) hydraulic compound, was changed to calcium silicate (Experiment No. 3-1) and calcium aluminoferrite (Experiment No. 3-2) to form a cement admixture to prepare concrete. However, it was carried out in the same manner as in Example 1 except that various evaluations were made. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
 
 
Figure JPOXMLDOC01-appb-T000003
 
 
(実験例4)
 実験No.1-6の(D)アルミナシリカ粉末であるフライアッシュを、高炉スラグ微粉末(実験No.4-1)、白土焼成物(実験No.4-2)、およびシリカフューム(実験No.4-3)に変更してセメント混和材とし、コンクリートを作製し、各種評価をしたこと以外は実施例1と同様に行った。結果を表4に示す。
(Experimental Example 4)
Experiment No. Fly ash, which is 1-6 (D) alumina silica powder, was mixed with blast furnace slag fine powder (Experiment No. 4-1), white clay calcined product (Experiment No. 4-2), and silica fume (Experiment No. 4-3). ) Was used as a cement admixture, concrete was prepared, and various evaluations were carried out in the same manner as in Example 1. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004

 
Figure JPOXMLDOC01-appb-T000004

 
 本発明のセメント混和材により、例えば、セメントコンクリートの防水性を向上させることができ、ひび割れも防ぐことができる。 The cement admixture of the present invention can improve the waterproofness of cement concrete, for example, and prevent cracks.
 本発明は、主に、土木・建築分野などで使用されるセメントコンクリートの防水性を促進するセメント混和材およびセメント組成物として有効である。
 

 
INDUSTRIAL APPLICABILITY The present invention is mainly effective as a cement admixture and a cement composition that promotes waterproofness of cement concrete used in the fields of civil engineering and construction.


Claims (5)

  1.  (A)イーリマイト、カルシウムシリケート、およびカルシウムアルミノフェライトからなる群より選ばれた一種又は二種以上の水硬性化合物と、(B)遊離石灰と、(C)無水石膏と、(D)アルミナシリカ粉末と、を含有するセメント混和材。 (A) One or more hydraulic compounds selected from the group consisting of elimite, calcium silicate, and calcium aluminoferrite, (B) free lime, (C) anhydrous gypsum, and (D) alumina silica powder. And, a cement admixture containing.
  2.  ブレーン比表面積が4,500cm/g以上である請求項1記載のセメント混和材。 The cement admixture according to claim 1, wherein the brain specific surface area is 4,500 cm 2 / g or more.
  3.  化学成分としてCaOが40~65質量部、Alが5~15質量部、SiOが5~30質量部、SOが20~30質量部である請求項1又は2に記載のセメント混和材。 The cement according to claim 1 or 2, wherein CaO is 40 to 65 parts by mass, Al 2 O 3 is 5 to 15 parts by mass, SiO 2 is 5 to 30 parts by mass, and SO 3 is 20 to 30 parts by mass as chemical components. Admixture.
  4.  (A)水硬性化合物が15~20質量%、(B)遊離石灰が25~43質量%、(C)無水石膏が25~35質量%、(D)アルミナシリカ粉末が17~28質量%である、請求項1~3のいずれか1項に記載のセメント混和材。 (A) Hydraulic compound is 15 to 20% by mass, (B) Free lime is 25 to 43% by mass, (C) Anhydrous gypsum is 25 to 35% by mass, and (D) Alumina silica powder is 17 to 28% by mass. The cement admixture according to any one of claims 1 to 3.
  5.  請求項1~4のいずれか1項に記載のセメント混和材とセメントとを含有してなるセメント組成物。

     
    A cement composition comprising the cement admixture according to any one of claims 1 to 4 and cement.

PCT/JP2021/020245 2020-06-02 2021-05-27 Cement admixture and cement composition WO2021246288A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022528781A JPWO2021246288A1 (en) 2020-06-02 2021-05-27
CN202180035644.2A CN115667176A (en) 2020-06-02 2021-05-27 Cement admixture and cement composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-096100 2020-06-02
JP2020096100 2020-06-02

Publications (1)

Publication Number Publication Date
WO2021246288A1 true WO2021246288A1 (en) 2021-12-09

Family

ID=78831071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020245 WO2021246288A1 (en) 2020-06-02 2021-05-27 Cement admixture and cement composition

Country Status (3)

Country Link
JP (1) JPWO2021246288A1 (en)
CN (1) CN115667176A (en)
WO (1) WO2021246288A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023157714A1 (en) * 2022-02-21 2023-08-24 デンカ株式会社 Cement admixture, cement composition, and cement concrete

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001322848A (en) * 2000-05-08 2001-11-20 Denki Kagaku Kogyo Kk Cement admixture and cement composition
JP2003073155A (en) * 2001-08-30 2003-03-12 Denki Kagaku Kogyo Kk Cement admixture, cement composition and high fluidity concrete using the same
JP2006219319A (en) * 2005-02-09 2006-08-24 Denki Kagaku Kogyo Kk Cement admixture and cement composition
JP2010126408A (en) * 2008-11-28 2010-06-10 Denki Kagaku Kogyo Kk Cement admixture and cement composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001322848A (en) * 2000-05-08 2001-11-20 Denki Kagaku Kogyo Kk Cement admixture and cement composition
JP2003073155A (en) * 2001-08-30 2003-03-12 Denki Kagaku Kogyo Kk Cement admixture, cement composition and high fluidity concrete using the same
JP2006219319A (en) * 2005-02-09 2006-08-24 Denki Kagaku Kogyo Kk Cement admixture and cement composition
JP2010126408A (en) * 2008-11-28 2010-06-10 Denki Kagaku Kogyo Kk Cement admixture and cement composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023157714A1 (en) * 2022-02-21 2023-08-24 デンカ株式会社 Cement admixture, cement composition, and cement concrete

Also Published As

Publication number Publication date
CN115667176A (en) 2023-01-31
JPWO2021246288A1 (en) 2021-12-09

Similar Documents

Publication Publication Date Title
CA2907893C (en) Belite calcium aluminate as an additive
KR20140027981A (en) Cementitious binders containing pozzolanic materials
JP7037879B2 (en) Early-strength admixture for secondary products and early-strength concrete for secondary products
WO2020100925A1 (en) Cement admixture, expansion material, and cement composition
KR20230117421A (en) Hydraulic binder with low carbon footprint and high initial strength
KR20070035377A (en) Super high early strength blast furnace slag cement
JP4494743B2 (en) Method for producing cement composition
WO2021246288A1 (en) Cement admixture and cement composition
WO2020039908A1 (en) Hardening agent for ready-mix shipped rapid-hardening concrete, ready-mix shipped rapid-hardening concrete material, ready-mix shipped rapid-hardening concrete composition, and method for preparing same
KR100225343B1 (en) A cement composition having high durability
WO2021215509A1 (en) Cement admixture, expansion material, and cement composition
JP7269044B2 (en) Expansion admixture, cement composition and concrete
JP7083637B2 (en) Concrete and its manufacturing method
JP4057971B2 (en) Cement composition
JP4522815B2 (en) High-strength cement admixture for strength compensation and cement composition using the same
JP7181355B1 (en) Cement admixture, method for producing cement admixture, and cement composition
JP7260705B1 (en) Curing accelerator for hydraulic material, cement composition, and hardened body
JP7260998B2 (en) Expansive composition, cement composition and cement-concrete
KR20020082320A (en) Cement Admixture for high strength, shrinkage-reducing and cold-construction, and cement composite incorporating the admixture
WO2023157714A1 (en) Cement admixture, cement composition, and cement concrete
JP7037877B2 (en) Early-strength admixture for secondary products and early-strength concrete for secondary products
JP2023028440A (en) Cement admixture and cement composition
JP7037878B2 (en) Early-strength admixture for secondary products and early-strength concrete for secondary products
JP2023028439A (en) Cement admixture and cement composition
JP2023028441A (en) Grout material, grout mortar composition and cured body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21816654

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022528781

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21816654

Country of ref document: EP

Kind code of ref document: A1