JP3815969B2 - 微量流体デバイスにおける多重方式蛍光検出 - Google Patents

微量流体デバイスにおける多重方式蛍光検出 Download PDF

Info

Publication number
JP3815969B2
JP3815969B2 JP2000616405A JP2000616405A JP3815969B2 JP 3815969 B2 JP3815969 B2 JP 3815969B2 JP 2000616405 A JP2000616405 A JP 2000616405A JP 2000616405 A JP2000616405 A JP 2000616405A JP 3815969 B2 JP3815969 B2 JP 3815969B2
Authority
JP
Japan
Prior art keywords
light
optical
emitted
channel
orientation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000616405A
Other languages
English (en)
Other versions
JP2002544476A (ja
Inventor
ケビン マハー,
ティモシー スミス,
トーレイフ ブジョーンソン,
Original Assignee
アクララ バイオサイエンシーズ, インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アクララ バイオサイエンシーズ, インコーポレイテッド filed Critical アクララ バイオサイエンシーズ, インコーポレイテッド
Publication of JP2002544476A publication Critical patent/JP2002544476A/ja
Application granted granted Critical
Publication of JP3815969B2 publication Critical patent/JP3815969B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6452Individual samples arranged in a regular 2D-array, e.g. multiwell plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • G01N2021/6419Excitation at two or more wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • G01N2021/6421Measuring at two or more wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6463Optics
    • G01N2021/6478Special lenses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/10Scanning
    • G01N2201/101Scanning measuring head

Description

【0001】
(導入)
(技術分野)
本発明の分野は、微量流体アレイにおける蛍光検出である。
【0002】
(背景)
コンビナトリアル化学、多くの種のゲノムの配列決定、ならびに遺伝子型と、物理的および生物学的な試行との間の関係の組合せは、異なる事象の決定を実施するための必要性を、大きく拡張させた。種々の形態のコンビナトリアル化学を使用して調製され得る新規化合物、ならびに野生型遺伝子および変異型遺伝子を含む多数の標的の多様性は、生物学的活性を有する化合物を開発する際に、目的の決定の数を非常に増加させた。これらの化合物としては、薬物、殺虫剤、農薬抵抗、疾患生物抵抗などが挙げられる。さらに、異なるゲノム間の差異を区別する際、特異的な変異を表現型に関連付ける際、種々の環境効果に対する感受性を一塩基多型(single nucleotide polymorphism)に関して規定する際、および生物のゲノムを同定してその生物に対するより良好な防御を提供する際の興味は、これらおよび他の決定を実施するための、迅速な安価なデバイスおよび方法論に対する必要性を、拡張させた。
【0003】
近年、多種にわたるリザーバーおよびチャネルを小さなカードまたはチップと関連付けることを可能にする、微量流体アレイが開発され、ここで、高電圧を使用することにより、種々の操作が実施され得る。このアレイは、個々のネットワークを提供し、これらは、単一のチップ上に組合せで存在し、その結果、複数の決定が同時におよび/または連続的に、実施され得る。約500〜5000μ2の範囲の断面を有するチャネルを有することにより、操作が非常に小さな容量で実施され得る。さらに、非常に高感度の検出システムを有することにより、非常に低濃度の検出可能な標識が、使用され得る。このことは、非常に少量のサンプルおよび少量の試薬(これらは、次第により精密かつ高価になった)の使用を可能にする。微量流体アレイは、より迅速な処理能力、次第に短縮される決定時間、ならびに次第に少量となる必要とされるサンプルおよび試薬の見込みを提供する。
【0004】
しかし、微量流体アレイの使用は、その挑戦がないのではない。微量流体アレイは、望ましくは、チップの費用の削減を提供するために、成形プラスチックに作製される。チップを成形し、そしてモールド上にチャネルを形成するためのリッジを提供することにより、チャネルは正確に延びないかもしれず、そしてそれらの適切な位置からずれ得、そして完全に真っ直ぐであるよりむしろ、わずかに湾曲し得る。さらに、プラスチックは頻繁に、自己蛍光性である。頻繁に使用される標識は蛍光標識であるので、標識からのシグナルが、自己蛍光シグナルと区別され得なければならない。信頼性のある蛍光シグナルをいかにして得るか、すなわち、検出可能な標識からのシグナルを最大化し、一方でバックグラウンドシグナルを最小化することの折衷に関する問題が、存在する。
【0005】
さらに、チャネル壁はカバープレートに対して直交せず、その結果、照射深さは、励起ビームがチャネルに入る部位に依存して、変動する。励起ビームが壁に遭遇する位置で、シグナルは、励起した蛍光団の減少した数および壁の蛍光団の励起に起因して、質が下がる。従って、チャネル内での励起ビームの正確な位置決めが、再現性のある正確な結果のためには必要である。
【0006】
(関連技術の簡単な説明)
キャピラリーアレイにおける蛍光シグナルを検出するためのシステムを記載する多くの特許が、公開されている。例えば、米国特許第5,296,703号および同第5,730,850号、ならびにWO98/49543である。
【0007】
(発明の要旨)
微量流体アレイとともに使用するための、光学蛍光検出システムが提供される。この検出・配向システムは、光源からの光を受信および処理し、そしてこの光を固体基板の微量流体チャネル上へと指向するための、光学トレインを備える。この光学トレインは、固体基板の表面にわたって移動され、チャネルを横切り、そしてこの固体基板から放射される光を受信する。この光学トレインは、この固体基板表面からの光を指向および処理し、そしてこの光を検出器へと指向する。この検出器からのシグナルは、データ分析器により受信され、この分析器は、このシグナルを分析し、そして光学トレインを、固体基板のバルク材料、このチャネルの縁部、およびこのチャネルから観察されたシグナルに関連して、このチャネルの中心へと指向する。このチャネル内の蛍光成分が、励起光により生成される蛍光により検出され、ここで、放出光が、光学トレインにより処理され、そしてチャネル内の蛍光成分から生じるチャネル内の蛍光の存在に関して分析され、固体基板からのあらゆる蛍光を修正する。
【0008】
この光学蛍光検出システムは、微量流体アレイの複数のチャネルと配向して整列した、複数の小型共焦点顕微鏡システムを使用する。このシステムは、チャネルのセットとの整列のために、可動支持体上に設置される。この支持体は、異なるセットのチャネルとの整列のために、キャリッジに設置され得る。照射ユニットは、光源、および目的の波長範囲外の光を除去するための処理手段(例えば、レンズ、二色性ミラー、フィルター、格子など)を備える。単一の光源が使用され得、そしてビームが、チャネル照射のための小ビーム(beamlet)の個々の分配のための複数の光ファイバーに分裂する。同様に、各チャネルからの個々のシグナルは、個々の光ファイバーにより、通常の検出器へと指向される。あるいは、各共焦点顕微鏡システムに対して、個々の光源(例えば、LEDまたはレーザーダイオード)が使用され得る。
【0009】
この方法論は、チャネルの各々からの蛍光シグナルの、正確な、再現性のある決定を可能にする。所望の検出感度を達成するために、チャネルが空のとき(空気)かまたは液体(通常は蛍光色素を含む)が存在するときかのいずれかに、各チャネルの中央が決定される。微量流体アレイ基板の自己蛍光の程度に依存して、この光学システムは、検出可能なシグナルまたは散乱光を提供するに十分な自己蛍光が存在する場合、通常は自己蛍光が低い場合に、蛍光を検査し得る。散乱光の場合には、自己蛍光から生じる光とは異なる波長を検出する。
【0010】
励起の送達の、2つの異なる形態が存在する:単一モードファイバー送達もしくはファイバーなしであって、ここで、レーザーおよび分裂は、別個のミラーまたは回折光学素子によりなされなければならない;または多モードファイバー送達であって、ここで、ランプまたはレーザーのいずれかが使用され得、そして分裂は、このレーザー光またはランプ光を均一化し、次いで多モードファイバーアレイを使用して分裂させることにより、なされる。光源は、通常はレーザーであり、一般に約250〜800nmの範囲、通常は488nm、532nmまたは633nmの波長を有する光ビームを生成する、レーザーである。
【0011】
レーザーのような光源に依存して、フィルターを使用して、光の強度を減衰させ、蛍光標識の光退色および光分解を最小化し得る。次いで、この光が、回折光学素子、ビームスプリッタ素子の組合せ(例えば、離散ミラー)、または他の手段(例えば、離散ビームスプリッタおよび光ファイバーアレイ)により、複数の光線または小ビームに分裂する。次いで、得られるビームの各々は、チャネルに関連する個々の共焦点顕微鏡に指向される。単一モードおよび多モードのファイバーのいずれかが使用され得、ここで、多モード光ファイバーアレイを使用して、照射をN個の小ビームに分裂させる(ここで、Nは、照射されるべき光学トレインの数である)。このファイバーは、一般に、約25〜75μmの範囲、特に約50μmの直径、および約1〜1000mmの範囲の長さを有する。
【0012】
共焦点ハウジングは、非常に小型であり得、ここで、光学トレインを収容する部分は、通常は光ファイバーおよび配向システムに対する取付け具に関連する他の収容領域との組合せで、一般に、200〜2000mm2の範囲の断面および約25〜200mmの範囲の高さの、約0.5〜4×104mm3の総容量を有する。各共焦点顕微鏡ハウジングは、個々の光源光ファイバーを受容し、これらのファイバーは、出力面がハウジングの光軸に対して垂直であるように、そして出て来る光がこの光軸と一致するように、配向される。視準レンズおよび対物レンズを通常備える、光学システムが、これらがファイバーからの光を小さな点へと集光させるように、位置決めされる。これらのレンズは、通常、単一の素子を有する非球面である。これらは、小さく、なお依然として回折が制限された性能を与えるように、設計される。
【0013】
光ファイバーを光軸に位置決めする代わりに、光ファイバーからの主光線は、光軸の外側であり、光を視準してこの光を二色性ミラーへと指向する、視準レンズを通して指向され得る。この二色性ミラーは、この主光線を、ハウジングの光軸に沿って指向する。この主光線は、高開口数(一般に約0.25〜0.75の範囲)を有するレンズにより集光される。照射スポットサイズは、約6〜10μmの直径を有し、一方で収集面積は、約200〜600μm2である。励起光は、チャネル内に存在する蛍光団を検出部位において励起させ、そしてチャネルから放出される蛍光は、高開口数レンズにより収集される。視準レンズが使用される場合には、光はこの視準レンズを通して指向される。視準レンズの適切な位置決めおよび設計により、視準レンズによる掩蔽に起因する光子の損失が、最小化される。二色性ミラーが使用される場合には、このミラーは、目的の波長範囲においては実質的に透明であり、そして集光レンズにより集光される光ビームは、この二色性ミラーを通過する。二色性ミラーまたは視準レンズを通過した後に、光ビームは通常、フィルタリングされて、目的の波長範囲の外の光を除去され、そして多モード光ファイバーの入口開口部またはコアを含む平面上に、再集光される。発光ファイバーは、励起ファイバーと実質的に同じ寸法を有する。開口部は、共焦点アセンブリのための共焦点開口部として作用するが、共焦点ピンホールを提供するための他の方法が存在する(例えば、アバランシェフォトダイオードおよび他の検出器)。発光ビームは、発光光ファイバーにより受信され、そして検出器へと指向される。適切な感度を有する種々の検出器(例えば、光電子増倍管(PMT)、電荷結合素子(CCD)、アバランシェフォトダイオードなど)が使用され得る。次いで、シグナルが処理されて、チャネルから得られる発光のレベルを提供し得、そしてこの強度をチャネル内の蛍光団の量と相関付け得る。蛍光団の量は、目的の事象に関連するので、これは、サンプルの性質を同定するよう作用し得る。
【0014】
いくつかの状況においては、異なる蛍光団からの異なる波長範囲を有するシグナルに興味が向けられる。発光光ビームは、フィルター、二色性ミラー、プリズムなどを使用して、目的の多数の異なる波長に分裂され得る。種々の市販のシステム(例えば、プリズム、ビームスプリッタミラーなど)が、この目的で入手可能である。ファイバーを有する本アセンブリは、レーザー光源のモードおよびプロフィールを保存し、そして共焦点顕微鏡アセンブリによるサンプル上への光線の最適な集光を保証する。
【0015】
ハウジングは個別に使用され得るが、通常は組み合わせて使用されて、検出部位において複数のチャネルを読み取る。個々のハウジングは、支持体に設置され、この支持体は、通常は可動性であり、この支持体が異なるセットのチャネルに対してハウジングを移動および再配向することを可能にする。例えば、8つのハウジングを用いて、8つのチャネルを読み取り得、そして支持体を移動することが可能であることによって、異なる群の8つのチャネルを読み取り得、その結果、12の読み取りにより、96のアッセイプレートパターンからのサンプルを読み取り得る。12以上のハウジング(通常は約96以下のハウジング)を有することにより、多数のサンプルを迅速に読み取り得る。なぜなら、個々の読み取りは数秒未満でなされ、そして支持体の移動は自動化され、そして全セットの読み取りは約1分未満で実施されるからである。この支持体は、ハウジングの移動を可能にし、その結果、ビームをチャネルの実質的に中央に配向する。ハウジングの移動を制御するための、種々の方法(機械的、電気機械的、電磁的など)が使用され得る。異なる方法は、旋回ロッドに設置されたアームにハウジングを固定することを包含し得、ここでこのアームは、一方向に制限されて反対方向に押し付けられ、レバーアームがコイルの中央に延びるボイスコイルアクチュエーターを包含する。カム操作式の制御ロッカーアーム、または平面内で移動する可動支持体を使用することにより、ハウジングは、中点から約10〜1000μ、通常は#500μの距離の周囲までを移動し得る。微量流体チップのバルク材料が自己蛍光性である場合には、チャネルの存在は、照射を所定の距離を通して移動させて、自己蛍光を検出することにより、決定される。バルク材料が有意には自己蛍光性でない場合には、自己蛍光と光散乱との両方を用いて、図9(照射がチャネルを横切る間の自己蛍光シグナルの変化を示す)に示すようなチャネル信号が存在する。
【0016】
制御アームは、ハウジングに堅固に連結される。この制御アームは、ベアリングに旋回可能に設置され、その結果、チャネルの周囲で小さな円弧において移動し得る。このアームは、チャネルの部位を決定するための蛍光検出のための光学システムを使用して、この円弧の周囲で微量流体チップの表面を走査するために、作動され得る。種々のアクチュエータが、このアームおよびハウジングを移動させるために使用され得、ここで、この移動は、円弧を通過するにつれて、加速および減速され得る。観察される自己蛍光は、検出器へと透過され、そしてシグナルが分析されて、チャネルの部位を決定する。一旦、チャネルの境界が決定されると、ハウジングおよびその光軸は、チャネルの中央の実質的に上に配向され得る。
【0017】
ハウジングおよびレバーアームの長さは、比較的短くあり得、一般に、ベアリングの軸から微量流体デバイスに隣接するハウジングの端部のレンズまで測定する場合に、50〜150の範囲である。ハウジングの移動は、約0.01μ、通常は約0.1〜10μの範囲の段階に制御される。機械的アームを使用する代わりに、種々の電磁的アセンブリを使用して、光学シグナルに関連してハウジングの移動を制御し得る。反対の電磁石、または反対の力を有する単一の電磁石を有することにより、電磁石の電磁束がコンピュータにより制御される場合には、これはハウジングがチャネル領域を移動するにつれて、ハウジングの位置をシグナルの変化に相関付ける。あるいは、ハウジングを移動させるためにモーターおよびガイドシャフトを使用し得、これにより、ハウジングがチャネル領域をチップの表面に対して平行な平面内で横断することを可能にする。
【0018】
望ましくは、複数の光学システムに対して、単一の光源が使用される。単一の光源からの光は、回折光学素子またはビームスプリッタのシステムのような、ビーム分割器に指向される。小ビームの各々は、光ファイバーに指向され、このファイバーは、この光を光学システムへと伝達する。光は任意の数の光線に分裂し得るが、通常は、光線の総数は96を超えず、通常は64を超えず、より通常は32を超えず、そして4程度に少なくあり得、好ましくは約8〜24である。各々が、角度θで線形アレイに分離され得るが、光線間の適切な角度を用いて二次元のアレイもまた形成され得る。各光線は、入力ビームとして、類似の伝播パラメータを有する。特に、発散および透過強度プロフィールは、保存される。光源の透過強度プロフィールが「ガウス(Gaussian)」またはTEM00である場合には、各光線は、このプロフィールを保存する。このプロフィールは、最適な集光を可能にする。各光線は、十分な距離を伝播されて、分離および異なる位置を提供する。この距離は、一般に少なくとも1mmであり、通常は約1〜1,000mmである。非球面レンズ、色消しダブレットなどのような個々のレンズは、各光線を単一モード光ファイバーに集光する。各ファイバーは、各チャネルに関連する共焦点顕微鏡アセンブリの1つに接続される。
【0019】
微量流体アレイは、固体基板に存在し、この基板は、非可撓性基板であっても可撓性基板(例えば、フィルム)であってもよい。微量流体デバイスの例については、例えば、米国特許第5,750,015号を参照のこと。可撓性である場合には、これは通常、剛性の支持体により支持され、そしてこの剛性の支持体とともに配向される。検出部位を含むチャネルは、一般に、約10〜200μmの深さ、および約1〜500μm、通常は10〜200μmの範囲のチャネルの開口部における幅を有する。これらのチャネルは、平行であっても種々のアレイであってもよく、ここで、入口ポートは、96以上のマイクロタイターウェルプレートに対して配向され得、その結果、ウェルからのサンプルは、ポートおよび微量流体ネットワークに直接導入され得る。チップの目的およびチャネルのパターン(チャネルが真っ直ぐであるか、湾曲しているかまたは曲がっているか)に依存して、チップはほんの1cmもしくは2cm長、または50cm長、一般的には約2〜20cm長、頻繁には12.8cm長であり得る。幅は、チャネルの数およびパターンにより変動し、一般的には少なくとも約1cm、より通常には少なくとも約2cmであり、そして50cm幅、頻繁には約8.5cm幅であり得る。チップは、入口ポートおよび出口ポートを有し、通常は緩衝液および廃液のためのリザーバを有し、これらはチャネルに接続され、そしてサンプル、試薬などを主チャネルに移動させるために主チャネルに接続される、さらなるチャネルが存在し得る。電極がチャネルに提供され、ここでこれらの電極は、チップの一部であっても、導電性塗料でペイントされていても、チップ上の金属メッキであってもよく、あるいは電極は、外部デバイスによりリザーバまたはチャネルに導入されるために提供され得る。チャネル間の間隔は、検出部位において、通常少なくとも約0.5mm、より通常には少なくとも約1mmである。これらのチャネルは多くの経路および形状を呈し得るので、2つの隣接するチャネル間の距離は、変動し得る。
【0020】
一連の決定をチップにおいてなすために、このチップは、1つのモジュールまたはモジュールの群に導入され、このモジュールは、可動支持体を備える。このチップは、支持体に対して割出され、その結果、これらのチャネルは、関連するハウジングの光軸に対して実質的に配向される。このモジュールはまた、電極または電極へのコネクター(これらはチップの一部である)、容器または他の計器(例えば、シリンジ、キャピラリーなど)(これらは、試薬、サンプルなどの供給源として作用し得、チップのポートを通しての流体移動を提供する)、蛍光検出器とデータ分析システムとの間の電気的接続などを備え得る。種々のモジュールが組み合わせられ、その結果、チップを受容し、そしてこのチップを、このチップと相互作用する種々の成分に対して配向する。割り当ては、チップにおいて提供され得、その結果、モジュールおよび支持体に対する所定の位置にロックされる。チャネルの操作を開始する前に、ハウジングは、チャネルの中央に対して配向される。ハウジングの各々は、検出ゾーンにおいてチャネルと交差する、微量流体チップの平面を横切って個々に移動する。基板の組成の自己蛍光のレベルに依存して、自己蛍光または散乱光が読み取られ得る。有意な自己蛍光が存在する場合には、自己蛍光または散乱光が、検出および読み取りされ得る。自己蛍光シグナルが低い場合には、散乱光が読み取られる。
【0021】
散乱光が検出される場合には、この散乱は、チャネルからの散乱と比較して、チャネルの縁部において異なる。散乱光の変化を観察することにより、ハウジングが微量流体チップの平面を横切って移動するにつれて、チャネルの縁部からチャネルへの移動を検出し得、そしてこれらの縁部から等しく離れているとして、中央を選択し得る。
【0022】
一旦、ハウジングがチャネルの指定位置により固定されると、チャネルと光学ハウジングとに関する配向プロセスは、必ずしも繰り返される必要はなく、そして多数の読み取りがなされ得る。次いで、種々の操作を実施し得、ここで、蛍光標識は、検出部位に運ばれる。蛍光団標識の検出は、競合アッセイ、核酸配列決定、免疫アッセイなどの結果であり得る。
【0023】
(特定の実施形態の説明)
本発明をさらに理解するために、ここで図面を考慮する。図1に、検出ステーション100を示す。この検出ステーションとともに、微量流体チップ102が、水晶板104により適所に保持される。この水晶板は、真空チャック(図示せず)の一部であり得、これによって微量流体チップ102が、検出ステーション100に対して固定された指定位置に保持される。微量流体チップを適所に維持する他の様式としては、重力、力ピン(force pin)、圧力、クリップ、可逆的接着などが挙げられる。電極108を有する電極付き蓋106もまた示され、ここで電極108は、動電学的プロセスの操作の間に、微量流体チップ102のポートに延び得る。上記のように、微量流体チップ102は、複数のチャネルを有し、ここでは1つのチャネルのみについてシステムを示す。検出ステーションは、光学ハウジング110を有し、これは、小さな管状ハウジングであり、これは、好都合な任意の材料(例えば、プラスチック、アルミニウム、鋼鉄など)で作製され得、そして望ましくは、光学システムの種々の成分を収容するために必要とされる最小の寸法を有する。この光学システムは、許容される程度まで、小型化された光学素子(例えば、回折光学素子DOE)を使用する。単一のDOEが、複数の機能を果たし得、例えば、レンズ、ミラーおよび/または格子として作用し得、ここで、この成分は、約3mm×3mmである。この光学システムは、ハウジングの一端に、微量流体チップのチャネルと並置して、非球面レンズ112を備え、この非球面レンズ112は、以下に記載するように、適切な配向の後に、励起ビームをチャネルの中央に指向する。励起光ビーム114は、カプラー122によってハウジング110のアーム120に接続された光ファイバーにより、二色性ミラー116または等価な光学素子に指向される。光ビーム114は、レンズ124を通過し、このレンズは、ファイバーからの発散光を収集するよう作用する。次いで、励起ビーム114は、二色性ミラー116により反射され、このミラーは、目的の励起波長の光を反射し、そしてこの反射波長の外の光は、二色性ミラーを通過し得る。内壁および全ての支持要素は、望ましくは黒色であり、その結果、散乱光吸収を最大化する。反射された光ビーム126は、非球面レンズ112により集光され、そしてはっきりとした小さなビームを形成し、これが支持プレート104を通ってチャネル128へと通過する。蛍光団がチャネル128に存在する場合には、この蛍光団は励起され、そして光を放出し、この光は、チャネル128を出、そして非球面レンズ112により収集される。この発光ビームは、二色性ミラー116、フィルター132を通過し、目的の波長範囲の外の光が除去され、そしてレンズ134を通過し、このレンズは、光ビーム130を収集光ファイバー132の入口へと集光させる。光ファイバーは、カプラーにより、ハウジング110に取り付けられる。収集光ファイバー132は、光子を検出器(図示せず)に伝達する。
【0024】
ハウジング110は、フランジ138により、配向デバイス136に固定される。フランジ138は、ハウジング110、アーム120、およびレバー140に結合されて、可動ユニットとして一緒に接続される。レバー140は、ベアリング142に回転可能に設置され、このベアリングは、軸144により支持される。配向デバイス136は、管状ケーシング146を備え、これは、L型バー150によって、エンコーダーユニット148に固定的に取り付けられる。ケーシング146およびモーターユニット148は、固定された関係に保持され、その結果、レバーアーム140の動きが正確に制御され得、そしてレバーアーム140の位置およびこの様式でハウジング110の位置は、容易に決定される。エンコーダー148は、コネクター152によりロッド154に接続され、このロッド上に、カム156が固定的に設置される。ロッド154は、ベアリング158および160を通過し、これらは管状ケーシング146内に設置され、その結果、ロッド154を適所に維持し、そしてカム156が固定された回転軸から回転することを可能にする。管状ハウジング146は、フィン162を有し、これに、ばね164の一端が取り付けられ、このばねの他端は、レバーアーム140に取り付けられる。ばね164は、レバーアーム140を束縛し、そして破線166により示されるように、アーム140を、フィン162の方向、または反時計回りの方向に押し付ける。バー168は、ブッシング170および172により支持され、そしてその長さは、カム156と、レバーアーム140との接触位置との間の密なフィットを提供する。従って、バー168が位置するカム156の表面と、レバーアーム140との間の距離は、一定のままである。カム156が回転するにつれて、バー168は、カムがジャーナルされたロッド154に対して伸縮する。レバーアーム140がバー168の移動に応答するにつれて、ハウジング110内の光学システムは、発光している蛍光に関して表面を走査する。先に示したように、微量流体チップ102内のチャネル128の境界において、有意な低下が存在する。この境界の位置およびこれらの境界間の距離を知ることにより、エンコーダーは、ハウジング110の中央をチャネル128の中央に合わせるようにバー168を移動させるよう制御され得る。一旦、ハウジングがチャネルと中心合わせされると、電動学的決定がなされ、そしてチャネル128においてモニタリングされる蛍光の変化は、蛍光強度の変化から得られる信号の変化とともに、収集ファイバー132によりデータ収集・分析デバイス(図示せず)へと指向される。
【0025】
微量流体チップは、単一のハウジングの幅の境界内に単一のチャネルを有するよう配向され得、その結果、チャネル中央の決定は、そのチャネルに対して直交する。あるいは、チャネルは、ハウジングの経路に対して角度をなし得、その結果、測定は、チャネル境界に対して角度をなし、依然として中心が決定されることを可能にする。ハウジングを行として有する代わりに、ハウジングは、検出部位においてチャネルの境界を決定することを可能にする任意の様式で、組織化され得、例えば、円弧、多数の列および行を有する等間隔に離れたアレイ、またはモニタリングされるべきチャネルの検出部位のパターンに関して他のパターンを形成することである。
【0026】
図2に、2つの異なるチャネルをモニタリングする対面した2つの完全なユニットが存在すること以外では図1に示すデバイスと類似の、デバイスを示す。この配置において、2行のデバイスを有する。全ての部品が同一であるので、異なる構成要素を示すために同一の番号を使用する。2つの検出ステーション100aおよび100bは、チャネル128aおよび128bに互いに適応する。検出ステーション100aおよび100bの各々は、それぞれが独自の配向デバイス136aおよび136bを有し、互いに独立して移動する。2セットの光学検出ステーションを有することにより、同時に実施し得る読み取りの数が2倍にされる。チャネルが適切に配向される位置で、2行の光学検出ステーションは、2セットのチャネルをモニタリングし、そしてより迅速にデータを提供する。
【0027】
図3に、改変した構造が提供され、これは、2つの様式で使用され得る:第一の様式においては、異なる吸収波長を有する蛍光団の同定を可能にする;そして第二の様式においては、単一の波長を使用するが、微量流体チップからの散乱の検出のために、異なる経路を使用する。この図はまた、配向デバイスのための異なる機械的構造を提供する。光学検出デバイス300では、微量流体チップ302が、ガラス板304により真空チャック306に適所に保持される。微量流体チップ302は、検出ステーション300に対して固定された指定位置に保持される。電極付きの蓋または他の電極源(図示せず)が、微量流体チップ302のチャネルにわたる電圧のために、提供される。検出ステーションは、光学ステーション310を有し、これは、小さな管状ハウジングであり、これは、少なくとも約3mmの外径、より通常には、少なくとも5mmの外径、そして通常は、約15mm以下の外径、より通常には約10mm以下の外径である。望ましくは、行になったハウジングの中心間間隔は、約6〜12mm、より特定すると8〜10mmである。ハウジングは、光学トレインを収容するための最小の寸法を有し、そして所望の仕様を提供する、任意の好都合な材料(金属またはプラスチック)で作製され得る。光学システムは、許容可能な程度まで、小型化された光学素子(例えば、回折光学素子)を使用する。光学システムは、微量流体チップ302内のチャネル314に並置するハウジングの一端に、非球面レンズ312を備える。非球面レンズ312は、適切な配向の後に、励起ビームをチャネルの中央に指向する。このレンズはまた、チャネル314の境界の検出のための小さな光ビームを透過するよう作用する。ハウジングは、上の二色性ミラー316および下の二色性ミラー318の、2つの二色性ミラーを有する。これら2つのミラーは、蛍光団の励起のための2つの異なる波長を使用するために、用途を見出す。上の励起光ビーム320は、上の二色性ミラー316または等価な光学素子へと、カプラー324によってハウジング310に接続された光ファイバー322により指向される。光ビーム320は、帯域通過フィルター326を通過し、このフィルターは、第一の目的の波長範囲の外の光を除去する。次いで、励起光ビーム320は、二色性ミラー316により反射され、このミラーは、目的の波長光内の光を反射し、そして目的の波長の放出光を通過させる。内部の壁および支持要素は、望ましくは、黒色である。反射された光ビーム328は、非球面レンズ312により集光されて、はっきりした小さなビーム(望ましくは約5〜25μmの範囲)となる。照射ビームは、チャネル内の蛍光団を検出部位において励起させ、そして光が放出される。約10μmの直径のビームを有することにより、幅約50μmおよび深さ100μmのチャネルを用いて、照射される容量は、約***である。50pM濃度の蛍光団については、照射される分子の数は、***である。放出された光は、二色性ミラー318および316を通過してフィルター330を通り、このフィルターは、2つの異なる蛍光団の波長の外の光を除去し、そして光は、対物レンズによって、カプラーによりハウジング310に取り付けられた収集光ファイバーの入口に集光される。収集光ファイバー334の入口は、共焦点開口部として作用する。類似の様式で、下の光ファイバー340は、カプラー342を介してハウジング310に接続され、そして光ビーム320とは異なる波長の光ビーム344を指向して、帯域通過フィルター346に通す。光ビーム344は、光ビーム320と同様に作用し、二色性ミラー318によってチャネル314へと反射され、ここで蛍光が放出され、非球面レンズ312により収集および集光され、そして両方の二色性ミラー318および316を通して、多モード光ファイバー334への入口により提供される共焦点開口部へと指向される。
【0028】
チャネル314の中央を決定するために、配向機構348が提供され、これは、図1の配向機構と実質的に同じである。ハウジング310は、ボルト350および352により、配向デバイス348に固定される。これらのボルトは、レバーアーム354を通って延びる。この様式で、ハウジング310が固定され、そしてハウジング310およびレバー354の可動ユニットとして、一緒に接続される。レバー354は、ベアリング356に回転可能に設置され、このベアリングは、軸358により支持される。配向デバイス348は、管状ケーシング360を備え、このケーシングは、L型バー364およびフランジ366によって、エンコーダーユニット362に固定的に取り付けられる。ケーシング360およびエンコーダーユニット368は、固定された関係に保持され、その結果、レバーアーム354の移動が正確に制御され得、そしてレバーアーム354の位置、およびこの様式でハウジング310の位置が、容易に決定され得る。エンコーダー368は、コネクター370によってロッド372に接続され、このロッド上に、カム374が固定的に設置される。ロッド372は、ベアリング376および378を通過し、これらのベアリングは、フランジ366に固定され、その結果、ロッド372を適所に維持し、そしてカム374が固定された回転軸から回転することを可能にする。レバーアーム354は、ピン380を有し、このピンに、ばね382が取り付けられ、ここで、ばね382の他端は、L型バー364に取り付けられたフック384に固定される。ばね382は、レバーアーム354を拘束し、そしてアーム354をL型バーの方向に押し付ける。バー384が、ブッシング386および388により支持され、そしてこのバーの長さは、カム374と、レバーアーム354の接触位置との間のきついフィットを提供する。従って、バー384が位置するカム374の表面と、レバーアーム354との間の距離は、一定に維持される。カム374が回転するにつれて、バー384は、このカムがジャーナルされるロッド372に対して伸縮する。レバーアーム354がバー384の移動に応答するにつれて、ハウジング310内の光学システムは、放出される蛍光について、表面を走査する。先に示したように、微量流体チップ302のチャネル314の境界において、有意な低下が存在する。この境界の位置およびこれらの境界間の距離を知ることにより、エンコーダーは、ハウジング310の中央をチャネル314の中央に合わせるようにバー384を移動させるよう制御され得る。一旦、ハウジングがチャネルと中心合わせされると、電動学的決定がなされ、そしてチャネル314においてモニタリングされる蛍光の変化は、蛍光強度の変化から生じる信号の変化とともに、収集ファイバー334によりデータ収集・分析デバイス(図示せず)へと指向される。
【0029】
このデバイスの第二の使用において、光ファイバー340は励起光を提供し、これは、微量流体チップ302へと反射される。二色性ミラー316は、散乱光を収集し、そしてこの光を収集光ファイバー322へと透過する。両方の二色性ミラー316および318は、チャネル314から放出される蛍光シグナルに対して透明であり、この蛍光は、データプロセッサによる処理のために、光ファイバー334へと透過される。
【0030】
次の一連の図においては、これらの図に対して共通の要素を繰り返さない。これらは、ハウジングの移動のための異なるデバイスのための環境を提供して、チャネル中央の部位を同定する。
【0031】
図4において、デバイス400は、微量流体チップ402に関連し、そして光学ステーション404を有し、これは、ハウジング310に関して図3において記載したものと同じ光学機器を備える。光学ステーション404は、固定用ネジ408および410によって、アーム406に固定される。アーム406は、ベアリング412を有し、このベアリングは、旋回ロッド414に設置される。アーム406は、電気コイル416で終結し、このコイルは、リード線418および420を有する。磁気バー422が、コイル420を通って延びる。これらのリード線は、直流電流源(図示せず)に接続され、これは、データ分析器(これもまた図示せず)により制御される。光学システム404からのシグナルは、データ分析器に送られ、この分析器は、ハウジングが微量流体チップ402のプレートを横断するにつれて、シグナルの変化を検出し、そしてチャネルの中央を同定する。データ分析器は、コイル内の電流を変化させてアーム406を移動させ、微量流体チップ402の表面を走査する。チャネルの中央が同定されると、データ分析器はハウジングの位置を固定して、チャネルの中央へと励起光を指向する。
【0032】
図5において、代替の電磁デバイスが使用される。デバイス500は、微量流体チップ502に関連し、そして光学ステーション504を有し、このステーションは、ハウジング310に関して図3において記載したものと同じ光学機器を備える。電磁アクチュエーター506が、支持体508に堅固に固定され、そして鉄表面510に対面する。ハウジング504は、フランジ512において、ボルト514および516によって可撓性旋回アーム518に取り付けられ、この旋回アームは、バー522によって支持体520に固定される。電磁アクチュエーター506が、電磁アクチュエーター506への電流の印加により作動される場合に、鉄表面510を電磁アクチュエーター506へと引きつける場が発生される。可撓性旋回アーム518は屈曲し、そしてハウジング504の電磁アクチュエーター506への移動に対して推進力を付与する。電磁アクチュエーター506の磁束を変化させることによって、ハウジング504は、微量流体チップ502の平面にわたる円弧内を移動し、チャネルから放射される光により生じるシグナルの変化の結果として、チャネルの中央の検出を可能にする。位置レゾルバー524は、表面526に対面し、ここで位置レゾルバー524は、ハウジング504の位置を検出する。位置レゾルバー524は、音または光を使用して、位置レゾルバーと表面526との間の距離を決定し得る。一旦、チャネルの中央がデータ分析器により決定されると、チャネルの中央に光を指向するハウジング504の位置に関する位置レゾルバー524からのシグナルが記録され得、そしてハウジング504は、そのチャネル内の各決定に対する位置に、戻される。この様式で、決定することを望むたびに表面を走査する必要はないが、いつハウジングが適切に位置決めされるかを決定するために、位置レゾルバー524からのシグナルに依存し得る。
【0033】
次の2つの図において、ハウジングはキャリアに設置され、このキャリアは、微量流体チップの表面に対して平行な平面内を移動し、その結果、ハウジングから入射する光は常に、微量流体チップへの同一の方向にある。
【0034】
図6において、デバイス600は、可動キャリア604に設置された光学システム602の下に、微量流体チップ601を有する。可動キャリア604は、スタンド606に設置され、このスタンドは、2つの対面する支持ポスト608および610を有する。可動キャリア604の移動は、可動キャリア内のねじ山付きチャネルを通過し、カプラー616によりリードスクリュー612に接続されるモーター614により回転される、リードスクリュー612によって制御される。リードスクリュー612は、ベアリング618によってポスト608内に支持される。2つのガイドシャフト620および622は、ポスト608と610との間に延び、そして可動キャリア604の平滑チャネルを通過して、可動キャリア604の移動を同一面内に維持する。モーター614は、データ分析器により制御され、この分析器は、可動キャリア604の移動を制御し、そして光学システム602からのシグナルを受信する。チャネルの中央が決定されると、可動キャリアの移動は停止され、そして同じ位置に維持される。
【0035】
図7において、デバイス700は、光学システムの移動を制御するために、電磁アクチュエーターを使用する。光学システムを微量流体チップの表面に対して平行な線状平面内に維持するために、ガイドシャフト、ガイドベアリングなどのような、1つ以上の線形ガイドを使用する。デバイス700は、微量流体チップ702および光学システム704を有し、このシステムは、可動キャリア706に設置される。図6においてと同様に、可動キャリア706は、ガイドシャフト708および710によりガイドされ、これらのガイドシャフトは、ポスト712と714との間に延び、可動キャリア706の平滑チャネルを通過して、可動キャリア706の移動を、微量流体チップ702の上表面に対して平行な一定の平面内に維持する。ポスト714には、電磁アクチュエーター716が設置される。可動キャリア706の電磁アクチュエーター716に対面する側には、棒磁石718が設置される。電磁アクチュエーター716の場の強度および極性を変化させることによって、可動キャリア706は、ガイドシャフト708および710に沿って、前後に移動し得る。検出ロッド720が、可動キャリア706の端部の一方に取り付けられ、そしてポスト714および位置レゾルバー722を通って延びる。検出ロッド720は、色、透過性、反射性などを次第に変化させることなどにより位置を符号化されており、その結果、位置レゾルバー722における検出ロッド720の位置が、正確に決定され得る。一旦、検出ロッド720の適切な位置が決定が決定されると、可動キャリア706は常に、微量流体チップ702のチャネルのさらなるモニタリングのために、同じ部位に戻され得る。光学システム704からのシグナルが、データ分析器(これはまた、検出ロッド720の位置をモニタリングする)に送られることによって、光学システムがチャネルの中央に位置する場合に、微量流体チップのチャネルの中央は、検出ロッド720の位置に相関付けられ得る。
【0036】
先に示したように、チャネルは、多くのパターンの微量流体チップを呈し得る。図8は、微量流体チップ800の表面の模式的頂面図である。複数のチャネルネットワーク802は、主チャネル804、交差チャネル806、主チャネル804のためのポートおよびリザーバー808および810、ならびに交差チャネル806のためのポートおよびリザーバー812および814を有する。チャネルネットワーク802は、円弧状に間隔を空け、そして「X」816は、主チャネル804の検出部位を示し、ここで、光学ハウジングが位置決めされる。円弧の代わりに、チャネルネットワークは、円を規定するよう分配され得、ここで、光学ハウジングは、プラットフォーム上に設置され、このプラットフォームは、一群のハウジングが回転して異なる群のチャネルネットワークをアドレスすることを可能にする。
【0037】
所望であれば、種々の電極パターンが、微量流体チップの一部を作製し得、これらの電極は、コンピュータまたは他のデータ分析デバイスに接続され得、このデバイスは、操作の進行の間に、種々の電極における電圧を制御するよう作用する。さらに、このコンピュータは、操作の間に光学検出デバイスの位置決めを制御するよう作用し得る。
【0038】
先に記載したように、微量流体デバイスは、複数のチャネルを有し、ここで、チャネルの数に依存して、全てのチャネルが同数の光学検出デバイスによって同時にアドレスされ得るか、あるいはチャネルの数の一部がいつでもアドレスされ得、そして光学検出デバイスもしくは微量流体チップまたは両方が、互いに対して移動されて、光学検出デバイスが複数の異なるチャネルをアドレスすることを可能にし得る。例えば、各ポートが96マイクロタイターウェルプレートのウェルからサンプルを受容することが意図された、96のチャネルを有する微量流体チップを用いて、1つのユニットにおいて8または12の光学検出デバイスを有して、同数のチャネルをモニタリングし得る。次いで、同数のチャネルのモニタリングの後に、光学検出デバイスユニットおよび/または微量流体チップは移動されて、異なるセットのチャネルをアドレスし、そして全てのチャネルがモニタリングされるまで、手順が繰り返される。
【0039】
上記結果から、本発明は、微小チャネル内の蛍光団を検出する改善された様式を提供することが明らかである。このデバイスおよび方法は、シグナルおよびシグナル対ノイズ比を非常に改善し、そして多数のサンプルの迅速な決定を可能にし、その結果、一度に多数のチャネルがモニタリングされ得る。使用される機構は、コンパクトになるよう小型化され得、一方で複数の微小チャネルを小さな空間においてアドレスし得る。チャネルの種々の設計が、この検出システムに適合する。
【0040】
上記本発明を、理解の明瞭化の目的で、図示および実施例によりいくらか詳細に記載したが、本発明の教示を参照して、添付の特許請求の範囲の意図および範囲から逸脱することなく、特定の変化および改変が本発明になされ得ることが、当業者に容易に明らかである。
【図面の簡単な説明】
【図1】 図1は、光学検出システムの立面側面図である。
【図2】 図2は、一対の光学検出システムの立面側面図である。
【図3】 図3は、代替の光学検出システムの立面側面図である。
【図4】 図4は、光学検出システムを配向するために電磁アクチュエータを使用する、代替の実施形態の立面図である。
【図5】 図5は、光学検出システムを配向するために電磁アクチュエータを使用する、第二の様式を使用する代替の実施形態の立面図である。
【図6】 図6は、光学検出システムを配向するために微量流体基板に対して平行な平面内で機械的に移動するキャリアを使用する、代替の実施形態の立面図である。
【図7】 図7は、光学検出システムを配向するために微量流体基板に対して平行な平面内でキャリアを移動させるための、電磁アクチュエータを使用する代替の実施形態の立面図である。
【図8】 図8は、複数のチャネルネットワークが特徴付けられた微量流体チップの表面の、頂面図である。
【図9】 図9は、チャネルに対して光学システムを配向する場合に観察されるシグナルのグラフである。この決定を実行した条件は、以下の通りである:レーザー出力2mW;スポットサイズFWHMにおいて10ミクロン;アクリル微量流体チップ、30ミクロン深さのチャネル、HEPES緩衝液(50mM、pH7.4)で満たされた80ミクロン幅;開口チャネルを横切る走査(前後)約400ミクロン/秒;488nm励起(アルゴンイオンレーザー)、530nm発光フィルター、30nm FWHM帯域通過を用いるMini−Confocal Optical System;最適なシグナル性能に通常設定された焦点。

Claims (20)

  1. 微小チャネル中の蛍光サンプルを照射するため、ならびに固体基板から放射される光および該チャネルから放出される蛍光を検出するための、光学検出・配向システムであって、該微小チャネルが、固体基板に存在し、該システムが、以下:
    励起光源および該光を該固体基板上に指向するための手段を備える、可動光学トレイン;
    該固体基板から放射される光を受信し、そして該放射光を分析のために伝達するための手段;ならびに
    該光学トレインおよび励起光を、該微小チャネルを備える該固体基板の表面に対して移動させ、そして該固体基板から放射される光の変化に応答して、該光学トレインを該微小チャネルに対して整列させるための、手段、
    を備える、光学検出・配向システム。
  2. 前記放射光を受信するための手段が、前記可動光学トレインの一部である、請求項1に記載の光学検出・配向システム。
  3. 前記放射光が蛍光である、請求項1に記載の光学検出・配向システム。
  4. 前記放射光が散乱光である、請求項1に記載の光学検出・配向システム。
  5. 微小チャネル内の蛍光サンプルを照射するため、ならびに固体基板から放射される光および該チャネルから放出される蛍光を検出するための、光学検出・配向システムであって、該微小チャネルが固体基板に存在し、該システムが、以下:
    可動光学ユニットであって、光学トレイン、励起光源、および該光源からの励起光ビームを非球面レンズへと指向するための反射・透過光学素子を収容するハウジング、ならびに該ハウジングに堅固に固定されるキャリアを備え、該非球面レンズは、該微小チャネル上に該光を集光させ、そして該微小チャネルから放射される光を収集し、そして該放射光を集光して該反射・透過光学素子を通して指向する、非球面レンズであり、ここで、該反射・透過素子は、該励起光ビームを反射し、そして該放射光を透過する素子である、可動光学ユニット;
    該放射光を受信し、そして放射光の集光されたビームを光ファイバーの入口に指向するための、集光レンズであって、ここで、該入口が、共焦点開口部として作用する、集光レンズ;
    該キャリアに固定された、該キャリアおよびユニットを短距離にわたって正確に移動させるための手段;ならびに
    該光ファイバーからデータ分析器へのコネクターであって、該データ分析器は、該キャリアおよびユニットが該基板の表面にわたって移動する際に、該基板から放射される光の変化を分析するため、かつ該光ファイバーから受信した蛍光のパターンに関して該ハウジングを移動させるために該移動手段を制御することにより、その結果、該ハウジングの光学軸が、該チャネルの実質的に中央に配向するための分析器である、コネクター、
    を備える、光学検出・配向システム。
  6. 前記微小チャネルを備える前記基板を、前記ハウジングに対して固定された位置に配向するための手段を備える、請求項5に記載の光学検出・配向システム。
  7. 前記キャリアが回転可能レバーアームである、請求項5に記載の光学検出・配向システム。
  8. 前記移動手段が、モーター駆動軸に設置された回転カム、該カムと前記ハウジングとの間に位置するバー、および前記可動光学ユニットを該軸へと接続し、かつ押し付けるための推進手段を備える、請求項7に記載の光学検出・配向システム。
  9. 前記キャリアが支持体であり、該支持体が線形ガイド上を移動する、請求項5に記載の光学検出・配向システム。
  10. 前記支持体が機械的手段により移動される、請求項9に記載の光学検出・配向システム。
  11. 前記支持体が電磁的手段により移動される、請求項9に記載の光学検出・配向システム。
  12. 前記光学トレインが、3つの光ファイバーおよび2つの反射・透過素子を備える、請求項5に記載の光学検出・配向システムであって、該光ファイバーおよび該反射・透過素子が:
    (1)第一の実施形態においては、異なる波長の2つの異なる励起光ビームを指向するため、および該2つの異なる励起光ビームを受信するためのものであり、そして
    (2)第二の実施形態においては、励起光を第一の反射・透過素子に指向するための第一の光ファイバー、および前記基板から放射される光を受信するための第二の光ファイバーであり、該第一の反射・透過素子は、該励起光を該基板へと指向し、そして該基板からの光を第二の反射・透過素子へと透過し、該第二の反射・透過素子は、該基板から放射される該光を受信し、そして該放射光を該第二の光ファイバーへと反射し、該第一および第二の反射・透過素子は、該チャネルから放射される蛍光を、第三の光ファイバーへと透過する、光学検出・配向システム。
  13. 前記放射光からのシグナルを受信し、そして前記光学ユニットを移動させるために前記移動手段を制御するための、データ分析ユニットをさらに備える、請求項5に記載の光学検出・配向システム。
  14. 前記集光レンズと前記反射・透過素子との間のフィルターであって、前記放射光の、目的の波長範囲の外の光をフィルタリングするための、フィルターをさらに備える、請求項5に記載の光学検出・配向システム。
  15. 微小チャネル内の蛍光サンプルを照射するため、ならびに固体基板から放射される光および該チャネルから放出される蛍光を検出するための、光学検出・配向システムであって、該微小チャネルが、固体基板に存在し、該システムが、以下:
    可動光学ユニットであって、光学トレイン、励起光源、および該光源からの励起光ビームを非球面レンズへと指向するための反射・透過光学素子を収容する、ハウジング、ならびに該ハウジングに堅固に固定されるキャリアを備え、該非球面レンズは、該微小チャネル上に該光を集光し、そして該微小チャネルから放射される光を収集し、そして該放射光を集光して該反射・透過素子を通して指向する、非球面レンズであり、ここで、該反射・透過素子が、該励起光ビームを反射し、そして該放射光を透過する素子である、可動ユニット;
    該放射光を受信し、そして放射光の集光されたビームを光ファイバーの入口へと指向するための、集光レンズであって、ここで該入口が、共焦点開口部として作用する、集光レンズ;
    該キャリアに固定された、該キャリアおよびユニットを円弧状に短距離にわたって正確に移動させるための手段;ならびに
    該光ファイバーからデータ分析器へのコネクターであって、該データ分析器は、該キャリアおよびユニットが該基板の表面にわたって移動する際に、該基板から放射される光の変化を分析するため、かつ該光ファイバーから受信した放射光のパターンに関して該ハウジングを移動させるために該移動手段を制御することにより、その結果、該ハウジングの光学軸が、該チャネルの実質的に中央に配向するための分析器である、コネクター、
    を備える、光学検出・配向システム。
  16. 前記移動手段が、前記キャリアの移動を制御するためのカムを備える、請求項15に記載の光学検出・配向システム。
  17. 微小チャネル内の蛍光サンプルを照射するため、ならびに固体基板から放射される光および該チャネルから放出される蛍光を検出するための、光学検出・配向システムであって、該微小チャネルが、固体基板に存在し、該システムが、以下:
    可動光学ユニットであって、光学トレイン、励起光源、および該光源からの励起光ビームを非球面レンズへと指向するための反射・透過光学素子を収容する、ハウジング、ならびに該ハウジングに堅固に固定されるキャリアを備え、該非球面レンズは、該微小チャネル上に該光を集光し、そして該微小チャネルから放射される光を収集し、そして該放射光を集光して該反射・透過素子を通して指向する、非球面レンズであり、ここで、該反射・透過素子が、該励起光ビームを反射し、そして該放射光を透過する素子である、可動ユニット;
    該放射光を受信し、そして該基板からの放射光の集光されたビームを光ファイバーの入口へと指向するための、集光レンズであって、ここで該入口が、共焦点開口部として作用する、集光レンズ;
    該キャリアに固定された、該キャリアおよびユニットを該基板に対して平行な平面内で短距離にわたって正確に移動させるための手段;ならびに
    該光ファイバーからデータ分析器へのコネクターであって、該データ分析器は、該キャリアおよびユニットが該基板の表面にわたって移動する際に、該基板から放射される光の変化を分析するため、かつ該光ファイバーから受信した光のパターンに関して該ハウジングを移動させるために該移動手段を制御することにより、その結果、該ハウジングの光学軸が、該チャネルの実質的に中央に配向するための分析器である、コネクター、
    を備える、光学検出・配向システム。
  18. 前記移動手段が、ガイドシャフト上のキャリアを備える、請求項17に記載の光学検出・配向システム。
  19. 前記移動手段が、前記キャリアを前記ガイドシャフト上で移動させるための電磁的手段をさらに備える、請求項18に記載の光学検出・配向システム。
  20. 前記移動手段が、前記キャリア内のねじ山付きスリーブ内のねじ山付きシャフト、および該ねじ山付きシャフトを回転させて該キャリアを移動させるための、該ねじ山付きシャフトの一端に接続されたモーターをさらに備える、請求項17に記載の光学検出・配向システム。
JP2000616405A 1999-05-12 2000-05-12 微量流体デバイスにおける多重方式蛍光検出 Expired - Lifetime JP3815969B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13372799P 1999-05-12 1999-05-12
US60/133,727 1999-05-12
PCT/US2000/013217 WO2000068671A2 (en) 1999-05-12 2000-05-12 Multiplexed fluorescent detection in microfluidic devices

Publications (2)

Publication Number Publication Date
JP2002544476A JP2002544476A (ja) 2002-12-24
JP3815969B2 true JP3815969B2 (ja) 2006-08-30

Family

ID=22460037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000616405A Expired - Lifetime JP3815969B2 (ja) 1999-05-12 2000-05-12 微量流体デバイスにおける多重方式蛍光検出

Country Status (5)

Country Link
US (2) US6399952B1 (ja)
EP (1) EP1192447A2 (ja)
JP (1) JP3815969B2 (ja)
CA (1) CA2373537A1 (ja)
WO (1) WO2000068671A2 (ja)

Families Citing this family (215)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6048734A (en) 1995-09-15 2000-04-11 The Regents Of The University Of Michigan Thermal microvalves in a fluid flow method
US6893877B2 (en) 1998-01-12 2005-05-17 Massachusetts Institute Of Technology Methods for screening substances in a microwell array
US8337753B2 (en) 1998-05-01 2012-12-25 Gen-Probe Incorporated Temperature-controlled incubator having a receptacle mixing mechanism
EP1614474B1 (en) 1998-05-01 2007-08-15 Gen-Probe Incorporated Incubator for automatic analyser
EP1165235B1 (en) * 1999-03-19 2011-09-28 Life Technologies Corporation Method of screening mutated cells
JP2000304698A (ja) * 1999-04-16 2000-11-02 Canon Inc 蛍光測定方法と装置及びそれに適した基板
US6838680B2 (en) * 1999-05-12 2005-01-04 Aclara Biosciences, Inc. Multiplexed fluorescent detection in microfluidic devices
US20020151040A1 (en) 2000-02-18 2002-10-17 Matthew O' Keefe Apparatus and methods for parallel processing of microvolume liquid reactions
ES2389057T3 (es) 2000-03-03 2012-10-22 Qualcomm Incorporated Procedimiento y aparato para participar en servicios de comunicación grupal en un sistema de comunicación existente
US20030160957A1 (en) * 2000-07-14 2003-08-28 Applera Corporation Scanning system and method for scanning a plurality of samples
US6563581B1 (en) 2000-07-14 2003-05-13 Applera Corporation Scanning system and method for scanning a plurality of samples
US6531041B1 (en) * 2000-07-20 2003-03-11 Symyx Technologies, Inc. Multiplexed capillary electrophoresis system with rotatable photodetector
US7027683B2 (en) * 2000-08-15 2006-04-11 Nanostream, Inc. Optical devices with fluidic systems
US6692700B2 (en) 2001-02-14 2004-02-17 Handylab, Inc. Heat-reduction methods and systems related to microfluidic devices
US7829025B2 (en) 2001-03-28 2010-11-09 Venture Lending & Leasing Iv, Inc. Systems and methods for thermal actuation of microfluidic devices
US7010391B2 (en) 2001-03-28 2006-03-07 Handylab, Inc. Methods and systems for control of microfluidic devices
US8895311B1 (en) 2001-03-28 2014-11-25 Handylab, Inc. Methods and systems for control of general purpose microfluidic devices
US7323140B2 (en) 2001-03-28 2008-01-29 Handylab, Inc. Moving microdroplets in a microfluidic device
US6852287B2 (en) 2001-09-12 2005-02-08 Handylab, Inc. Microfluidic devices having a reduced number of input and output connections
US20030077817A1 (en) * 2001-04-10 2003-04-24 Zarur Andrey J. Microfermentor device and cell based screening method
AU2002316302A1 (en) * 2001-07-12 2003-01-29 Aclara Biosciences, Inc. Submersible light-directing member for material excitation in microfluidic devices
US7023007B2 (en) * 2001-07-17 2006-04-04 Caliper Life Sciences, Inc. Methods and systems for alignment of detection optics
WO2003008902A1 (en) * 2001-07-17 2003-01-30 Caliper Technologies Corp. Methods and systems for alignment of detection optics
US7376304B2 (en) * 2001-09-27 2008-05-20 Bio-Rad Laboratories, Inc. Biochemical assay detection using a fiber optic exciter
US7218810B2 (en) * 2001-09-27 2007-05-15 Bio-Rad Laboratories, Inc. Biochemical assay detection in a liquid receptacle using a fiber optic exciter
US9157860B2 (en) * 2002-05-16 2015-10-13 Applied Biosystems, Llc Achromatic lens array
US6982166B2 (en) 2002-05-16 2006-01-03 Applera Corporation Lens assembly for biological testing
JP4106977B2 (ja) * 2002-06-21 2008-06-25 株式会社日立製作所 分析チップ及び分析装置
US7452712B2 (en) * 2002-07-30 2008-11-18 Applied Biosystems Inc. Sample block apparatus and method of maintaining a microcard on a sample block
US8277753B2 (en) 2002-08-23 2012-10-02 Life Technologies Corporation Microfluidic transfer pin
WO2004040295A1 (en) * 2002-10-31 2004-05-13 Nanostream, Inc. Parallel detection chromatography systems
AU2002363822A1 (en) * 2002-11-20 2004-06-15 Richard Fritz Sauter Method for analyzing molecules for molecule sequencing and spectrometer therefor
US6987263B2 (en) * 2002-12-13 2006-01-17 Nanostream, Inc. High throughput systems and methods for parallel sample analysis
US20060076482A1 (en) * 2002-12-13 2006-04-13 Hobbs Steven E High throughput systems and methods for parallel sample analysis
US7087444B2 (en) 2002-12-16 2006-08-08 Palo Alto Research Center Incorporated Method for integration of microelectronic components with microfluidic devices
EP1608952B1 (en) 2002-12-20 2016-08-10 Life Technologies Corporation Assay apparatus and method using microfluidic arrays
US6970240B2 (en) 2003-03-10 2005-11-29 Applera Corporation Combination reader
US20060078893A1 (en) * 2004-10-12 2006-04-13 Medical Research Council Compartmentalised combinatorial chemistry by microfluidic control
US7820030B2 (en) * 2003-04-16 2010-10-26 Handylab, Inc. System and method for electrochemical detection of biological compounds
US7148043B2 (en) * 2003-05-08 2006-12-12 Bio-Rad Laboratories, Inc. Systems and methods for fluorescence detection with a movable detection module
JP2005006553A (ja) * 2003-06-19 2005-01-13 Olympus Corp 細胞培養検出装置
JP4996248B2 (ja) 2003-07-31 2012-08-08 ハンディーラブ インコーポレイテッド 粒子含有サンプルの処理
US20060029948A1 (en) * 2003-09-19 2006-02-09 Gary Lim Sealing cover and dye compatibility selection
US20050232818A1 (en) * 2003-09-19 2005-10-20 Donald Sandell Single sheet seal applicator and cartridge
US20050226780A1 (en) * 2003-09-19 2005-10-13 Donald Sandell Manual seal applicator
US20060011305A1 (en) * 2003-09-19 2006-01-19 Donald Sandell Automated seal applicator
US7998435B2 (en) 2003-09-19 2011-08-16 Life Technologies Corporation High density plate filler
WO2005029041A2 (en) * 2003-09-19 2005-03-31 Applera Corporation High density sequence detection methods and apparatus
US8277760B2 (en) 2003-09-19 2012-10-02 Applied Biosystems, Llc High density plate filler
US9492820B2 (en) 2003-09-19 2016-11-15 Applied Biosystems, Llc High density plate filler
US7695688B2 (en) * 2003-09-19 2010-04-13 Applied Biosystems, Llc High density plate filler
US7570443B2 (en) 2003-09-19 2009-08-04 Applied Biosystems, Llc Optical camera alignment
US20060013984A1 (en) * 2003-09-19 2006-01-19 Donald Sandell Film preparation for seal applicator
US7002688B2 (en) * 2003-10-16 2006-02-21 Pria Diagnostics, Inc. Multilens optical assembly for a diagnostic device
CA2559171A1 (en) 2004-03-12 2005-09-29 Biotrove, Inc. Nanoliter array loading
EP1726940A1 (en) * 2004-03-17 2006-11-29 Olympus Corporation Light measurement apparatus and light measurement method
US8852862B2 (en) 2004-05-03 2014-10-07 Handylab, Inc. Method for processing polynucleotide-containing samples
AU2005241080B2 (en) 2004-05-03 2011-08-11 Handylab, Inc. Processing polynucleotide-containing samples
EP1805318B1 (en) 2004-10-27 2014-09-03 Cepheid Closed-system multi-stage nucleic acid amplification reactions
DE102004056787A1 (de) * 2004-11-24 2006-06-01 Heinrich-Heine-Universität Düsseldorf Vorrichtung und Verfahren zur Messung von Fluoreszenz in mehreren Reaktionsräumen
US7794659B2 (en) 2005-03-10 2010-09-14 Gen-Probe Incorporated Signal measuring system having a movable signal measuring device
WO2007044888A2 (en) * 2005-10-11 2007-04-19 The Johns Hopkins Univerisity Microfluidic device and method for high-throughput cellular gradient and dose response studies
WO2007044856A1 (en) * 2005-10-11 2007-04-19 The Johns Hopkins University Device and method for high-throughput stimulation, immunostaining, and visualization of single cells
JP4738134B2 (ja) * 2005-10-26 2011-08-03 株式会社東芝 分析装置
CA2571904A1 (en) * 2006-02-15 2007-08-15 Fio Corporation System and method of detecting pathogens
US8883490B2 (en) 2006-03-24 2014-11-11 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US7998708B2 (en) * 2006-03-24 2011-08-16 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US11806718B2 (en) 2006-03-24 2023-11-07 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US10900066B2 (en) 2006-03-24 2021-01-26 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
DK2001990T3 (en) 2006-03-24 2016-10-03 Handylab Inc Integrated microfluidic sample processing system and method for its use
WO2007113604A1 (en) * 2006-03-31 2007-10-11 Nokia Corporation Electronic device having optical data connection of movable housing parts
US8900828B2 (en) * 2006-05-01 2014-12-02 Cepheid Methods and apparatus for sequential amplification reactions
EP2047910B1 (en) 2006-05-11 2012-01-11 Raindance Technologies, Inc. Microfluidic device and method
US8119352B2 (en) * 2006-06-20 2012-02-21 Cepheld Multi-stage amplification reactions by control of sequence replication times
US20080006202A1 (en) * 2006-06-26 2008-01-10 Applera Corporation Compressible transparent sealing for open microplates
US8709787B2 (en) 2006-11-14 2014-04-29 Handylab, Inc. Microfluidic cartridge and method of using same
US8262900B2 (en) 2006-12-14 2012-09-11 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US11339430B2 (en) 2007-07-10 2022-05-24 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
EP2677309B9 (en) 2006-12-14 2014-11-19 Life Technologies Corporation Methods for sequencing a nucleic acid using large scale FET arrays, configured to measure a limited pH range
CA2580589C (en) * 2006-12-19 2016-08-09 Fio Corporation Microfluidic detection system
US8772046B2 (en) 2007-02-06 2014-07-08 Brandeis University Manipulation of fluids and reactions in microfluidic systems
KR101422467B1 (ko) * 2007-02-08 2014-07-24 삼성전자주식회사 미세유체 칩 내의 형광을 검출하기 위한 시스템 및 형광검출 방법
US9029085B2 (en) * 2007-03-07 2015-05-12 President And Fellows Of Harvard College Assays and other reactions involving droplets
US8360321B2 (en) 2007-04-02 2013-01-29 Fio Corporation System and method of deconvolving multiplexed fluorescence spectral signals generated by quantum dot optical coding technology
US8702976B2 (en) * 2007-04-18 2014-04-22 Ondavia, Inc. Hand-held microfluidic testing device
WO2008130623A1 (en) 2007-04-19 2008-10-30 Brandeis University Manipulation of fluids, fluid components and reactions in microfluidic systems
JP2010530912A (ja) 2007-06-22 2010-09-16 フィオ コーポレイション 量子ドットをドープしたポリマーマイクロビーズの製造システム及び方法
CN101809433A (zh) * 2007-07-09 2010-08-18 Fio公司 用于增强试样中靶分子荧光检测的系统和方法
US8182763B2 (en) 2007-07-13 2012-05-22 Handylab, Inc. Rack for sample tubes and reagent holders
US8105783B2 (en) 2007-07-13 2012-01-31 Handylab, Inc. Microfluidic cartridge
US8287820B2 (en) 2007-07-13 2012-10-16 Handylab, Inc. Automated pipetting apparatus having a combined liquid pump and pipette head system
USD621060S1 (en) 2008-07-14 2010-08-03 Handylab, Inc. Microfluidic cartridge
US20090136385A1 (en) 2007-07-13 2009-05-28 Handylab, Inc. Reagent Tube
US9186677B2 (en) 2007-07-13 2015-11-17 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US8324372B2 (en) 2007-07-13 2012-12-04 Handylab, Inc. Polynucleotide capture materials, and methods of using same
US8133671B2 (en) 2007-07-13 2012-03-13 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US9618139B2 (en) 2007-07-13 2017-04-11 Handylab, Inc. Integrated heater and magnetic separator
FR2919143B1 (fr) * 2007-07-16 2009-10-23 Commissariat Energie Atomique Procede et dispositif de detection de mouvement a algorithme sigma-delta a seuil adaptatif
CA2761176C (en) * 2007-07-23 2012-07-31 Fio Corporation A method and system for collating, storing, analyzing and enabling access to collected and analyzed data associated with biological and environmental test subjects
EP2209549A4 (en) * 2007-10-12 2014-03-05 Fio Corp FLOW FOCUSING SYSTEM AND SYSTEM FOR FORMING CONCENTRATED VOLUMES OF MICRO BEADS AND FURTHER MICRO BEADS
JP5442447B2 (ja) * 2007-10-30 2014-03-12 アークレイ株式会社 試料の分析方法およびその装置
EP2235210B1 (en) 2007-12-21 2015-03-25 President and Fellows of Harvard College Methods for nucleic acid sequencing
US9017946B2 (en) * 2008-06-23 2015-04-28 Canon U.S. Life Sciences, Inc. Systems and methods for monitoring the amplification of DNA
BRPI0915514A2 (pt) 2008-06-25 2016-01-26 Fio Corp sistema e método de infra-estrutura de alerta de ameaça biológica, dispositivo de alerta de ameaça biológica e um método para alertar um usuário do mesmo
USD618820S1 (en) 2008-07-11 2010-06-29 Handylab, Inc. Reagent holder
USD787087S1 (en) 2008-07-14 2017-05-16 Handylab, Inc. Housing
WO2010009365A1 (en) 2008-07-18 2010-01-21 Raindance Technologies, Inc. Droplet libraries
WO2010009543A1 (en) * 2008-07-21 2010-01-28 Valorbec S.E.C. A microfluidic device and method for fabricating the microfluidic device
US20100032582A1 (en) * 2008-08-07 2010-02-11 General Electric Company Fluorescence detection system and method
BRPI0917839A2 (pt) 2008-08-29 2015-11-24 Fio Corp dispositivo de teste de diagnóstico portátil de uso único, e um sistema associado e método para teste de amostras de teste ambientais e biológicas
US20110218123A1 (en) * 2008-09-19 2011-09-08 President And Fellows Of Harvard College Creation of libraries of droplets and related species
US11951474B2 (en) 2008-10-22 2024-04-09 Life Technologies Corporation Fluidics systems for sequential delivery of reagents
US20100301398A1 (en) 2009-05-29 2010-12-02 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes
US8546128B2 (en) 2008-10-22 2013-10-01 Life Technologies Corporation Fluidics system for sequential delivery of reagents
US20100137143A1 (en) 2008-10-22 2010-06-03 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes
EP3290531B1 (en) 2008-12-19 2019-07-24 President and Fellows of Harvard College Particle-assisted nucleic acid sequencing
US9805165B2 (en) 2009-01-13 2017-10-31 Fio Corporation Handheld diagnostic test device and method for use with an electronic device and a test cartridge in a rapid diagnostic test
WO2010088514A1 (en) 2009-01-30 2010-08-05 Micronics, Inc. Portable high gain fluorescence detection system
US8637301B2 (en) 2009-03-02 2014-01-28 The Johns Hopkins University Microfluidic solution for high-throughput, droplet-based single molecule analysis with low reagent consumption
EP3461558B1 (en) 2009-10-27 2021-03-17 President and Fellows of Harvard College Droplet creation techniques
US8398418B2 (en) 2010-01-07 2013-03-19 Life Technologies Corporation Electronic connector having a clamping member urging a flow cell toward an electrical circuitry with an electrically conductive membrane disposed in between
KR101851117B1 (ko) 2010-01-29 2018-04-23 마이크로닉스 인코포레이티드. 샘플-투-앤서 마이크로유체 카트리지
US9399797B2 (en) 2010-02-12 2016-07-26 Raindance Technologies, Inc. Digital analyte analysis
EP2534267B1 (en) 2010-02-12 2018-04-11 Raindance Technologies, Inc. Digital analyte analysis
DE102010003036B4 (de) * 2010-03-18 2022-06-23 Carl Zeiss Microscopy Gmbh Beleuchtungsvorrichtung und Mikroskop mit einer Beleuchtungsvorrichtung
EP3239717B1 (en) * 2010-04-15 2020-05-27 Accellix Ltd System and method for determination of a medical condition
CN103154718B (zh) 2010-06-30 2015-09-23 生命科技公司 感测离子的电荷堆积电路和方法
US9046507B2 (en) 2010-07-29 2015-06-02 Gen-Probe Incorporated Method, system and apparatus for incorporating capacitive proximity sensing in an automated fluid transfer procedure
CN103221810B (zh) 2010-08-18 2016-08-03 生命科技股份有限公司 用于电化学检测装置的微孔的化学涂层
US9476819B2 (en) 2010-10-19 2016-10-25 The Johns Hopkins University Hydrodynamic particle separation and detection systems and methods
EP2659408B1 (en) 2010-12-29 2019-03-27 Life Technologies Corporation Time-warped background signal for sequencing-by-synthesis operations
US20130060482A1 (en) 2010-12-30 2013-03-07 Life Technologies Corporation Methods, systems, and computer readable media for making base calls in nucleic acid sequencing
EP2658999B1 (en) 2010-12-30 2019-03-13 Life Technologies Corporation Models for analyzing data from sequencing-by-synthesis operations
WO2012092515A2 (en) 2010-12-30 2012-07-05 Life Technologies Corporation Methods, systems, and computer readable media for nucleic acid sequencing
WO2012105712A1 (ja) 2011-02-04 2012-08-09 ユニバーサル・バイオ・リサーチ株式会社 自動反応・光測定装置およびその方法
EP2675819B1 (en) 2011-02-18 2020-04-08 Bio-Rad Laboratories, Inc. Compositions and methods for molecular labeling
EP2678664B1 (en) 2011-02-24 2019-08-07 Gen-Probe Incorporated Systems and methods for distinguishing optical signals of different modulation frequencies in an optical signal detector
BR112013026451B1 (pt) 2011-04-15 2021-02-09 Becton, Dickinson And Company sistema e método para realizar ensaios de diagnóstico molecular em várias amostras em paralelo e simultaneamente amplificação em tempo real em pluralidade de câmaras de reação de amplificação
EP2522981A1 (en) * 2011-05-09 2012-11-14 Universiteit Twente Compact 2D light detection system for on-chip analysis
DE202012013668U1 (de) 2011-06-02 2019-04-18 Raindance Technologies, Inc. Enzymquantifizierung
US8658430B2 (en) 2011-07-20 2014-02-25 Raindance Technologies, Inc. Manipulating droplet size
USD692162S1 (en) 2011-09-30 2013-10-22 Becton, Dickinson And Company Single piece reagent holder
WO2013049706A1 (en) 2011-09-30 2013-04-04 Becton, Dickinson And Company Unitized reagent strip
WO2013067202A1 (en) 2011-11-04 2013-05-10 Handylab, Inc. Polynucleotide sample preparation device
US9194840B2 (en) 2012-01-19 2015-11-24 Life Technologies Corporation Sensor arrays and methods for making same
CN104204812B (zh) 2012-02-03 2018-01-05 贝克顿·迪金森公司 用于分子诊断测试分配和测试之间兼容性确定的外部文件
US9646132B2 (en) 2012-05-11 2017-05-09 Life Technologies Corporation Models for analyzing data from sequencing-by-synthesis operations
US9951386B2 (en) 2014-06-26 2018-04-24 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10752949B2 (en) 2012-08-14 2020-08-25 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11591637B2 (en) 2012-08-14 2023-02-28 10X Genomics, Inc. Compositions and methods for sample processing
US9701998B2 (en) 2012-12-14 2017-07-11 10X Genomics, Inc. Methods and systems for processing polynucleotides
MX364957B (es) 2012-08-14 2019-05-15 10X Genomics Inc Composiciones y metodos para microcapsulas.
US10221442B2 (en) 2012-08-14 2019-03-05 10X Genomics, Inc. Compositions and methods for sample processing
US10323279B2 (en) 2012-08-14 2019-06-18 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10273541B2 (en) 2012-08-14 2019-04-30 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10400280B2 (en) 2012-08-14 2019-09-03 10X Genomics, Inc. Methods and systems for processing polynucleotides
US20150376609A1 (en) 2014-06-26 2015-12-31 10X Genomics, Inc. Methods of Analyzing Nucleic Acids from Individual Cells or Cell Populations
US10533221B2 (en) 2012-12-14 2020-01-14 10X Genomics, Inc. Methods and systems for processing polynucleotides
CA2894694C (en) 2012-12-14 2023-04-25 10X Genomics, Inc. Methods and systems for processing polynucleotides
US20140170678A1 (en) 2012-12-17 2014-06-19 Leukodx Ltd. Kits, compositions and methods for detecting a biological condition
US10610861B2 (en) 2012-12-17 2020-04-07 Accellix Ltd. Systems, compositions and methods for detecting a biological condition
EP2932266A4 (en) 2012-12-17 2016-11-30 Leukodx Ltd SYSTEMS AND METHODS FOR DETERMINING A CHEMICAL STATE
JP6498125B2 (ja) 2012-12-21 2019-04-10 マイクロニクス, インコーポレイテッド 流体回路および関連する製造方法
JP2016509206A (ja) 2012-12-21 2016-03-24 マイクロニクス, インコーポレイテッド 携帯型蛍光検出システムおよびマイクロアッセイカートリッジ
US10518262B2 (en) 2012-12-21 2019-12-31 Perkinelmer Health Sciences, Inc. Low elasticity films for microfluidic use
CA2900481A1 (en) 2013-02-08 2014-08-14 10X Genomics, Inc. Polynucleotide barcode generation
US8963216B2 (en) 2013-03-13 2015-02-24 Life Technologies Corporation Chemical sensor with sidewall spacer sensor surface
CN116794337A (zh) 2013-03-15 2023-09-22 雅培制药有限公司 具有竖直布置的圆盘传送带的自动化诊断分析仪及相关方法
CN105264366B (zh) 2013-03-15 2019-04-16 生命科技公司 具有一致传感器表面区域的化学传感器
CN108196079B (zh) 2013-03-15 2021-10-08 雅培制药有限公司 具有预处理转盘的诊断分析机及相关方法
CN105745546B (zh) 2013-03-15 2017-10-13 雅培制药有限公司 具有后面可进入轨道系统的自动化诊断分析仪及相关方法
WO2014182844A1 (en) 2013-05-07 2014-11-13 Micronics, Inc. Microfluidic devices and methods for performing serum separation and blood cross-matching
EP2994543B1 (en) 2013-05-07 2018-08-15 Micronics, Inc. Device for preparation and analysis of nucleic acids
WO2014182831A1 (en) 2013-05-07 2014-11-13 Micronics, Inc. Methods for preparation of nucleic acid-containing samples using clay minerals and alkaline solutions
US10395758B2 (en) 2013-08-30 2019-08-27 10X Genomics, Inc. Sequencing methods
US11901041B2 (en) 2013-10-04 2024-02-13 Bio-Rad Laboratories, Inc. Digital analysis of nucleic acid modification
EP3053072B1 (en) 2013-10-04 2024-02-21 Life Technologies Corporation Methods and systems for modeling phasing effects in sequencing using termination chemistry
EP3065712A4 (en) 2013-11-08 2017-06-21 President and Fellows of Harvard College Microparticles, methods for their preparation and use
US9476853B2 (en) 2013-12-10 2016-10-25 Life Technologies Corporation System and method for forming microwells
US9944977B2 (en) 2013-12-12 2018-04-17 Raindance Technologies, Inc. Distinguishing rare variations in a nucleic acid sequence from a sample
US9824068B2 (en) 2013-12-16 2017-11-21 10X Genomics, Inc. Methods and apparatus for sorting data
US11390921B2 (en) 2014-04-01 2022-07-19 Adaptive Biotechnologies Corporation Determining WT-1 specific T cells and WT-1 specific T cell receptors (TCRs)
US10066265B2 (en) 2014-04-01 2018-09-04 Adaptive Biotechnologies Corp. Determining antigen-specific t-cells
AU2015243445B2 (en) 2014-04-10 2020-05-28 10X Genomics, Inc. Fluidic devices, systems, and methods for encapsulating and partitioning reagents, and applications of same
JP2017526046A (ja) 2014-06-26 2017-09-07 10エックス ゲノミクス,インコーポレイテッド 核酸配列アセンブルのプロセス及びシステム
AU2015330841B2 (en) 2014-10-10 2019-08-15 Quantapore, Inc. Nanopore-based polymer analysis with mutually-quenching fluorescent labels
US10676787B2 (en) 2014-10-13 2020-06-09 Life Technologies Corporation Methods, systems, and computer-readable media for accelerated base calling
US20160122817A1 (en) 2014-10-29 2016-05-05 10X Genomics, Inc. Methods and compositions for targeted nucleic acid sequencing
US9975122B2 (en) 2014-11-05 2018-05-22 10X Genomics, Inc. Instrument systems for integrated sample processing
SG11201705615UA (en) 2015-01-12 2017-08-30 10X Genomics Inc Processes and systems for preparing nucleic acid sequencing libraries and libraries prepared using same
KR20170106979A (ko) 2015-01-13 2017-09-22 10엑스 제노믹스, 인크. 구조 변이 및 위상 조정 정보를 시각화하기 위한 시스템 및 방법
US10854315B2 (en) 2015-02-09 2020-12-01 10X Genomics, Inc. Systems and methods for determining structural variation and phasing using variant call data
EP3262407B1 (en) 2015-02-24 2023-08-30 10X Genomics, Inc. Partition processing methods and systems
EP3262188B1 (en) 2015-02-24 2021-05-05 10X Genomics, Inc. Methods for targeted nucleic acid sequence coverage
US20180353957A1 (en) * 2015-09-14 2018-12-13 Singulex, Inc. Single molecule detection on a chip
CN108289797B (zh) 2015-10-13 2022-01-28 哈佛学院院长及董事 用于制备和使用凝胶微球的系统和方法
SG11201804086VA (en) 2015-12-04 2018-06-28 10X Genomics Inc Methods and compositions for nucleic acid analysis
SG11201806757XA (en) 2016-02-11 2018-09-27 10X Genomics Inc Systems, methods, and media for de novo assembly of whole genome sequence data
WO2017197338A1 (en) 2016-05-13 2017-11-16 10X Genomics, Inc. Microfluidic systems and methods of use
US10520436B2 (en) * 2016-11-29 2019-12-31 Caduceus Biotechnology Inc. Dynamic focusing confocal optical scanning system
US10011872B1 (en) 2016-12-22 2018-07-03 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10550429B2 (en) 2016-12-22 2020-02-04 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10815525B2 (en) 2016-12-22 2020-10-27 10X Genomics, Inc. Methods and systems for processing polynucleotides
EP4029939B1 (en) 2017-01-30 2023-06-28 10X Genomics, Inc. Methods and systems for droplet-based single cell barcoding
EP3625715A4 (en) 2017-05-19 2021-03-17 10X Genomics, Inc. DATA SET ANALYSIS SYSTEMS AND METHODS
US10400235B2 (en) 2017-05-26 2019-09-03 10X Genomics, Inc. Single cell analysis of transposase accessible chromatin
CN116064732A (zh) 2017-05-26 2023-05-05 10X基因组学有限公司 转座酶可接近性染色质的单细胞分析
SG11201913654QA (en) 2017-11-15 2020-01-30 10X Genomics Inc Functionalized gel beads
US10829815B2 (en) 2017-11-17 2020-11-10 10X Genomics, Inc. Methods and systems for associating physical and genetic properties of biological particles
SG11202009889VA (en) 2018-04-06 2020-11-27 10X Genomics Inc Systems and methods for quality control in single cell processing
EP3803397A2 (en) * 2018-05-25 2021-04-14 Five Prime Therapeutics, Inc. Enhanced cytometry for tissue characterization and screening
US20210332351A1 (en) 2018-07-23 2021-10-28 Dna Script Massively Parallel Enzymatic Synthesis of Nucleic Acid Strands
EP3894593A2 (en) 2018-12-13 2021-10-20 DNA Script Direct oligonucleotide synthesis on cells and biomolecules
US20220356510A1 (en) 2019-01-03 2022-11-10 Dna Script One Pot Synthesis of Sets of Oligonucleotides
KR20230142832A (ko) 2021-01-08 2023-10-11 셀라노메, 인크. 생물학적 샘플을 분석하기 위한 디바이스 및 방법

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT380572B (de) * 1982-12-28 1986-06-10 List Hans Optischer sensor
JPH03235037A (ja) * 1990-02-09 1991-10-21 Canon Inc 粒子解析装置
US5750015A (en) 1990-02-28 1998-05-12 Soane Biosciences Method and device for moving molecules by the application of a plurality of electrical fields
US5296703A (en) * 1992-04-01 1994-03-22 The Regents Of The University Of California Scanning confocal microscope using fluorescence detection
US5587128A (en) 1992-05-01 1996-12-24 The Trustees Of The University Of Pennsylvania Mesoscale polynucleotide amplification devices
US5730850A (en) 1993-04-23 1998-03-24 Hitachi, Ltd. Capillary array electrophoresis system
US5436718A (en) * 1993-07-30 1995-07-25 Biolumin Corporation Mutli-functional photometer with movable linkage for routing optical fibers
US5397709A (en) * 1993-08-27 1995-03-14 Becton Dickinson And Company System for detecting bacterial growth in a plurality of culture vials
US6309601B1 (en) 1993-11-01 2001-10-30 Nanogen, Inc. Scanning optical detection system
US5459325A (en) * 1994-07-19 1995-10-17 Molecular Dynamics, Inc. High-speed fluorescence scanner
US5571410A (en) 1994-10-19 1996-11-05 Hewlett Packard Company Fully integrated miniaturized planar liquid sample handling and analysis device
US5483075A (en) * 1994-11-01 1996-01-09 Perkin-Elmer Corporation Rotary scanning apparatus
US5614726A (en) * 1995-03-23 1997-03-25 Beckman Instruments, Inc. Automated optical alignment system and method using Raman scattering of capillary tube contents
US5630924A (en) 1995-04-20 1997-05-20 Perseptive Biosystems, Inc. Compositions, methods and apparatus for ultrafast electroseparation analysis
US5675155A (en) * 1995-04-26 1997-10-07 Beckman Instruments, Inc. Multicapillary fluorescent detection system
US5528050A (en) * 1995-07-24 1996-06-18 Molecular Dynamics, Inc. Compact scan head with multiple scanning modalities

Also Published As

Publication number Publication date
WO2000068671A2 (en) 2000-11-16
JP2002544476A (ja) 2002-12-24
EP1192447A2 (en) 2002-04-03
US6614030B2 (en) 2003-09-02
US6399952B1 (en) 2002-06-04
CA2373537A1 (en) 2000-11-16
US20020179849A1 (en) 2002-12-05
WO2000068671A3 (en) 2001-02-15

Similar Documents

Publication Publication Date Title
JP3815969B2 (ja) 微量流体デバイスにおける多重方式蛍光検出
US6838680B2 (en) Multiplexed fluorescent detection in microfluidic devices
US6750457B2 (en) System for high throughput analysis
JP6258353B2 (ja) 液滴内に含有されるサンプル分析のための光学測定装置及び方法
EP1632762B1 (en) Optical detection apparatus for multi-channel multi-color measurement and multi-channel sample analyzer employing the same
EP1169632B1 (en) Optical autofocus for use with microtiter plates
EP1196760B1 (en) Integrating multi-waveguide sensor
EP3317641B1 (en) Radiation carrier and use thereof in an optical sensor
US7551271B2 (en) Uncaging devices
KR100590548B1 (ko) 광검출 장치
US20100032582A1 (en) Fluorescence detection system and method
JP2008281571A (ja) 共鳴光散乱粒子標識から発生する信号を読み取るための装置
JP2009204616A5 (ja)
JP6513802B2 (ja) ナノ粒子検出のためのレーザー光結合
US7016087B2 (en) Photon efficient scanner
US7812952B2 (en) Device for reading plates bearing biological reaction support microdepositions
US9488579B2 (en) Optical measuring apparatus and method for the analysis of samples contained in liquid drops
WO2000071991A1 (en) Apparatus and method for optical detection in a limited depth of field
CN115053118A (zh) 使用特殊化细胞识别进行循环流式细胞术的装置和方法
EP2163885A1 (en) Microarray characterization system and method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060606

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3815969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term