JP3814586B2 - 駆動回路 - Google Patents

駆動回路 Download PDF

Info

Publication number
JP3814586B2
JP3814586B2 JP2003040254A JP2003040254A JP3814586B2 JP 3814586 B2 JP3814586 B2 JP 3814586B2 JP 2003040254 A JP2003040254 A JP 2003040254A JP 2003040254 A JP2003040254 A JP 2003040254A JP 3814586 B2 JP3814586 B2 JP 3814586B2
Authority
JP
Japan
Prior art keywords
circuit
output
delay
control signal
pulse width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003040254A
Other languages
English (en)
Other versions
JP2003229641A (ja
Inventor
寿樹 仲山
孝正 桜木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003040254A priority Critical patent/JP3814586B2/ja
Publication of JP2003229641A publication Critical patent/JP2003229641A/ja
Application granted granted Critical
Publication of JP3814586B2 publication Critical patent/JP3814586B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Pulse Circuits (AREA)
  • Electronic Switches (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は光磁気ディスクやレーザービームプリンタなどに使用されるレーザー駆動回路のような高速スイッチング用の駆動回路に関するものである。
【0002】
【従来の技術】
この種の駆動回路として本願人により特開平5−243654が出願されている。図12に特開平5−243654に示されたカソードコモンタイプのレーザーの駆動回路を示す。図13にレーザーダイオードの電流と光出力の関係を示す。
【0003】
1001は、レーザー半導体の駆動電流を決定するための基準電流源であり、通常レーザー発光素子の発光量をホトダイオード(図示せず)でモニターしてその出力電圧(すなわち発光量)が一定となるように制御される。1002と1003は、PMOSトランジスタと抵抗で構成したカレントミラー回路であり、その入力は基準電流源1001が接続され、この電流値が出力にミラーされる。トランジスタ1003のドレイン出力はNPNトランジスタ1004のコレクタ−ベースショート端に入力される。NPNトランジスタ1005のベースはNPNトランジスタ1004のコレクタ−ベースショート端に接続され、両トランジスタ1004,1005はカレントミラーを構成している。ここで両トランジスタのエミッタ面積の比を1:Nにしておくことにより両トランジスタ1004,1005の共通エミッタ端からはPMOSトランジスタ1003のドレイン出力電流の(1+N)倍の電流を出力できる。1007はレーザーダイオードであり、そのカソードはGND(接地)電位点1009に接続され、アノードはNPNトランジスタ1004と1005の共通エミッタに接続されている。NチャンネルのMOSトランジスタ1006は、スイッチング用トランジスタであり、制御信号入力端子1010がハイレベルの時オンし、PMOSトランジスタ1003の電流出力を吸い込む。
【0004】
これによりNPNトランジスタ1004のコレクタベースショート端には電流は流れず、NPNトランジスタ1004と1005によって形成されるカレントミラー回路はオフする。よってレーザーダイオード1007の駆動電流は抵抗1011で決まるアイドリング電流だけとなり、レーザーは点灯しない。ここでアイドリング電流とは、レーザーダイオード1007に発光しない程度の微小な電流(図13のIth以下)を流すことによりレーザーダイオード1007のアノードの電位を予め高めておき、スイッチングをより高速に行なおうとするものである。
【0005】
また制御信号入力端子1010がローレベルのときNMOSトランジスタ1006はオフするためPMOSトランジスタ1003の電流出力はNPNトランジスタ1004と1005からなるカレントミラー回路を駆動してレーザーダイオード1007を駆動する。そしてこのNMOSトランジスタ1006が高速にオン−オフすることによりレーザーダイオード1007の光出力が高速スイッチングされる。
【0006】
【発明が解決しようとする課題】
しかしながら上記従来例では、図14に示すようにトランジスタ1004と1005からなるカレントミラー回路のオンとオフのスピードが異なったり、レーザーダイオードに固有なしきい値電流(図13のIth)に達するまで発光しないという理由により、入力制御パルス幅Wとレーザーダイオードの光のパルス幅Wが異なってしまうという問題がある。
【0007】
このためこの駆動回路を用いてレーザービームプリンター等のレーザーダイオードを駆動した場合、レーザーの発光するパルス幅が制御信号と異なるため、プリントされた出力が所望の線幅と違ってくる(例えば細くなったりする)という問題が発生する。これは特に高速でスイッチングする場合や、基準電流源1001の電流値が小さいときに顕著になる。
【0008】
そこで本発明の目的は、入力制御信号に忠実に対応したレーザーダイオード等の駆動パルス、さらには発光信号を得られるような駆動回路を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成するため、請求項1の発明は、入力制御信号にディレイを付加した信号と入力制御信号との論理演算に基づいて制御信号を発生する駆動パルス発生手段と、該駆動パルス発生手段からの制御信号に基づいて駆動対象素子の駆動を行なう駆動手段と、前記入力制御信号にディレイを付加した信号と入力制御信号との論理演算を施した信号のパルス幅を積分回路とコンパレータとを用いて評価する評価手段と、該評価手段の評価結果に基づいて前記パルス発生手段における前記ディレイ時間を制御するディレイ時間制御手段とを具えたことを特徴とする。
【0010】
請求項2の発明は、請求項1において、前記駆動パルス発生手段は、1段以上のゲートを有し、前記ディレイ時間の制御を前記ゲートの段数または前記ゲート1段あたりの遅延時間または両者の組み合わせで行なうことを特徴とする。
【0011】
請求項3の発明は、請求項1において、前記評価手段は、パルス幅の評価を前記入力制御信号に対する、前記入力制御信号にディレイを付加した信号と入力制御信号との論理演算を施した信号の立ち上りの遅れ時間または立ち下りの遅れ時間または両者の差を検出することによって行なうことを特徴とする。
【0012】
【発明の実施の形態】
本発明は、従来の駆動回路に加えて入力制御信号に対してディレイ時間が可変なディレイ信号を発生し、前記入力制御信号との論理演算を行ない、駆動回路に制御信号を提供する駆動パルス発生回路と、駆動回路の出力をモニターし、所望のパルス幅が得られているかを判定する判定回路と、判定回路の出力をもとに前記駆動パルス発生回路内のディレイ時間を調整するディレイ時間制御回路を具備してなることを特徴とする。
【0013】
上記構成において、駆動パルス発生回路は、ディレイ時間制御回路の出力に基づき駆動回路の出力が所望なパルス幅となるように入力制御信号のパルス幅を増減させた駆動回路の制御信号を生成する。判定回路は駆動回路の出力のパルス幅が所望の値に対して長いのか短かいのか、又はどの程度長いのか短かいのかの判定を行なう。ディレイ時間制御回路は、判定回路の出力に基づいて駆動パルス発生回路のディレイ時間を調整する。
【0014】
【実施例】
(第1の実施例)
図1は本発明の特徴を最もよく表わす図面である。図1において1は駆動対象素子の駆動を行なうための基本となる入力制御信号である。2は駆動パルス発生回路であって、入力制御信号に対してディレイを付加した信号を生成し、入力制御信号と論理演算を行ない、実際に駆動対象素子の駆動を行なう駆動回路3の入力信号を生成するブロックであり、上記ディレイの値を変更できるように構成しているところに特徴がある。4は駆動回路3が駆動対象素子を実際に駆動している信号7のパルス幅が所望の値となっているか否かを判定するパルス幅判定回路であり、パルス幅の所望の値との差に対応する信号を2の駆動パルス発生回路内のディレイ値を制御するディレイ時間制御回路5に出力する。
【0015】
図2に図1に示した実施例のより具体的な例を示す。図3には、図2の回路を動作させる際のタイミングチャートを示す。図2,図3を用いて詳細な説明を行なう。
【0016】
図2において、VINは入力制御信号1であり、駆動パルス発生回路2は、一定のディレイを作るためのインバータ31〜34と、可変ディレイを作るためのインバータ35,36,40,41,45,46と、アナログスイッチ37,38,42,43,47,48と、アナログスイッチを逆相で動かすためのインバータ39,44,49と、入力制御信号1(VIN)とディレイを付加された信号10(VDELAY)との論理演算を行なうANDゲート50とから構成されている。
【0017】
ここで一定のディレイ値を作るインバータ31〜34は無くても良いし、段数も必要とされるディレイの値に応じて増減してもよい。またこの例では可変ディレイとして3段(インバータ6個)分までのディレイを変えられるような例を示したが、必要に応じて段数は増減して良い。またディレイを発生させるためのゲートはインバータに限らずNANDやNORといったゲートを用いても良い。
【0018】
ディレイの変更の仕方について説明する。後述するディレイ時間制御回路5の出力18〜20のうち18が“L”のとき、アナログスイッチ38がオンしアナログスイッチ37はオフする。従ってインバータ34の出力はインバータ35,36を通り越してインバータ40とアナログスイッチ43に入力され、インバータ35,36はディレイに寄与しなくなる。
【0019】
これに対して18が“H”のとき、アナログスイッチ38はオフし、アナログスイッチ37はオンする。従ってインバータ34の出力はインバータ35,36を経由してインバータ40とアナログスイッチ43に入力する。このためインバータ2段分のディレイが入力信号に対して加わることになる。インバータ40,41、及び45,46で形成される残りの2段についてもディレイ時間制御回路5の出力19,20の“H”,“L”によりディレイが付加されるか否かが決まる。図2の例の回路ではインバータ31〜34によるインバータ4個によるディレイの他に制御信号18,19,20によりインバータ6個,8個,10個のディレイを入力信号に付加するよう調整が可能となっている。
【0020】
なお、インバータ1段あたりのディレイ時間は現在の半導体の製造プロセスを用いるとおおむね0.5〜1nsecのオーダーとなるが、この値よりも細かいステップでディレイの調整を行ないたい場合には図2中の35〜39で構成される1段のディレイ生成回路の全部または一部を図4,図6のようなユニットに置換えて、1段あたりの遅延時間を変化させれば良い。
【0021】
図4はインバータの出力に容量を付けるか否かを切替てインバータの立ち上り立ち下り時間を変化させディレイ時間を変更する手段である。ディレイ時間制御回路5の出力はCONT端子70に入力する。CONTが“L”のとき、アナログスイッチ73がオフし、インバータ71の出力に容量74は接続されない。一方CONTが“H”のときアナログスイッチ73がオンし、容量74が接続されるため、インバータ71の出力76はなまり(図5の76の波形参照)、立ち上り立ち下り時間が増加し、出力77で観測されるディレイ時間も増大する。従ってCONT端子の“H”,“L”でディレイの大小を変更できる。
【0022】
図6はインバータの実効的なゲート長を変えることによりディレイを可変とする構成である。ディレイ時間変更回路5の出力がCONT端子80に入力する。CONTが“L”のときアナログスイッチ85,86がオンするため、インバータを構成するPMOSのゲート長はPMOS81のゲート長になり、NMOSのゲート長はNMOS84のゲート長になる。これに対して、CONT端子80が“H”のときアナログスイッチ85,86がオフするためインバータを構成するPMOSのゲート長は、PMOS81と82のゲート長の和になり、NMOSのゲート長はNMOS83と84のゲート長の和になる。従って出力88の寄生容量や次段のゲート容量を充電する際の時定数はCONT端子80が“H”のときの方が、MOSの実効ゲート長が長くなり抵抗成分が大きくなるため長くなる。このため図4で容量が増加したケースと同様、出力88がなまりディレイは増加する。
【0023】
以上のようにインバータを構成するMOSの実効的なゲート長を変化させることにより、ディレイ時間の変更が可能である。ここではPMOSとNMOSの両方のゲート長を変化させたが一方のみでも良い。また同様にゲート幅を変化させても同等の効果が得られる。
【0024】
図2に戻って、3の駆動回路自体は従来例と同一なので構成要素に同一番号を付け説明を省略する。6の駆動対象素子としてはレーザーダイオードの例を示す。4のパルス幅判定回路は駆動回路3の出力信号7の“H”,“L”をモニターするためのコンパレータ52、後述する積分回路の入力をコンパレータ52の出力に基づいて異なる2つの基準電圧Vref1+V1,Vref1−V1いずれかを選択するためのアナログスイッチ55と56及びインバータ53,54、前記2つの基準電圧の一方を入力とし、積分動作を行なうためのオペアンプ58、抵抗57、容量59及び積分回路のリセットをリセット信号15(RESET2)により行なうスイッチ60、積分回路の出力と基準電圧V0を比較するコンパレータ61から構成される。
【0025】
ここでコンパレータ52のリファレンス電位V2は駆動回路3が駆動対象素子6を駆動する信号7の振幅の中間に設定する。この例では信号7は、Lowレベルがレーザーダイオードのアイドリング時の順方向電圧V(OFF)、Highレベルがレーザーが発光しているときの順方向電圧V(ON)となるので、この間の電圧に設定する。VF は電流値によって変化するが、この例ではレーザーダイオードの発光しているパルス幅をモニターしたいわけであるから、レーザーダイオードの発光を始める電流Ithに対応したV(I=Ith)にV2を設定すれば良い。このときコンパレータ52はレーザーダイオードが発光しているとき“H”、していないとき“L”を出力する。
【0026】
積分回路の入力はコンパレータ52の出力が“H”のとき(レーザーダイオードがオンのとき)、Vref+V1となり、アンプ58の正転入力端子の入力がVrefであるから積分回路の出力は単位時間あたりV1/CRの割合で減少する。他方、コンパレータ52の出力が“L”のとき(レーザーダイオードがオフのとき)、積分回路の入力はVref−V1となり、積分回路の出力は単位時間あたりV1/CRの割合で増加する。
【0027】
このため、リセット信号15を“H”とし積分回路の出力をVref にリセットした後、周期Tでn回入力制御信号を入力したときの積分回路の出力は、
【0028】
【数1】
Figure 0003814586
【0029】
となる。ここで、tは一周期の中でコンパレータ52の出力が“H”の時間である。つまり、
【0030】
【数2】
Figure 0003814586
【0031】
がコンパレータ52の出力が“H”、即ちほぼレーザーダイオードがONしている時間のデューティーとなる。式▲1▼又は▲2▼の中で、C,R,Vref,V1,T,nは設定できるので、積分回路の出力をモニターすることによって、駆動対象素子の駆動状態(ここではレーザーダイオードの発光パルス幅)がわかる。
【0032】
例えば入力制御信号のデューティを50%として、▲1▼式の
OUT =Vref −▲3▼
のとき、レーザーダイオードはほぼデューティ50%で発光しており、入力制御信号を忠実に反映していることがわかる。また
【0033】
【数3】
Figure 0003814586
【0034】
のとき、x=0.45となり、デューティ45%で発光していて、パルス幅が入力制御信号に対して10%短かくなっていることがわかる。
【0035】
本実施例では積分回路の出力14(VOUT )と基準電圧V0の比較をコンパレータ61にて行ない、その結果に基づいて2の駆動パルス発生回路内のディレイ時間を調整し所望のパルス幅を得るようにしている。
【0036】
V0は、▲1▼式又は▲2▼式を用いて必要な精度を考慮して決める。上記例を参考にすると、10MHzで入力制御信号と発光パルスの幅の差を±5nsec以上に調整したい場合が、レーザーダイオードの発光パルス幅をデューティ45〜55%に抑える場合に相当するので、▲4▼式を用いてデューティ45%に相当する
【0037】
【数4】
Figure 0003814586
【0038】
と設定しておけばよい。ただし2の駆動パルス発生回路内のディレイの調整が5nsec×2=10nsec以下のステップで可能となるようにしておく必要がある。
【0039】
4のパルス幅判定回路の出力をもとにしてディレイ時間を調整するのがディレイ時間制御回路5であり、本実施例では3つのフリップフロップを用いたシフトレジスタより構成されている。パルス幅判定回路4の出力COMP2はCLK17に同期してフリップフロップに取り込まれる。フリップフロップ62〜64の正転出力18〜20のH,Lにより前述のように2の駆動パルス発生回路内のディレイが変化する。
【0040】
レーザーダイオードのパルス幅が短かいとき、リセット後、1サイクルの積分動作を行なった後の積分回路の出力VOUTは、Vrefより大きくなる。VOUTが▲5▼式のV0より大きくなるとコンパレータ61の出力COMP2は“H”となり、この信号がCLK17によりフリップフロップ62に取り込まれ、出力18はHとなる。したがってアナログスイッチ37がオン、38がオフし、インバータ35,36によるディレイが付加されパルス幅は延びる。これを繰りかえしてVOUTが▲5▼式のV0より小さくなるまで続ければ、レーザーダイオードのパルス幅の誤差は▲5▼式で代表される所定の誤差以内に収束するよう調整ができる。
【0041】
図3を用いてパルス幅の調整の様子を詳しく説明する。
(1)まず積分回路とフリップフロップのリセットがRESET2(15),RESET1(16)のパルスにより実行される。これで積分回路の出力はVrefに、フリップフロップの出力は全て“L”になり、ディレイはインバータ31〜34だけに依存し、最も短かくなる。なお式▲5▼に応じてV0を設定しておく。
(2)RESET1,RESET2の立ち下りに略同期して、入力制御信号VINをデューティ50%で入力する。ディレイ回路の出力VDELAYはVINより遅れて変化する。
【0042】
VINとVDELAYの論理積をとったVDRIVEはディレイ回路の分、“L”レベルの幅が伸びる。駆動回路の出力VMONはVDRIVEが“H”のときNMOS1006がONしているため“L”レベルにある。
(3)VDRIVEが“L”となると、PMOS1003のドレイン電流によってNPNトランジスタ1005のコレクタ−ベース容量、NPNトランジスタ1004のコレクタサブ容量等のVMONのノードに付く寄生容量がチャージされ、電位は上昇し電流は指数関数的に増加し、レーザーダイオードの発光するレベルIthまで達すると発光を始め、さらにコンパレータ52の出力COMP1が反転する。
(4)PMOS1003の定電流によるチャージはNMOS1006のドレイン電流によるディスチャージに比較して遅いため、レーザー光のパルス幅、さらにCOMP1の“H”レベルの幅はVDRIVEの“H”レベルに比較して短かくなる。
(5)積分回路の出力VOUTはCOMP1が“L”のときVref−V1が入力されるため増加し、“H”のときVref+V1が入力されるため減少するが、はじめはディレイ時間が最小となっているため、レーザー光のパルスの細りが顕著でCOMP1が“L”の期間が長い(実際にはインバータ31〜34による最小のディレイはレーザー光のパルス幅が入力制御信号より長くならないように設定しておく)。従って、VOUTはVINのパルスの立ち下りに同期したタイミングでみれば必ずVrefより大きくなっている。
(6)本実施例ではVINを2サイクル入力した後、VINの立ち下りに略同期してVOUTのレベルとV0の比較を行ない、コンパレータ61の出力COMP2をフリップフロップ62にCLK17により取り込んでいる。COMP2の出力のサイクルは必ずしも2回である必要はなく、VOUTが飽和しない範囲で増減して良い。当然その場合V0も▲5▼式を用いて変更する必要がある。
(7)ここでVOUTがV0より小さければ、レーザー光のパルス幅の誤差が許容値(本例ではVINを10MHzで入力したとき5nsec)以内ということで、フリップフロップ62には“L”レベルが取り込まれディレイ値は変化しない。
【0043】
図3の例ではVOUT>V0となっており、パルス幅が許容値に入っていないため、フリップフロップには“H”レベルが取り込まれ、インバータ35,36によるディレイがディレイ回路に付加されディレイが増加するよう調整される。
(8)次にRESET2の信号により積分回路がリセットされたあと、(2)〜(7)が繰り返えされ、フリップフロップの出力62と63を決めていく。
【0044】
このとき(7)によりディレイ回路のディレイはインバータ2段分増加しているため、1回目よりはレーザー光のパルス幅は増加しており、これに対応してCOMP1の“H”レベルの期間も増加する。このため、積分回路の出力の増加は抑えられる。
(9)本実施例ではVOUT<V0となり、これ以上ディレイの増加をしなくてもレーザー光のパルス幅は許容値に入るという例を示した。2回目でVOUT<V0とならなければ、さらにディレイを増やして3回目以降の調整に入ればよい。
【0045】
本実施例では簡単のためディレイの変更は3段階までとなる回路構成を示したが、必要に応じて段数を増やしておけばさらに広い範囲でディレイの調整が可能である。
【0046】
なお本実施例では入力制御信号と駆動対象素子の出力が許容範囲内で一致するような例を示したが、▲1▼式と▲2▼式を用いてV0の値を調整することによって入力制御信号に対して所定のパルス幅だけずれた駆動対象素子の出力を得ることも可能である。例えば、前記の10MHz動作でデューティ50%の入力信号に対して、65nsec±5nsecの光出力を得るためには、積分の周期n=1のとき許容範囲の最小である60nsecのパルス幅に対応する
【0047】
【数5】
Figure 0003814586
【0048】
▲6▼式にV0を設定すればよい。
【0049】
また、駆動回路の出力としてノード(出力)7の電圧をコンパレータ52に入力したが、NPNトランジスタ1004のコレクタ−ベースショートのノードの電圧を入力しても、V2をNPNトランジスタのVBE分高くしておけば同等の結果が得られる。
(第2の実施例)
図7に第2の実施例を示す。本実施例は図1の第1の実施例と構成要素は同じであるが、駆動パルス発生回路2の出力91がパルス幅判定回路の入力となっている点が異なる。
【0050】
図1及び図2の第1の実施例ではPMOS1003の定電流でチャージを行なうNPNトランジスタ1004のコレクタ−ベースショートのノードか又は1004のエミッタのノードに、コンパレータ52の入力が接続される。このためコンパレータ52の入力容量分の余分な寄生容量をチャージしなければならないこととなり、基準電流源1001の電流が小さいときや高速にスイッチングを行なう際に誤差を発生させる原因になる。これを避けるため、駆動パルス発生回路2の出力91が入力制御信号1に対して図14のW1−W2の分長くなっているか否かをパルス幅判定回路4で判定し、その結果をもとに駆動パルス発生回路2内のディレイを調整し出力91が所定の幅に入るように自動調整しようとするものである。
【0051】
図8に具体的な回路の例を示す。図2と同じ部分には同一の番号を付け説明を省略する。違いはAND50の出力がNMOS1006のゲートだけでなくコンパレータ92の反転入力端子に入っている点と、基準電圧V2がコンパレータ92の非反転入力端子に接続されている点と、V2がAND50の論理振幅の“H”レベルと“L”レベルの中間、望しくはNMOS1006のVTH近傍に設定されている点である。
【0052】
NPNトランジスタ1004のエミッタとAND50の出力は逆相で動くので、図2に対してモニターするAND50の出力をコンパレータ92の反転入力端子に入力することで以下の動作は実施例1と同様となる。
【0053】
基本動作は実施例1と同じなので省略する。動作上の改善点は基準電流源1001の電流をPMOS1002,1003のカレントミラー回路でおり返した電流でチャージするNPNトランジスタ1004のコレクタ−ベースショートのノードや、レーザーダイオードのアノードと共通のNPNトランジスタ1004のエミッタのノードにコンパレータの入力容量が付かないため、誤差が小さくなる点である。これを実現するため、駆動回路3の入力とレーザーダイオードの光出力のパルス幅の差分(図14のW−W)を予め求めておき、これに合わせてV0の値を設定しておく。周期Tでデューティ50%のVINをn回入力してコンパレータ61でパルス幅の判定を行なう場合、レーザーダイオードが発光する、即ちAND50の出力が“L”であるパルス幅t
={0.5+(W−W)}T −▲7▼
と伸しておけばよく、コンパレータ61の比較レベルV0を
【0054】
【数6】
Figure 0003814586
【0055】
と設定しておけばよい。
【0056】
本実施例では駆動回路3の出力を直接モニターするかわりに駆動パルス発生回路2のパルス幅をモニターし、そのパルス幅を所定値だけ変更することによって駆動回路の内部又は出力に余分な寄生容量を付けることなしに好適な駆動対象素子の出力が得られる。
(第3の実施例)
図9は第3の実施例の特徴を表わす図面である。実施例1では駆動対象素子6を駆動するパルス幅をモニターすることによって駆動対象素子のパルス幅を調整しようとしたものであるが、本実施例では直接的に駆動対象素子の出力自身をモニターしそのパルス幅を調整しようとするものである。
【0057】
このため図9ではモニター回路93を新たに設け、モニター回路93の出力94をパルス幅判定回路4に入力し、出力94が所定のパルス幅となるように駆動パルス発生回路2の中のディレイを調整する。
【0058】
図10に本実施例の具体的な回路例を示す。実施例1,2との違いは
・駆動対象素子(この場合レーザーダイオード)の出力をモニターするため、フォトダイオード142,抵抗141,バッファ143からなるモニター回路93が付加されている。
・駆動パルス発生回路2内の可変ディレイ回路がディレイを長くするだけでなく短かくすることも可能な構成となっている。
・入力制御信号に必ずしもデューティ50%の入力を入れて、パルス幅の調整をしなくても良いように、入力制御信号の立ち下りにおける駆動対象素子6の出力の遅れ時間と入力制御信号の立ち上りにおける駆動対象素子6の出力の遅れ時間との差をとることによって、出力パルスの幅を評価する構成となっている。
【0059】
以下図10の構成の詳細な説明を行ない、その後図11のタイミングチャートを用いて実際の動作の説明を行なう。従来例と同一部分には同一番号を付け説明を省略する。
【0060】
駆動パルス発生回路2は可変ディレイを作るためのインバータ101,102,106,107,111,112,116,117、アナログスイッチ103,104,108,109,113,114,118,119、ペアとなるアナログスイッチを逆相で動かすためのインバータ105,110,115,120、入力制御信号1とディレイを付加された信号10の論理演算を行なうAND(ゲート)50より構成されている。ここで可変ディレイを作るためのアナログスイッチとインバータは2つのグループに分けられ、101〜110と111〜120である。後述する5のパルス幅制御回路の出力151〜154はリセット時は全て“L”である。従ってアナログスイッチ104,109,113,118はオンとなり、103,108,114,119はオフとなる。このため、インバータ101,102,106,107はディレイに寄与せず、インバータ111,112,116,117がディレイに寄与する。
【0061】
つまり、当初は入力制御信号1にインバータ4個分のディレイが加わった出力が50のANDゲートに入力している。この状態で後述するようにパルス幅の判定を行ない、駆動対象素子6の出力が短かければ、パルス幅制御回路5の出力151や153を“H”とし、インバータ101,102,106,107がディレイに寄与するように変更することによって、出力パルス幅を調整できる。駆動対象素子6の出力が長ければパルス幅制御回路5の出力152や154を“H”とし、インバータ111,112,116,117がディレイに寄与しなくなるよう変更することで出力パルス幅を調整できる。
【0062】
パルス幅判定回路4では、AND122とインバータ124を用いて入力制御信号1VINの立ち下りとモニター回路93の出力150の立ち下りの差の時間(t)だけアナログスイッチ56がオンし、積分回路の入力がVref−V1となるように制御している。またAND121とインバータ123を用いて入力制御信号VINの立ち上りとモニター回路の出力150の立ち上りの差の時間(t)だけアナログスイッチ55がオンし、積分回路の入力がVref+V1となるよう制御している。両アナログスイッチ55,56がオフのとき、容量59により積分回路の出力VOUTは一定値に保たれる。
【0063】
さらにパルス幅判定回路4には、積分回路の出力14(VOUT)と基準電圧V,V(V>V)の比較を行なうコンパレータ125と126が設けてある。V,Vはそれぞれパルス幅の許容値の下限と上限に対応した基準電圧である。
【0064】
積分回路をリセット後、入力制御信号をnサイクル入力したときのVOUT
【0065】
【数7】
Figure 0003814586
【0066】
となる。(t−t)が入力制御信号とモニター回路のパルス幅の差であるから、パルス幅に要求される精度と▲9▼式から、V,Vが計算できる。
【0067】
コンパレータ125,126の出力の組み合わせによりモニター回路のパルス幅が長い(コンパレータ出力“H”,“H”)か、許容範囲内(“L”,“H”)か、短い(“L”,“L”)かが判かる。
【0068】
ディレイ時間制御回路5では、コンパレータ125,126の出力を受けて、インバータ127,128、AND129,130,131により上記3つの状態を判定する。
(1)モニター出力のパルス幅が所望の値より短いときはAND129の出力が“H”となり、
(2)モニター出力のパルス幅が所望の値に入っているときAND130の出力が“H”となり、
(3)モニター出力のパルス幅が所望の値より長いときはAND131の出力が“H”となる。
【0069】
入力制御信号の入力のnサイクル分、積分を行なった後、CLKをHとすることにより、上記3つの状態がフリップフロップ132,135,136,137,138に取りこまれる。
【0070】
AND133は、状態(1)のときAND129の出力をフリップフロップ135や136に取り込み、フリップフロップ137,138は変化させないための選択回路であり、AND134は、状態(3)のときAND131の出力をフリップフロップ137,138に取り込み、フリップフロップ135,136は変化させないための選択回路である。なお、本例では、ディレイの調整を伸す方向、縮める方向とも2段階で行なえるようになっているため、フリップフロップ135,136及び137,138で構成するシフトレジスタは2bitであるが、調整範囲に応じて段数は増減してよい。
【0071】
それにともなってシフトレジスタの段数も増減すればよい。
【0072】
シフトレジスタ135や136に“H”レベルが取り込まれると、駆動パルス発生回路内のアナログスイッチ103や108がオンし、104や109がオフするため、インバータ101,102や106,107がディレイに寄与することになり、駆動対象素子のパルス幅は広がる。逆にシフトレジスタ137や138に“H”レベルが取り込まれると、アナログスイッチ114,119がオンし、113,118がオフするため、インバータ111,112や116,117がディレイに寄与しなくなるため、パルス幅は狭まる。
【0073】
パルス幅が許容範囲内に入っているとき、フリップフロップ132の出力が“H”となるので、調整の終了が検出される。
【0074】
以上のようにしてパルス幅の調整が自動的に行なわれる。
【0075】
図11のタイミングチャートを用いて動作の説明を行なう。
(1)RESET1,RESET2のパルスにより積分回路とフリップフロップのリセットを実行する。
【0076】
積分回路の出力VOUTは、Vrefとなり、ディレイ回路ではインバータ111,112,116,117がディレイに寄与した状態で調整がはじまる。
(2)RESET1,RESET2の立ち下りに略同期して入力制御信号VINを入力する。
【0077】
なお、ディレイ回路の出力VDELAYとVDRIVE、駆動回路の出力VMONおよびレーザーの出力については図3と同じなので省略する。
(3)レーザーダイオードが発光すると、フォトダイオード142に光電流が流れ、モニター回路の出力150は“L”レベルとなる。150とVINの信号に対して論理演算を行なったAND122の出力156は、VINの立ち下りから150の立ち下りの間“H”となり、AND121の出力157はVINの立ち上りから150の立ち上りの間“H”となり、積分回路の入力を切り替える。
(4)156が“H”の間、積分回路の出力VOUT は上昇し、157が“H”の間は減少する。
(5)本実施例ではVINを2サイクル入力したときCLKを“H”とする。
【0078】
このときVOUTは許容範囲を代表するVとVの間に入ってないため、フリップフロップ132の出力ENDは“H”とならず(この場合AND129の出力が“H”の例を示したので)、フリップフロップ135の出力が“H”となり、インバータ101,102がディレイに寄与し、パルス幅が伸びるような変更を行ない、RESET2で積分回路のリセットを行なった後、再度(1)〜(4)を繰り返す。
(6)2回目にCLKを“H”にした状態で、VOUTが許容範囲内に入っているため、フリップフロップ132の出力ENDが“H”となり、調整は終了する。許容範囲に入ってなければ同様の調整を繰り返せばよい。
【0079】
なお本実施例ではモニター回路の出力と入力制御信号の立ち上りの遅れ時間の差と立ち下りの遅れ時間の差を両方モニターしてパルス幅の比較を行なったが、必ずしも両方使用する必要はなく一方でも良い。本例の論理では、入力制御信号の立ち上りに対応する駆動パルスの立ち上りを変化させているので、立ち上りの遅れ時間の比較だけでもパルス幅は調整可能である。
【0080】
以上示したように本回路を用いることにより、駆動対象素子の出力を直接モニターできるため、そのパルス幅と入力制御信号のパルス幅の差を所望の差により正確に調整することができる。
【0081】
【発明の効果】
以上説明したように、本発明によれば、入力制御信号にディレイを付加した信号と入力信号の論理演算により駆動回路の入力信号を生成し、駆動回路の出力又は駆動回路の入力又は駆動対象素子の出力をモニターして入力制御信号のパルス幅との差を検出し、その差分が所定の範囲になるように上記ディレイ値を調整することによって、駆動回路内のカレントミラーのオンとオフの時間差やレーザーダイオードのしきい値電流のようなパルス幅を変動させる要因があっても、入力制御信号に忠実に対応した駆動対象素子の駆動パルス、さらには駆動対象素子の出力を得られるように制御された駆動回路が得られる。
【図面の簡単な説明】
【図1】第1の実施例を説明するブロック図である。
【図2】第1の実施例の具体的な回路構成例を示す図である。
【図3】同回路の動作を説明するタイミングチャートである。
【図4】本発明で使われるディレイ回路のその他の回路例を示す図である。
【図5】図4のディレイ回路の動作を説明するタイミングチャートである。
【図6】本発明で使われるディレイ回路の他の回路例を示す図である。
【図7】第2の実施例を説明するブロック図である。
【図8】第2の実施例の具体的な回路構成例を示す図である。
【図9】第3の実施例を説明するブロック図である。
【図10】第3の実施例の具体的な回路構成例を示す図である。
【図11】同回路の動作を説明するタイミングチャートである。
【図12】従来例を説明する図である。
【図13】従来例を説明する図である。
【図14】従来例を説明する図である。
【符号の説明】
1 入力制御信号
2 駆動パルス発生回路
3 駆動回路
4 パルス幅判定回路
5 ディレイ時間制御回路
6 駆動対象回路
7 駆動回路の出力
12,13 コンパレータ出力
14 積分回路
18,19,20,151,152,153,154 ディレイ制御信号
31,32,33,34,35,36,39,40,41,44,45,46,49,53,54,71,72,89,101,102,105,106,107,110,111,112,115,116,117,120,123,124,127,128 インバータ
37,38,42,43,47,48,55,56,60,73,85,86,103,104,108,109,113,114,118,119 アナログスイッチ
50,121,122,129,130,131 AND回路
52,61,125,126 コンパレータ
57,1011,1141 抵抗
58 オペアンプ
59,74 容量
62,63,64,132,135,136,137,138 フリップフロップ
81,82,1002,1003 PMOSトランジスタ
83,84,1006 NMOSトランジスタ
93 モニター回路
142 フォトダイオード
143 バッファ
1007 レーザーダイオード
1001 基準電流源
1004,1005 NPNトランジスタ

Claims (3)

  1. 入力制御信号にディレイを付加した信号と入力制御信号との論理演算に基づいて制御信号を発生する駆動パルス発生手段と、該駆動パルス発生手段からの制御信号に基づいて駆動対象素子の駆動を行なう駆動手段と、前記入力制御信号にディレイを付加した信号と入力制御信号との論理演算を施した信号のパルス幅を積分回路とコンパレータとを用いて評価する評価手段と、該評価手段の評価結果に基づいて前記パルス発生手段における前記ディレイ時間を制御するディレイ時間制御手段とを具えたことを特徴とする駆動回路。
  2. 請求項1において、
    前記駆動パルス発生手段は、1段以上のゲートを有し、前記ディレイ時間の制御を前記ゲートの段数または前記ゲート1段あたりの遅延時間または両者の組み合わせで行なうことを特徴とする駆動回路。
  3. 請求項1において、
    前記評価手段は、パルス幅の評価を前記入力制御信号に対する、前記入力制御信号にディレイを付加した信号と入力制御信号との論理演算を施した信号の立ち上りの遅れ時間または立ち下りの遅れ時間または両者の差を検出することによって行なうことを特徴とする駆動回路。
JP2003040254A 2003-02-18 2003-02-18 駆動回路 Expired - Fee Related JP3814586B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003040254A JP3814586B2 (ja) 2003-02-18 2003-02-18 駆動回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003040254A JP3814586B2 (ja) 2003-02-18 2003-02-18 駆動回路

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP14929296A Division JPH09331096A (ja) 1996-06-11 1996-06-11 駆動回路

Publications (2)

Publication Number Publication Date
JP2003229641A JP2003229641A (ja) 2003-08-15
JP3814586B2 true JP3814586B2 (ja) 2006-08-30

Family

ID=27751628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003040254A Expired - Fee Related JP3814586B2 (ja) 2003-02-18 2003-02-18 駆動回路

Country Status (1)

Country Link
JP (1) JP3814586B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4536554B2 (ja) * 2004-03-30 2010-09-01 ローム株式会社 電子機器
JP6192403B2 (ja) * 2013-07-16 2017-09-06 オリンパス株式会社 光源装置

Also Published As

Publication number Publication date
JP2003229641A (ja) 2003-08-15

Similar Documents

Publication Publication Date Title
CN108243542B (zh) 发光控制电路、光源装置以及投射型影像显示装置
CN109640433B (zh) 发光控制电路、光源装置以及投射型影像显示装置
JP4638856B2 (ja) コンパレータ方式dc−dcコンバータ
US5349595A (en) Drive circuit for semiconductor light-emitting device
JP3908971B2 (ja) 発光素子駆動回路
US7288978B2 (en) Delay circuit and ring oscillator using the same
KR20060065557A (ko) 반도체 회로
JP2006197247A (ja) パルス幅変調回路
JP2009188773A (ja) ドライバ回路
JP2006333689A (ja) Dc−dcコンバータ
JP3814586B2 (ja) 駆動回路
JP6902951B2 (ja) タイミング発生器および半導体集積回路
JP6902952B2 (ja) 位相補間器およびタイミング発生器、半導体集積回路
JP4881582B2 (ja) 遅延回路および駆動制御回路
JP4376385B2 (ja) 発光素子駆動回路
US10483956B2 (en) Phase interpolator, timing generator, and semiconductor integrated circuit
JP3942583B2 (ja) ドライバ回路
JP6914010B2 (ja) 駆動装置
JP2021037676A (ja) 駆動装置および記録装置
KR100736056B1 (ko) 제어 발진기 시스템 및 방법
WO2002035740A1 (fr) Circuit de commande de duree d'impulsion
JPH09331096A (ja) 駆動回路
JP3810316B2 (ja) 周波数逓倍回路
JP2002261381A (ja) 駆動電流供給回路
CN114076932A (zh) 用于激光雷达发光装置的驱动装置、方法和激光雷达

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees