JP3807262B2 - 車線追従走行制御装置 - Google Patents

車線追従走行制御装置 Download PDF

Info

Publication number
JP3807262B2
JP3807262B2 JP2001212332A JP2001212332A JP3807262B2 JP 3807262 B2 JP3807262 B2 JP 3807262B2 JP 2001212332 A JP2001212332 A JP 2001212332A JP 2001212332 A JP2001212332 A JP 2001212332A JP 3807262 B2 JP3807262 B2 JP 3807262B2
Authority
JP
Japan
Prior art keywords
steering
torque
lane
steering angle
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001212332A
Other languages
English (en)
Other versions
JP2003026023A (ja
Inventor
裕之 古性
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001212332A priority Critical patent/JP3807262B2/ja
Publication of JP2003026023A publication Critical patent/JP2003026023A/ja
Application granted granted Critical
Publication of JP3807262B2 publication Critical patent/JP3807262B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、走行車線を検出し、これに追従して走行する車線追従走行制御装置に関するものであり、特に運転者による操舵介入時の制御に関するものである。
【0002】
【従来の技術】
従来の車線追従走行制御装置としては、例えば特開平7−81602号公報(以下、第1従来例とも記す)や特開平9−142327号公報(以下、第2従来例とも記す)に記載されたものがある。このうち、前記第1従来例は、走行車線に対する自車両の相対位置を算出し、次いで車両を目標ラインに載せるための目標操舵角を算出し、操舵サーボ系により、目標操舵角と実操舵角とが一致するように、アクチュエータの入力である電流や油圧を制御する。また、前記第2従来例は、同様の車線追従走行制御装置において、運転者による操舵介入がなされた場合、アクチュエータへの指令トルクを規制し、操舵介入を容易にしている。
【0003】
【発明が解決しようとする課題】
しかしながら、前記第1従来例のような車線追従走行制御装置では、車線追従性能を向上させるため、操舵サーボ系は位相遅れが小さく設定されており、フィードバックゲインも大きく、車線追従走行制御中に運転者が操舵介入しようとしてもステアリングホイールは殆ど動かない。
【0004】
そこで、操舵サーボ系のない制御系を構成することが考えられる。即ち、操舵アクチュエータへの指令トルクを制御対象の入力とし、車両挙動を制御対象の出力と見なしてフィードバック系を構成するのである。これにより、操舵角に関するフィードバック係数を小さくすることができ、介入を容易にすることが可能となる。しかし、このようなフィードバック系でも、操舵角に関するフィードバックは依然として存在するから、操舵介入が十分に容易になるものではない。
【0005】
一方、前記第2従来例では、前述のようにアクチュエータへの指令トルクを規制することにより操舵介入が容易になっている。しかしながら、車線追従走行性能の向上を図る車線追従走行制御装置に適用する場合には、操舵介入時の反力トルクのフィーリングがよくないという問題が発生する。即ち、車線追従走行制御装置における指令トルクは、走行車線に対する自車両の姿勢以外に、操舵系のフリクションを補償しているため、再現性がなく、ノイズが大きいため、運転者は反力を予測することができず、操舵介入時に違和感が発生する。
【0006】
本発明は、これらの諸問題を解決すべく開発されたものであり、操舵介入そのものを容易化すると共に、そのときのフィーリングが良好な車線追従走行制御装置を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
上記諸問題を解決するため、本発明のうち請求項1に係る車線追従走行制御装置は、自車両の走行車線の曲率を検出する車線曲率検出手段と、自車両の走行車線に対する自車両の横位置を検出する横位置検出手段と、自車両の走行車線に対する自車両の方向を検出する方向検出手段と、操舵角を検出する操舵角検出手段又は操舵角速度を検出する操舵角速度検出手段と、自車両の走行速度を検出する速度検出手段と、指令トルクに応じた操舵トルクを発生させる操舵トルク発生手段と、前記車線曲率検出手段で検出された車線曲率及び前記横位置検出手段で検出された走行車線に対する自車両の横位置及び前記方向検出手段で検出された走行車線に対する自車両の方向及び前記操舵角検出手段で検出された操舵角及び操舵角速度検出手段で検出された操舵角速度及び速度検出手段で検出された走行速度に基づいて、操舵系に加わる運転者の操舵介入トルク又は操舵系のフリクショントルクを含む外乱トルクを算出する外乱トルク算出手段と、少なくとも前記操舵角検出手段で検出された操舵角及び操舵角速度検出手段で検出された操舵角速度及び外乱トルク算出手段で算出された外乱トルクのフィードバック分を含めて前記操舵トルク発生手段に指令する指令トルクを算出する操舵トルク制御手段とを備え、前記操舵トルク制御手段は、前記外乱トルク算出手段で算出された外乱トルクが所定値以上であるときに、前記指令トルクのうちの操舵角速度及び外乱トルクのフィードバック分を零とし且つそのときの操舵角のフィードバック分を前記車線曲率検出手段で検出された車線曲率及び前記速度検出手段で検出された走行速度から算出される定常旋回操舵角に操舵角フィードバックゲインを乗じた値に固定することを特徴とするものである。
【0008】
また、本発明のうち請求項2に係る車線追従走行制御装置は、前記請求項1の発明において、前記定常旋回固定手段は、前記外乱トルクが前記所定値以下である場合に、当該外乱トルクが大きくなるほど、前記外乱トルクのフィードバック分を小さくすると共に、前記操舵角のフィードバック分を定常旋回時に想定される値に近づけることを特徴とするものである。
また、本発明のうち請求項3に係る車線追従走行制御装置は、前記請求項1又は2の発明において、前記定常旋回固定手段は、前記外乱トルクが前記所定値以下となってから、前記外乱トルクのフィードバック分及び操舵角のフィードバック分を、時間的に次第に元の値に戻すことを特徴とするものである。
【0009】
また、本発明のうち請求項4に係る車線追従走行制御装置は、自車両の走行車線の曲率を検出する車線曲率検出手段と、自車両の走行車線に対する自車両の横位置を検出する横位置検出手段と、自車両の走行車線に対する自車両の方向を検出する方向検出手段と、操舵角を検出する操舵角検出手段又は操舵角速度を検出する操舵角速度検出手段と、自車両の走行速度を検出する速度検出手段と、操舵系に加わる運転者の操舵介入トルクを検出する操舵介入トルク検出手段と、指令トルクに応じた操舵トルクを発生させる操舵トルク発生手段と、前記車線曲率検出手段で検出された車線曲率及び前記横位置検出手段で検出された走行車線に対する自車両の横位置及び前記方向検出手段で検出された走行車線に対する自車両の方向及び前記操舵角検出手段で検出された操舵角又は操舵角速度検出手段で検出された操舵角速度及び速度検出手段で検出された走行速度に基づいて、操舵系のフリクショントルクからなる外乱トルクを算出する外乱トルク算出手段と、少なくとも前記操舵角検出手段で検出された操舵角及び操舵角速度検出手段で検出された操舵角速度及び外乱トルク算出手段で算出された外乱トルクのフィードバック分を含めて前記操舵トルク発生手段に指令する指令トルクを算出する操舵トルク制御手段とを備え、前記操舵トルク制御手段は、前記操舵介入トルク検出手段で検出された操舵介入トルクが所定値以上であるときに、前記指令トルクのうちの外乱トルクのフィードバック分を零とし且つそのときの操舵角のフィードバック分を前記車線曲率検出手段で検出された車線曲率及び前記速度検出手段で検出された走行速度から算出される定常旋回操舵角に操舵角フィードバックゲインを乗じた値に固定することを特徴とするものである。
【0010】
また、本発明のうち請求項5に係る車線追従走行制御装置は、前記請求項4の発明において、前記定常旋回固定手段は、前記操舵介入トルクが前記所定値以下である場合に、当該操舵介入トルクが大きくなるほど、前記外乱トルクのフィードバック分を小さくすると共に、前記操舵角のフィードバック分を定常旋回時に想定される値に近づけることを特徴とするものである。
【0011】
また、本発明のうち請求項6に係る車線追従走行制御装置は、前記請求項4又は5の発明において、前記定常旋回固定手段は、前操舵介入トルクが前記所定値以下となってから、前記外乱トルクのフィードバック分及び操舵角のフィードバック分を、時間的に次第に元の値に戻すことを特徴とするものである。
【0012】
【発明の効果】
而して、本発明のうち請求項1に係る車線追従走行制御装置によれば、検出された車線曲率及び走行車線に対する自車両の横位置及び走行車線に対する自車両の方向及び操舵角又は操舵角速度及び走行速度に基づいて、操舵系に加わる運転者の操舵介入トルク及び操舵系のフリクショントルクを含む外乱トルクを算出し、この外乱トルクが所定値以上であるときに、指令トルクのうちの操舵角速度及び外乱トルクのフィードバック分を零とし且つそのときの操舵角のフィードバック分を車線曲率及び走行速度から算出される定常旋回操舵角に操舵角フィードバックゲインを乗じた値に固定する構成としたため、運転者が操舵介入すると、外乱トルクが大きくなり、それが所定値以上になると外乱トルクのフィードバック分が零となると共に、そのときの操舵角のフィードバック分が旋回保舵力を与えるのみとなり、操舵角変化によるフィードバック変化は発生しないため、操舵介入が容易になると共に、運転者の予想できない外乱トルクのフィードバック分が零になるため、操舵介入時のフィーリングが向上する。また、操舵角速度を用いる場合、操舵角センサの中立位置出しの面倒がない。
【0013】
また、本発明のうち請求項2に係る車線追従走行制御装置によれば、外乱トルクが所定値以下である場合に、当該外乱トルクが大きくなるほど、外乱トルクのフィードバック分を小さくすると共に、操舵角のフィードバック分を定常旋回時に想定される値に近づけることとしたため、運転者が操舵介入して操舵介入トルクが大きくなるにつれて、それを外乱トルクとするフィードバック分が連続的に小さくなり、同時に操舵角のフィードバック分が定常旋回操舵角に操舵角フィードバックゲインを乗じた値に連続的に近づくことになり、より一層、操舵介入が容易になると共に、操舵介入時のフィーリングが向上する。
【0014】
また、本発明のうち請求項3に係る車線追従走行制御装置によれば、外乱トルクが所定値以下となってから、外乱トルクのフィードバック分及び操舵角のフィードバック分を、時間的に次第に元の値に戻すこととしたため、運転者が操舵介入を止めたとき、若しくは操舵介入を止めようとしたときには、車線追従走行制御にゆっくりと移行し、操舵トルクがゆっくりとアシストされることになり、そのときのフィーリングが向上する。
【0015】
また、本発明のうち請求項4に係る車線追従走行制御装置によれば、操舵介入トルクを検出すると共に、検出された車線曲率及び走行車線に対する自車両の横位置及び走行車線に対する自車両の方向及び操舵角又は操舵角速度及び走行速度に基づいて、操舵系のフリクショントルクをからなる外乱トルクを算出し、前記検出された操舵介入トルク所定値以上であるときに、指令トルクのうちの操舵角速度及び外乱トルクのフィードバック分を零とし且つそのときの操舵角のフィードバック分を車線曲率及び走行速度から算出される定常旋回操舵角に操舵角フィードバックゲインを乗じた値に固定する構成としたため、運転者が操舵介入して操舵介入トルクが大きくなり、それが所定値以上になると外乱トルクのフィードバック分が零となると共に、そのときの操舵角のフィードバック分が旋回保舵力を与えるのみとなり、操舵角変化によるフィードバック変化は発生しないため、操舵介入が容易になると共に、運転者の予想できない外乱トルクのフィードバック分が零になるため、操舵介入時のフィーリングが向上する。また、操舵角速度を用いる場合、操舵角センサの中立位置出しの面倒がない。
【0016】
また、本発明のうち請求項5に係る車線追従走行制御装置によれば、操舵介入トルクが所定値以下である場合に、当該操舵介入トルクが大きくなるほど、外乱トルクのフィードバック分を小さくすると共に、操舵角のフィードバック分を定常旋回時に想定される値に近づけることとしたため、運転者が操舵介入して操舵介入トルクが大きくなるにつれて、操舵系フリクショントルクを補償するフィードバック分が連続的に小さくなり、同時に操舵角のフィードバック分が定常旋回操舵角に操舵角フィードバックゲインを乗じた値に連続的に近づくことになり、より一層、操舵介入が容易になると共に、操舵介入時のフィーリングが向上する。
【0017】
また、本発明のうち請求項6に係る車線追従走行制御装置によれば、操舵介入トルクが所定値以下となってから、外乱トルクのフィードバック分及び操舵角のフィードバック分を、時間的に次第に元の値に戻すこととしたため、運転者が操舵介入を止めたとき、若しくは操舵介入を止めようとしたときには、車線追従走行制御にゆっくりと移行し、操舵トルクがゆっくりとアシストされることになり、そのときのフィーリングが向上する。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態を図面を伴って説明する。
図1は、本発明の第1の実施形態を示す概略構成図であり、図1bにおいて、1FL,1FRは前輪、1RL及び1RRは後輪を示し、前輪1FL,1FRには一般的なラックアンドピニオン式の操舵機構が配設されている。この操舵機構は、前輪1FL,1FRの操舵軸(タイロッド)に接続されるラック2と、これに噛合するピニオン3と、このピニオン3をステアリングホイール4に与えられる操舵トルクで回転させるステアリングシャフト5とを備えている。
【0019】
また、ステアリングシャフト5におけるピニオン3の上部には、前輪1FL,1FRを自動操舵するための操舵アクチュエータを構成する自動操舵機構13が配設されている。この自動操舵機構13は、ステアリングシャフト5と同軸に取付けられたドリブンギヤ14と、これに噛合するドライブギヤ15と、このドライブギヤ15を回転駆動する自動操舵用モータ16とから構成されている。なお、自動操舵モータ16とドライブギヤ15との間にはクラッチ機構17が介装されており、自動操舵制御時にのみクラッチ機構17が締結され、そうでないときにはクラッチ機構17が非締結状態となって自動操舵モータ16の回転力がステアリングシャフト5に入力されないようにしている。
【0020】
また、車両には種々のセンサ類が取付けられている。図中、21は操舵角センサであって、ステアリングシャフト5の回転角から操舵角θを検出してコントロールユニット10に出力する。また、図示しない自動変速機の出力側に走行速度センサ22が取付けられ、この走行速度センサ22で検出された走行速度Vもコントロールユニット10に出力される。ここで、前記操舵角センサ21で検出される操舵角θは、例えば右操舵時に正値、左操舵時に負値となるように設定されている。また、この操舵角センサ21は、例えばロータリエンコーダなどによって構成されており、操舵の方向と大きさがわかるほか、操舵の速度を検出することも可能である。
【0021】
さらに、車室内のインナーミラーステー等の固定部には、図1aに示すように、CCDカメラ等の単眼カメラ25が設置され、車両前方状況を撮像し、撮像した画像データをカメラコントローラ26に出力する。このカメラコントローラ26は、例えば特開平11−102499号公報に記載されているように、単眼カメラ25の画像データを二値化等の処理により自車両近傍の白線を検出すると共に、所定の車両前方注視点での走行車線に対する自車両の相対横変位yCr、車両の白線の接線に対するヨー角Φr、走行車線前方の曲率ρを算出し、これらをコントロールユニット10に出力する。なお、走行車線に対する自車両の相対横変位とは、例えば走行車線の中央に対して自車両が如何ほど横方向にずれているかを表すものとする。
【0022】
コントロールユニット10は、図示しないマイクロコンピュータ等の離散化されたディジタルシステムで構成され、入力されたヨー角Φr、相対横偏位yCr、車線曲率ρに基づいて車線追従に必要な操舵指令トルクを求め、その操舵指令トルクを達成するための指令電流iを算出し、この指令電流iを電流サーボ系を介して自動操舵用モータ16に出力することにより、車線追従走行制御を行う。
【0023】
図2に、本実施形態のコントロールユニットの構成をブロック図化して示す。この実施形態では、前記指令電流(の前回値)i、操舵角センサ21で検出された操舵角θ、カメラコントローラ26で算出された車線曲率ρ及び走行車線に対する自車両の横変位yCrを用いて、オブザーバ(状態推定器)6によって車両状態量及び車線曲率ρ、外乱トルクTdをベクトルとして算出(推定)する。そして、このオブザーバ6で算出した車両状態量及び車線曲率ρ、外乱トルクTdに基づいてレギュレータ7で指令電流iを算出出力する。
【0024】
図3には、オブザーバ6の構成を示す。図3中、A、B、C、Dは、システムの構成から決定される行列、Keは観測ノイズによって決定される行列である。以下、操舵外乱を考慮した各行列の設定方法について説明する。ここでは、運転者による操舵介入トルクと操舵系のフリクショントルクとの和を外乱トルクTdとし、前記指令電流i及び車線曲率ρを入力、前記外乱トルクTdを非制御の入力(即ち、外乱)とする状態方程式は、下記1式で表れる。
【0025】
【数1】
Figure 0003807262
【0026】
また、前記1式中の行列の各要素は、下記2式で表れる。
【0027】
【数2】
Figure 0003807262
【0028】
また、出力方程式の一例を下記3式で表す。
【0029】
【数3】
Figure 0003807262
【0030】
この場合、出力は操舵角θ、及び前方注視点横変位yS1、yS2(2点)である。但し、図3に示すように、オブザーバ6が想定するシステムには外乱が存在していない(1式中の外乱トルクTdがない)。この問題を解決する方法が外乱オブザーバと呼ばれるもので、外乱を白色ノイズで駆動される一次系で近似し、状態量に組み入れるものである。下記4式に、操舵外乱の振る舞いを近似する一次式を示す。
【0031】
【数4】
Figure 0003807262
【0032】
この4式中のλ及びωの分散の決定方法について説明する。まず、外乱トルクTdの振る舞いを、振幅Td0 が一定で、周期が不確定な、ポアソン方形波で近似する。例えば、操舵系のフリクションの上限値を振幅Td0 に代入する。操舵系のフリクションは不確定であるが、例えば1秒間に、どの程度、零を横切るかで近似することとし、その回数をνTdとする。このポアソン近似を、前記4式の近似に戻すと、下記5式、6式を得る。これにより、4式中のλ及びωの分散が決定できる。
【0033】
【数5】
Figure 0003807262
【0034】
そして、前記4式を前記1式に代入して下記7式が得られる。
【0035】
【数6】
Figure 0003807262
【0036】
同様に、前記4式を前記2式に代入して下記8式が得られる。
【0037】
【数7】
Figure 0003807262
【0038】
前記7式及び8式を略記して、前記オブザーバ構成内のA、B、C、Dの各行列を得る。また、前記行列Keはカルマンフィルタの構成法が知られており、観測ノイズの分散(この場合には前方注視点横変位のノイズの分散)と、状態量に加わるノイズの分散(この場合には操舵外乱に加わるノイズωの分散)及び前記行列A、B、C、Dから決定されるが、詳細は、発明の本質から離れるため、ここでは省略する。
【0039】
前記7式が、制御対象を表す式であるが、制御対象の入力には、制御量である指令電流iの他に車線曲率ρが存在し、後述するレギュレータを設計するための通常の最適制御設計ができない。これを解決する方法として、確率論的最適レギュレータ設計法が知られており、制御量以外のシステムの入力を白色ノイズで駆動される一次系で近似し、状態量に組み入れるものである。道路曲率ρの振る舞いを近似する一次式を下記9式に示す。
【0040】
【数8】
Figure 0003807262
【0041】
この9式中のλρ及びωρの分散の決定方法について説明する。まず、道路曲率ρの振る舞いを、振幅ρ0 が一定で、周期が不確定な、ポアソン方形波で近似する。例えば、想定する車線の曲率平均を振幅ρ0 に代入する。車線曲率の変化は不確定であるが、例えば1秒間に、どの程度、零を横切るかで近似することとし、その回数をνρとする。このポアソン近似を、前記9式の近似に戻すと、下記10式、11式を得る。これにより、9式中のλρ及びωρの分散が決定できる。
【0042】
【数9】
Figure 0003807262
【0043】
そして、前記9式を前記7式に代入して下記12式が得られる。この12式に最適制御理論を適用して、レギュレータを構成する各フィードバック係数k1 〜k8 を設定することができるが、その詳細は、発明の本質から離れるため、ここでは省略する。
【0044】
【数10】
Figure 0003807262
【0045】
次に、前記図2のレギュレータ7の構成について説明する。ここでは、まず基準となるレギュレータの構成を示し、それを修正して適正なレギュレータを構成する。ベースとなるレギュレータの構成を下記13式に示す。式中、k1 〜k8 は前記12式から設定したフィードバック係数である。
【0046】
【数11】
Figure 0003807262
【0047】
これに対し、本実施形態では、前記外乱トルクTdに応じて、前記フィードバック係数k5 〜k7 を、図4に示すフィードバック係数k5m〜k7mに変更して使用する。この図4では、前記外乱トルクの絶対値|Td|が比較的絶対値の小さな所定値Td1 以下の領域では、各フィードバック係数k5m〜k7mは、前記設定されたフィードバック係数所定値k5 〜k7 一定であり、当該外乱トルクの絶対値|Td|が比較的絶対値の大きな所定値Td2 以上の領域では、各フィードバック係数k5m〜k7mは“0”であり、二つの所定値Td1 〜所定値Td2 の間の領域では、外乱トルクの絶対値|Td|の増大に伴って、各フィードバック係数k5m〜k7mはリニアに小さくなる。なお、前記比較的小さな所定値Td1 には、操舵系のフリクショントルクの上限値を設定する。また、前記13式中の操舵角θに関するフィードバック分を下記14式のように修正する。
【0048】
【数12】
Figure 0003807262
【0049】
つまり、外乱トルクの絶対値|Td|が前記所定値Td2 以上の領域では、フィードバック係数k5m〜k7mが“0”である、即ち前記14式中の操舵角速度θ’、操舵角θ、外乱トルクTdのフィードバック分が零になることを意味し、また外乱トルクの絶対値|Td|が前記所定値Td1 以上の領域では、フィードバック係数k5m〜k7mが次第に小さくなる、即ち前記14式中の操舵角速度θ’、操舵角θ、外乱トルクTdのフィードバック分が次第に小さくなることを意味している。なお、外乱トルクを絶対値表示したのは、例えば前記操舵角θに代表されるように、操舵の方向、車両の回転方向、車両の横位置等に正負の符号を付したためである。
【0050】
また、前記14式中のθ0 は車線曲率ρ及び走行速度Vから得られる定常旋回操舵角であり、以下のようにして求める。即ち、前記1式の第1行〜第3行において、定常旋回状態であることから、ヨー角加速度φ”=0、ヨー角速度φ'r=0、横加速度y" Cr=0であり、下記15式〜17式を得る。
【0051】
【数13】
Figure 0003807262
【0052】
この15式〜17式からヨー角速度φ’、ヨー角φrを消去して、下記18式により定常旋回操舵角θ0 が得られる。
【0053】
【数14】
Figure 0003807262
【0054】
更に、本実施形態では、前記フィードバック係数k5m〜k7mを設定する際に、前記外乱トルクTdに代えて、下記19式で定義される外乱トルクTdを用いる。なお、式中のmaxは最大値を返す演算子であり、G(s) は一次遅れ系のローパスフィルタである。
【0055】
【数15】
Figure 0003807262
【0056】
この19式で定義される外乱トルクの振る舞いを図5に示す。同図は、ステアリングホイールを右切りしてから切り戻し、更に左切りしてから切り戻したときの操舵角θに伴う外乱トルクTdとローパスフィルタ処理された外乱トルクG(s) ・Td、及びその絶対値、及びそれらの最大値(≡Td)を示したものである。操舵角θに伴う外乱トルクの絶対値|Td|では、ステアリングホイールを切り戻してから逆方向に切り増しするとき(未だ、操舵介入中)に、前記操舵系のフリクショントルク相当に設定された所定値Td1 以下となるため、前記操舵角速度θ’、操舵角θ、外乱トルクTdに係るフィードバック係数k5m、k6m、k7mが前記所定値k5 、k6 、k7 になってしまい、それらのフィードバック分が大きくなり、操舵が重くなる恐れがある。そこで、操舵角θに伴う外乱トルクの絶対値|Td|にローパスフィルタG(s) 、即ち時間的遅れをかけ、両者のうちの大きい方を、フィードバック係数k5m〜k7m設定のための新たな外乱トルクTdとして用いるようにすることで、未だ操舵介入中の切り戻しから切り増し時に、当該外乱トルクTdを前記所定値Td1 以下とならないようにして、フィードバック係数k5m〜k7mを小さな値とし、もって前記操舵角速度θ’、操舵角θ、外乱トルクTdのフィードバック分を小さくして、操舵介入中に操舵が重くならないようにすることができる。逆に、操舵非介入の状態から操舵介入に移行したときには、前記フィードバック係数k5m〜k7m設定のための新たな外乱トルクTdは遅れがないので、前記操舵角速度θ’、操舵角θ、外乱トルクTdのフィードバック分を小さくする状態に速やかに移行できる。
【0057】
次に、上記実施形態の動作をコントロールユニット10で実行する操舵制御処理手順を表す図6のフローチャートを伴って説明する。
この操舵制御処理は、所定サンプリング時間ΔT(例えば10msec. )毎のタイマ割込処理として実行され、先ず、ステップS1で、前記操舵角センサ21で検出された操舵角θを読込む。
【0058】
次にステップS3に移行して、前記走行速度センサ22で検出された走行速度Vを読込む。
次にステップS4に移行して、前記ステップS1で読込んだ操舵角θ、ステップS2で読込んだ走行速度V、並びに前記カメラコントローラ26から得られる走行車線に対する横変位yCr、走行車線に対するヨー角φr、車線曲率ρを用い、前記オブザーバ6を用いて、前記外乱トルクTd、車線曲率ρを含む各種の車両状態量を算出(推定)する。
【0059】
次にステップS5に移行して、前記ステップS4で算出された外乱トルクTdを用いて前記フィードバック係数k5m〜k7mを設定しながら、前記レギュレータ7によって指令電流iを算出する。
次にステップS6に移行して、前記指令電流iに実際のモータ電流値が一致するようにモータ電流サーボを行ってからメインプログラムに復帰する。
【0060】
従って、前記図6の演算処理によれば、操舵角θ、走行速度V、走行車線に対する横変位yCr、走行車線に対するヨー角φr、車線曲率ρを用い、前記オブザーバ6を用いて、前記外乱トルクTd、車線曲率ρを含む各種の車両状態量を算出し、更に算出された外乱トルクTdを用いてフィードバック係数k5m〜k7mを設定し、それらのフィードバック係数k5m〜k7mを用い、前記レギュレータ7によってモータ指令電流iを算出し、当該指令電流iが達成されるようにモータ電流サーボを行う。このとき、運転者による操舵介入がなければ、前記外乱トルク(ここでは、前記19式で与えられるフィードバックゲイン設定のための外乱トルクと等価と考える)の絶対値|Td|は、操舵系のフリクショントルク相当に設定された前記所定値Td1 以下であり、前記フィードバック係数k5m、k6m、k7mは前記所定値k5 、k6 、k7 となり、従って前記14式で与えられる指令電流iは、前記13式で求めた指令電流iに等しくなる。この13式で与えられる制御は、一般に介入が困難であるが、この13式で外乱トルクとなっている操舵系のフリクショントルクは小さな値であるため、実際の操舵介入時には、操舵介入トルクが操舵系のフリクショントルクを上回る。
【0061】
即ち、運転者による操舵介入時には、操舵介入による、即ち操舵角θに伴う外乱トルクの絶対値|Td|が前記操舵系のフリクショントルク相当の所定値Td1 以上となると、前記フィードバック係数k5m、k6m、k7mは次第に小さくなり、更に外乱トルクの絶対値|Td|が前記所定値Td2 以上となると、前記フィードバック係数k5m、k6m、k7mが“0”となるので、前記14式中の操舵角速度θ’の項、操舵角θの項、外乱トルクTdの項が何れも“0”となり、それらのフィードバック分が“0”となる。すると、そのときの指令電流iには、前記18式に従って車線曲率ρ及び走行速度Vから得られた定常旋回操舵角θ0 に相当する分だけが残る。即ち、前記所定値Td2 以上の操舵介入トルクが外乱トルクとして与えられると、操舵角や操舵角速度、操舵介入トルクをフィードバックして車線を追従するための指令電流値分がなくなり、同時に走行速度V及び車線曲率ρに基づく定常旋回操舵角θ0 分だけの指令電流値が与えられることになるから、運転者は当該定常旋回状態が維持されている状態からの操舵トルクを付与すればよいだけであるから、操舵介入が容易であると共に、操舵介入時のフィーリングが向上する。
【0062】
また、操舵介入トルクによる外乱トルクの絶対値|Td|が前記所定値Td1 から所定値Td2 まで増大する間は、操舵介入トルクが大きくなるにつれて、操舵系フリクショントルクを補償するフィードバック分が連続的に小さくなり、同時に操舵角のフィードバック分が定常旋回操舵角に操舵角フィードバックゲインを乗じた値に連続的に近づくことになり、より一層、操舵介入が容易になると共に、操舵介入時のフィーリングが向上する。
【0063】
特に、本実施形態では、前記14式における各要素、即ち車両挙動状態量と実際の車両挙動のフィードバックとを、操舵非介入時に実感することができ、操舵介入時には、操舵反力から車両挙動を推定することが可能となるため、操舵反力フィーリングに優れている。
また、未だ操舵介入中の切り戻しから切り増しへの移行時に、前記フィードバック係数設定のための外乱トルクの絶対値|Td|を時間的にゆっくり戻すこととしたため、操舵が急に重くなることもなく、また、運転者が操舵介入を止めたとき、若しくは操舵介入を止めようとしたときには、車線追従走行制御にゆっくりと移行し、操舵トルクがゆっくりとアシストされることになり、そのときのフィーリングが向上する。
【0064】
以上より、前記単眼カメラ25及びカメラコントローラ26が本発明の車線曲率検出手段を構成し、以下同様に、前記単眼カメラ25及びカメラコントローラ26が横位置検出手段を構成し、前記単眼カメラ25及びカメラコントローラ26が方向検出手段を構成し、前記操舵角センサ21及び図6の演算処理のステップS1が操舵角検出手段を構成し、前記走行速度センサ22及び図6の演算処理のステップS3が速度検出手段を構成し、前記モータ16が操舵トルク発生手段を構成し、前記オブザーバ6及び図6の演算処理のステップS4が外乱トルク算出手段を構成し、前記レギュレータ7及び図6の演算処理のステップS5、ステップS6が操舵トルク制御手段を構成している。
【0065】
次に、本発明の車線追従走行制御装置の第2実施形態について説明する。この実施形態の車両の概略構成は、前記第1実施形態の図1のものと同様である。但し、前述したように、本実施形態では、前記操舵角センサ21を用いて、操舵角速度θ’を検出する。従って、前記コントロールユニット10内の構成は図7のように変更されており、合わせてオブザーバ6は図8のように変更されている。但し、オブザーバで用いられる検出値が操舵角θから操舵角速度θ’に変更されただけで、オブザーバ6自体の構成や、それによって算出(推定)される車両状態量、車線曲率ρ、外乱トルクTdは前記第1実施形態と同様であり、またレギュレータ7自体の構成も前記第1実施形態と同様である。
【0066】
また、前記オブザーバ6で用いる検出値が操舵角θから操舵角速度θ’に変更されていることに伴い、前記コントロールユニット10内で行われる演算処理も、前記第1実施形態の図6のものから図9のものに変更されている。この図9の演算処理と図6の演算処理との相違は、前記図6の演算処理のステップS1が、図9ではステップS1’に変更されているのみであり、その他のステップは同等である。
【0067】
即ち、前記ステップS1’では、前記操舵角センサ21で検出された操舵角速度θ’を読込む。そして、前記オブザーバでは、この操舵角速度θ’を用いて前記各車両状態量、車線曲率ρ、外乱トルクTdを算出する。
従って、前記図9の演算処理によれば、操舵角速度θ’、走行速度V、走行車線に対する横変位yCr、走行車線に対するヨー角φr、車線曲率ρを用い、前記オブザーバ6を用いて、前記外乱トルクTd、車線曲率ρを含む各種の車両状態量を算出し、更に算出された外乱トルクTdを用いてフィードバック係数k5m〜k7mを設定し、それらのフィードバック係数k5m〜k7mを用い、前記レギュレータ7によってモータ指令電流iを算出し、当該指令電流iが達成されるようにモータ電流サーボを行う。これによる作用・効果は、前記第1実施形態のそれと同様であるため、その詳細な説明を省略する。
【0068】
このような効果に加えて、本実施形態では、操舵角θの中立位置出しが不要になるという利点がある。即ち、前記12式及び8式で表すオブザーバ6や前記14式で表すレギュレータ7は、何れも線形であるため、操舵角θの中立位置出しが不十分で、ドリフト成分が重畳していると、その分、全ての値が同方向にずれてしまう。従って、操舵角センサ21で操舵角θを検出する場合には、中立位置出しが必要になる。しかしながら、ロータリエンコーダ等で構成され、操舵角速度θ’を検出することが可能な操舵角センサ21では、この操舵角速度θ’を用いることにより、精密な中立位置出しが不要になる。
【0069】
以上より、前記単眼カメラ25及びカメラコントローラ26が本発明の車線曲率検出手段を構成し、以下同様に、前記単眼カメラ25及びカメラコントローラ26が横位置検出手段を構成し、前記単眼カメラ25及びカメラコントローラ26が方向検出手段を構成し、前記操舵角センサ21及び図9の演算処理のステップS1が操舵角速度検出手段を構成し、前記走行速度センサ22及び図9の演算処理のステップS3が速度検出手段を構成し、前記モータ16が操舵トルク発生手段を構成し、前記オブザーバ6及び図9の演算処理のステップS4が外乱トルク算出手段を構成し、前記レギュレータ7及び図9の演算処理のステップS5、ステップS6が操舵トルク制御手段を構成している。
【0070】
次に、本発明の車線追従走行制御装置の第3実施形態について説明する。この実施形態の車両の概略構成は、前記第1実施形態の図1のものから図10のものに変更されている。この図10の車両には、運転者による操舵介入トルク(車線追従走行制御時)Tdd を検出するための操舵トルクセンサ23が付加されている。従って、前記コントロールユニット10内の構成は図11のように変更されており、合わせてオブザーバ6は図12のように変更されている。
【0071】
本実施形態では、前記第1実施形態で算出した外乱トルクTdを、運転者による操舵介入トルクTdd と操舵系のフリクショントルクTdf とに分けて考える。操舵介入トルクTdd は、前記操舵トルクセンサ23で検出されるので、オブザーバで算出(推定)する外乱トルクはフリクショントルクTdf のみということになる。従って、状態方程式は次元が一つ増加し、前記第1実施形態の7式のものから下記20式のものに変更される(添字dは運転者による操舵介入トルク分を、添字fは操舵系のフリクショントルク分を示す)。
【0072】
【数16】
Figure 0003807262
【0073】
同様に、出力方程式はC行列の行数が一つ増加し、前記第1実施形態の8式のものから下記21式のものに変更される。
【0074】
【数17】
Figure 0003807262
【0075】
また、レギュレータのフィードバック係数を設定するための前記第1実施形態の12式は下記22式のものに変更される。
【0076】
【数18】
Figure 0003807262
【0077】
また、ベースとなるレギュレータは、前記第1実施形態の13式のものから下記23式のものに変更される。
【0078】
【数19】
Figure 0003807262
【0079】
一方、本実施形態では、操舵介入トルクTdd を直接検出するので、各フィードバック係数fXmを設定する前記図4の制御マップの横軸は、この操舵介入トルクTdd になる。また、前記第1実施形態では、外乱トルクTdが操舵系フリクショントルクに相当する所定値Td1 以上となったときに操舵介入がなされたと判定していたが、操舵介入トルクTdd を検出する本実施形態では、前記操舵介入判定の所定値Tdd1を、操舵トルクセンサ23のノイズ上限値(=不感帯)に設定することができる。そして、この制御マップに従って設定されたフィードバック係数kXmを用いて修正されたレギュレータは、前記第1実施形態の14式のものから下記24式のものに変更される。
【0080】
【数20】
Figure 0003807262
【0081】
また、前記オブザーバ6で用いる検出値に操舵介入トルクTdd が付加されていることに伴い、前記コントロールユニット10内で行われる演算処理も、前記第1実施形態の図6のものから図13のものに変更されている。この図13の演算処理と図6の演算処理との相違は、前記図6の演算処理のステップS1とステップS3との間に、新たにステップS2が付加されているのみであり、その他のステップは同等である。
【0082】
即ち、前記ステップS2では、前記操舵トルクセンサ23で検出された操舵介入トルクTdd を読込む。そして、前記オブザーバでは、この操舵介入トルクTdd を用いて、前記各車両状態量、車線曲率ρ、操舵系フリクショントルク(=外乱トルク)Tdf を算出する。
従って、前記図13の演算処理によれば、操舵角θ、走行速度V、走行車線に対する横変位yCr、走行車線に対するヨー角φr、車線曲率ρ、操舵介入トルクTdd を用い、前記オブザーバ6を用いて、前記操舵系フリクショントルク(=外乱トルク)Tdf 、車線曲率ρを含む各種の車両状態量を算出し、更に検出された操舵介入トルクTdd を用いてフィードバック係数k5m〜k7dm 、k7fm を設定し、それらのフィードバック係数k5m〜k7dm 、k7fm を用い、前記レギュレータ7によってモータ指令電流iを算出し、当該指令電流iが達成されるようにモータ電流サーボを行う。このとき、運転者による操舵介入がなければ、操舵介入トルクの絶対値|Tdd |は、操舵トルクセンサ23のノイズ上限値相当に設定された前記所定値Tdd1以下であり、前記フィードバック係数k5m、k6m、k7dm 、k7fm は前記所定値k5 、k6 、k7d、k7fとなり、従って前記24式で与えられる指令電流iは、前記23式で求めた指令電流iに等しくなる。この23式で与えられる制御は、一般に介入が困難であるが、実際の操舵介入時には、操舵介入トルクの絶対値|Tdd |が前記所定値Tdd1を上回る。
【0083】
即ち、運転者による操舵介入時には、操舵介入トルクの絶対値|Tdd |が前記操舵トルクセンサのノイズ上限値相当の所定値Tdd1以上となると、前記フィードバック係数k5m、k6m、k7dm 、k7fm は次第に小さくなり、更に操舵介入トルクの絶対値|Tdd |が前記所定値Tdd2以上となると、前記フィードバック係数k5m、k6m、k7dm 、k7fm が“0”となるので、前記24式中の操舵角速度θ’の項、操舵角θの項、操舵系フリクショントルク(=外乱トルク)Tdf の項が何れも“0”となり、それらのフィードバック分が“0”となる。すると、そのときの指令電流iには、前記18式に従って車線曲率ρ及び走行速度Vから得られた定常旋回操舵角θ0 に相当する分だけが残る。即ち、前記所定値Tdd2以上の操舵介入トルクが与えられると、操舵角や操舵角速度、操舵介入トルクをフィードバックして車線を追従するための指令電流値分がなくなり、同時に走行速度V及び車線曲率ρに基づく定常旋回操舵角θ0 分だけの指令電流値が与えられることになるから、運転者は当該定常旋回状態が維持されている状態からの操舵トルクを付与すればよいだけであるから、操舵介入が容易であると共に、操舵介入時のフィーリングが向上する。
【0084】
また、操舵介入トルクの絶対値|Tdd |が前記所定値Tdd1から所定値Tdd2まで増大する間は、操舵介入トルクが大きくなるにつれて、操舵系フリクショントルクを補償するフィードバック分が小さくなり、同時に操舵角が定常旋回操舵角に近づくことになり、より一層、操舵介入が容易になると共に、操舵介入時のフィーリングが向上する。特に、前記所定値Tdd1は、操舵トルクセンサ25のノイズ上限値、即ち不感帯程度に十分に小さくできるので、操舵介入をより一層正確に判定することができる。
【0085】
特に、本実施形態では、前記24式における各要素、即ち車両挙動状態量と実際の車両挙動のフィードバックとを、操舵非介入時に実感することができ、操舵介入時には、操舵反力から車両挙動を推定することが可能となるため、操舵反力フィーリングに優れている。
なお、前記第2実施形態と同様に、前記操舵角θに代えて、操舵角速度θ’を用いてオブザーバを駆動してもよく、そのようにすれば、前記第2実施形態と同様に、操舵角センサ21の正確な中立位置出しが不要になるという利点がある。
【0086】
以上より、前記単眼カメラ25及びカメラコントローラ26が本発明の車線曲率検出手段を構成し、以下同様に、前記単眼カメラ25及びカメラコントローラ26が横位置検出手段を構成し、前記単眼カメラ25及びカメラコントローラ26が方向検出手段を構成し、前記操舵角センサ21及び図13の演算処理のステップS1が操舵角検出手段を構成し、前記走行速度センサ22及び図13の演算処理のステップS3が速度検出手段を構成し、前記モータ16が操舵トルク発生手段を構成し、前記オブザーバ6及び図13の演算処理のステップS4が外乱トルク算出手段を構成し、前記レギュレータ7及び図13の演算処理のステップS5、ステップS6が操舵トルク制御手段を構成している。
【0087】
なお、前記実施形態では、コントロールユニットの演算処理をマイクロコンピュータによって行わせたが、これに代えて各種の理論回路を組合せて構成するようにしてもよい。
【図面の簡単な説明】
【図1】本発明の車線追従走行制御装置の一実施形態を示す概略構成図である。
【図2】図1のコントロールユニット内の構成を示す第1実施形態のブロック図である。
【図3】図2のオブザーバの構成を示すブロック図である。
【図4】図2のレギュレータで用いられる制御マップである。
【図5】図4の制御マップで各フィードバック係数を設定するための外乱トルクの振る舞いを示す説明図である。
【図6】図2のコントロールユニットで行われる演算処理を示すフローチャートである。
【図7】図1のコントロールユニット内の構成を示す第2実施形態のブロック図である。
【図8】図7のオブザーバの構成を示すブロック図である。
【図9】図7のコントロールユニットで行われる演算処理を示すフローチャートである。
【図10】本発明の車線追従走行制御装置の他の実施形態を示す概略構成図である。
【図11】図10のコントロールユニット内の構成を示す第3実施形態のブロック図である。
【図12】図11のオブザーバの構成を示すブロック図である。
【図13】図11のコントロールユニットで行われる演算処理を示すフローチャートである。
【符号の説明】
2はラック
3はピニオン
4はステアリングホイール
5はステアリングシャフト
6はオブザーバ
7はレギュレータ
10はコントロールユニット
13は操舵機構
16は自動操舵用モータ
21は操舵角センサ
22は走行速度センサ
23は操舵トルクセンサ
25は単眼カメラ
26はカメラコントローラ

Claims (6)

  1. 自車両の走行車線の曲率を検出する車線曲率検出手段と、自車両の走行車線に対する自車両の横位置を検出する横位置検出手段と、自車両の走行車線に対する自車両の方向を検出する方向検出手段と、操舵角を検出する操舵角検出手段又は操舵角速度を検出する操舵角速度検出手段と、自車両の走行速度を検出する速度検出手段と、指令トルクに応じた操舵トルクを発生させる操舵トルク発生手段と、前記車線曲率検出手段で検出された車線曲率及び前記横位置検出手段で検出された走行車線に対する自車両の横位置及び前記方向検出手段で検出された走行車線に対する自車両の方向及び前記操舵角検出手段で検出された操舵角又は操舵角速度検出手段で検出された操舵角速度及び速度検出手段で検出された走行速度に基づいて、操舵系に加わる運転者の操舵介入トルク及び操舵系のフリクショントルクを含む外乱トルクを算出する外乱トルク算出手段と、少なくとも前記操舵角検出手段で検出された操舵角及び操舵角速度検出手段で検出された操舵角速度及び外乱トルク算出手段で算出された外乱トルクのフィードバック分を含めて前記操舵トルク発生手段に指令する指令トルクを算出する操舵トルク制御手段とを備え、前記操舵トルク制御手段は、前記外乱トルク算出手段で算出された外乱トルクが所定値以上であるときに、前記指令トルクのうちの操舵角速度及び外乱トルクのフィードバック分を零とし且つそのときの操舵角のフィードバック分を前記車線曲率検出手段で検出された車線曲率及び前記速度検出手段で検出された走行速度から算出される定常旋回操舵角に操舵角フィードバックゲインを乗じた値に固定することを特徴とする車線追従走行制御装置。
  2. 前記定常旋回固定手段は、前記外乱トルクが前記所定値以下である場合に、当該外乱トルクが大きくなるほど、前記外乱トルクのフィードバック分を小さくすると共に、前記操舵角のフィードバック分を定常旋回時に想定される値に近づけることを特徴とする請求項1に記載の車線追従走行制御装置。
  3. 前記定常旋回固定手段は、前記外乱トルクが前記所定値以下となってから、前記外乱トルクのフィードバック分及び操舵角のフィードバック分を、時間的に次第に元の値に戻すことを特徴とする請求項1又は2の何れかに記載の車線追従走行制御装置。
  4. 自車両の走行車線の曲率を検出する車線曲率検出手段と、自車両の走行車線に対する自車両の横位置を検出する横位置検出手段と、自車両の走行車線に対する自車両の方向を検出する方向検出手段と、操舵角を検出する操舵角検出手段又は操舵角速度を検出する操舵角速度検出手段と、自車両の走行速度を検出する速度検出手段と、操舵系に加わる運転者の操舵介入トルクを検出する操舵介入トルク検出手段と、指令トルクに応じた操舵トルクを発生させる操舵トルク発生手段と、前記車線曲率検出手段で検出された車線曲率及び前記横位置検出手段で検出された走行車線に対する自車両の横位置及び前記方向検出手段で検出された走行車線に対する自車両の方向及び前記操舵角検出手段で検出された操舵角又は操舵角速度検出手段で検出された操舵角速度及び速度検出手段で検出された走行速度に基づいて、操舵系のフリクショントルクからなる外乱トルクを算出する外乱トルク算出手段と、少なくとも前記操舵角検出手段で検出された操舵角及び操舵角速度検出手段で検出された操舵角速度及び外乱トルク算出手段で算出された外乱トルクのフィードバック分を含めて前記操舵トルク発生手段に指令する指令トルクを算出する操舵トルク制御手段とを備え、前記操舵トルク制御手段は、前記操舵介入トルク検出手段で検出された操舵介入トルクが所定値以上であるときに、前記指令トルクのうちの外乱トルクのフィードバック分を零とし且つそのときの操舵角のフィードバック分を前記車線曲率検出手段で検出された車線曲率及び前記速度検出手段で検出された走行速度から算出される定常旋回操舵角に操舵角フィードバックゲインを乗じた値に固定することを特徴とする車線追従走行制御装置。
  5. 前記定常旋回固定手段は、前記操舵介入トルクが所定値以下である場合に、当該操舵介入トルクが大きくなるほど、前記外乱トルクのフィードバック分を小さくすると共に、前記操舵角のフィードバック分を定常旋回時に想定される値に近づけることを特徴とする請求項4に記載の車線追従走行制御装置。
  6. 前記定常旋回固定手段は、前操舵介入トルクが前記所定値以下となってから、前記外乱トルクのフィードバック分及び操舵角のフィードバック分を、時間的に次第に元の値に戻すことを特徴とする請求項4又は5の何れかに記載の車線追従走行制御装置。
JP2001212332A 2001-07-12 2001-07-12 車線追従走行制御装置 Expired - Fee Related JP3807262B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001212332A JP3807262B2 (ja) 2001-07-12 2001-07-12 車線追従走行制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001212332A JP3807262B2 (ja) 2001-07-12 2001-07-12 車線追従走行制御装置

Publications (2)

Publication Number Publication Date
JP2003026023A JP2003026023A (ja) 2003-01-29
JP3807262B2 true JP3807262B2 (ja) 2006-08-09

Family

ID=19047510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001212332A Expired - Fee Related JP3807262B2 (ja) 2001-07-12 2001-07-12 車線追従走行制御装置

Country Status (1)

Country Link
JP (1) JP3807262B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010188854A (ja) * 2009-02-18 2010-09-02 Nissan Motor Co Ltd 車線維持支援装置及び車線維持支援方法
JP5620951B2 (ja) * 2012-07-27 2014-11-05 富士重工業株式会社 車両のパワーステアリング制御装置
JP5994868B2 (ja) * 2013-01-24 2016-09-21 日産自動車株式会社 操舵制御装置
KR101526729B1 (ko) * 2013-12-09 2015-06-05 현대자동차주식회사 Lkas의 제어 토크 조정 장치 및 그 방법
JP6654933B2 (ja) * 2016-03-04 2020-02-26 株式会社Soken 操舵量制御装置、操舵量制御方法
JP7014197B2 (ja) * 2019-03-04 2022-02-01 株式会社豊田中央研究所 推定装置

Also Published As

Publication number Publication date
JP2003026023A (ja) 2003-01-29

Similar Documents

Publication Publication Date Title
CN110406589B (zh) 马达控制装置
EP2921374B1 (en) Steering intention determination device, vehicle control device, steering assist device, and steering assist system
JP6776998B2 (ja) 自動運転システム
JP7129004B2 (ja) モータ制御装置
WO2019225289A1 (ja) モータ制御装置
EP1742124B1 (en) Servo controller comprising two integrators for reducing phase delay
JP7056518B2 (ja) ステアリング制御装置
EP3626580B1 (en) Motor control device and motor control method
CN106256652B (zh) 用于控制动力转向系统的输出的方法
JP2007238070A (ja) 電動可変ギア伝達装置と電動パワーステアリング装置の制御装置
JP4069912B2 (ja) 車両運動制御装置
CN111591341B (zh) 电动助力转向装置
JP3807262B2 (ja) 車線追従走行制御装置
EP3939861B1 (en) Steering device
JP6826091B2 (ja) ラック力を決定する方法及びシステム、作業装置用動作支援方法、動作支援装置及び作業装置
JP3714269B2 (ja) 自動操舵装置
JP3785967B2 (ja) 車線追従走行制御装置
CN114194281A (zh) 转向操纵装置
JP4604399B2 (ja) 車両の操舵制御装置
JP2002029437A (ja) 車両の車線追従制御装置
JP3709806B2 (ja) 車線追従走行制御装置
JP7124772B2 (ja) 車両用操舵装置
JP2003048564A (ja) 車両用操舵制御装置
JP2005162153A (ja) 操舵制御装置
JP2002137750A (ja) 車両の操舵制御装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060508

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees