JP3800146B2 - 窒化物半導体素子の製造方法 - Google Patents

窒化物半導体素子の製造方法 Download PDF

Info

Publication number
JP3800146B2
JP3800146B2 JP2002229368A JP2002229368A JP3800146B2 JP 3800146 B2 JP3800146 B2 JP 3800146B2 JP 2002229368 A JP2002229368 A JP 2002229368A JP 2002229368 A JP2002229368 A JP 2002229368A JP 3800146 B2 JP3800146 B2 JP 3800146B2
Authority
JP
Japan
Prior art keywords
layer
nitride semiconductor
gan
crystal defects
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002229368A
Other languages
English (en)
Other versions
JP2003101159A (ja
Inventor
修二 中村
裕之 清久
徳也 小崎
成人 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2002229368A priority Critical patent/JP3800146B2/ja
Publication of JP2003101159A publication Critical patent/JP2003101159A/ja
Application granted granted Critical
Publication of JP3800146B2 publication Critical patent/JP3800146B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Formation Of Insulating Films (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Description

【0001】
【産業上の利用分野】
本発明はLED(発光ダイオード)、SLD(スーパールミネッセントダイオード)、LD(レーザダイオード)等の発光素子、太陽電池、光センサー等の受光素子、あるいはトランジスタ、パワーデバイス等の電子デバイスに使用される窒化物半導体(In X Al Y Ga 1-X-Y N、0≦X、0≦Y、X+Y≦1)よりなる素子に関する。
【0002】
【従来の技術】
窒化物半導体は高輝度青色LED、純緑色LEDの材料として、フルカラーLEDディスプレイ、交通信号機等で最近実用化されたばかりである。これらの各種デバイスに使用されるLEDは、n型窒化物半導体層とp型窒化物半導体層との間に、単一量子井戸構造(SQW:Single-Quantum- Well)のInGaNよりなる活性層が挟まれたダブルへテロ構造を有している。青色、緑色等の波長はInGaN活性層のIn組成比を増減することで決定されている。また、本出願人は、この材料を用いてパルス電流下、室温での410nmのレーザ発振を世界で初めて発表した{例えば、Jpn.J.Appl.Phys.35(1996)L74、Jpn.J.Appl.Phys.35(1996)L217等}。このレーザ素子は、InGaNを用いた多重量子井戸構造(MQW:Multi-Quantum- Well)の活性層を有するダブルへテロ構造を有し、パルス幅2μs、パルス周期2msの条件で、閾値電流610mA、閾値電流密度8.7kA/cm 2 、410nmの発振を示す。さらに、我々は改良したレーザ素子をAppl.Phys.Lett.69(1996)1477において発表した。このレーザ素子は、p型窒化物半導体層の一部にリッジストライプが形成された構造を有しており、パルス幅1μs、パルス周期1ms、デューティー比0.1%で、閾値電流187mA、閾値電流密度3kA/cm2、410nmの発振を示す。そして、さらに本出願人は室温での連続発振にも初めて成功し、発表した。{例えば、日経エレクトロニクス 1996年12月2日号 技術速報、Appl.Phys.Lett.69(1996)3034-、Appl.Phys.Lett.69(1996)4056- 等}、このレーザ素子は20℃において、閾値電流密度3.6kA/cm 2 、閾値電圧5.5V、1.5mW出力において、27時間の連続発振を示す。
【0003】
上記LED素子、レーザ素子共に、窒化物半導体の成長基板にはサファイアが用いられている。周知のようにサファイアは窒化物半導体との格子不整が13%以上もあるため、この上に成長された窒化物半導体の結晶は結晶欠陥が非常に多い。一般に結晶欠陥の多い半導体はレーザ素子には不向きであり、実用化は難しいとされている。また、サファイアの他に、ZnO、GaAs、Si等の基板を用いた素子も報告されているが、これらの基板も窒化物半導体に格子整合せず、サファイアに比べて結晶性の良い窒化物半導体が成長しにくいため、LEDでさえ実現されていない。
【0004】
一方、窒化物半導体と格子整合する窒化物半導体基板を作製する試みも成されている(例えば、特開昭61−7621、特公昭61−2635、特開昭51−3779、特開平7−165498、特開平7−202265等)。しかし、これらの技術では結晶性の良い窒化物半導体基板を得るには不十分であった。
【0005】
【発明が解決しようとする課題】
結晶欠陥の少ない窒化物半導体基板ができれば、その基板の上に格子整合した状態で窒化物半導体を成長させて、格子欠陥が少ない窒化物半導体が成長できる。しかしながら、現在の技術では、結晶欠陥の全くない窒化物半導体基板を得ることは、ほとんど不可能である。例えば、レーザ素子では結晶欠陥が活性層のレーザ発振領域に転位すると極端に寿命が短くなる。従って、本発明の目的とするところは、結晶欠陥の少ない窒化物半導体を下地層として用い、例えばレーザ素子、LED素子、受光素子等に使用できる高効率で信頼性の高い窒化物半導体素子を実現することにある。
【0006】
【課題を解決するための手段】
我々は窒化物半導体基板(以下、窒化物半導体基板を窒化物半導体下地層、又はGaN下地層と言うことがある。)を数々の手段でもって作製してみたところ、その下地層均一に結晶欠陥が存在するのではなく、結晶欠陥の多い領域と少ない領域とが混在すること(GaN下地層の結晶内部やGaN下地層の表面に結晶欠陥密度に差が生じる傾向があること)を新規に見いだし本発明を成すに至った。
即ち、本発明は、下記(1)〜()の構成により示される。
(1) 結晶欠陥が少ない領域と結晶欠陥が多い領域とを有する窒化物半導体基板上に活性層を含む窒化物半導体層を形成する工程と、前記窒化物半導体層の表面からエッチングを行って、前記窒化物半導体基板の結晶欠陥が多い領域上の窒化物半導体層に切りしろを形成する工程と、前記切りしろから前記窒化物半導体基板を切断する工程と、を備えたことを特徴とする窒化物半導体素子の製造方法。
(2) 前記窒化物半導体基板は、結晶欠陥が少ない領域と結晶欠陥が多い領域とをほぼ平行なストライプ形状に有していることを特徴とする前記(1)に記載の窒化物半導体素子の製造方法。
(3) 前記切りしろは、前記活性層よりも下の窒化物半導体層を露出していることを特徴とする前記(1)又は(2)に記載の窒化物半導体素子の製造方法。
(4) 前記活性層の面積は、窒化物半導体基板の結晶欠陥が多い領域の上部に成長された活性層の面積よりも窒化物半導体基板の結晶欠陥が少ない領域の上部に成長された活性層の面積が大きいことを特徴とする前記(1)乃至(3)のいずれか1に記載の窒化物半導体素子の製造方法。
(5) 前記窒化物半導体基板は、窒化物半導体の横方向成長により形成されることを特徴とする前記(1)乃至(4)のいずれか1に記載の窒化物半導体素子の製造方法。
【0007】
本発明は、結晶欠陥が少ない領域と、結晶欠陥が多い領域とを有する窒化物半導体よりなる下地層上部に、少なくとも活性層を含む窒化物半導体層と、活性層を含まない窒化物半導体層とを有し、同一面側にそれらの窒化物半導体層の表面が露出されており、電極を設けない状態において、活性層を含まない窒化物半導体層の露出面積が、活性層を含む窒化物半導体層にある活性層の面積よりも大きいことが望ましい。但し、本発明でいう活性層とは電流、あるいは光等の刺激により、窒化物半導体の所定の領域において所定の動作をする動作領域のことであり、例えばホモ構造、シングルヘテロ構造におけるp−n接合部は本発明の活性層に含まれる。
【0008】
さらに本発明は、レーザ素子に適用するものであって、結晶欠陥が多い領域と、結晶欠陥が少ない領域とを有する窒化物半導体よりなる下地層上部にレーザ発振領域を有しており、そのレーザ発振領域は結晶欠陥が少ない下地層上部に設けられていることが望ましい。これは面発光型レーザ、ストライプ型レーザ素子に適用できる。
【0009】
ストライプ型の発振領域を有するレーザ素子では、前記結晶欠陥が多い領域と、結晶欠陥が少ない領域とはほぼ平行なストライプ形状を有しており、さらに下地層の上にあるレーザ発振領域は前記結晶欠陥が少ない領域とほぼ平行なストライプ形状を有していることが望ましい。ただし、本発明において結晶欠陥とは下地層表面近傍に現れている結晶欠陥を指す。
【0010】
さらに本発明において、前記下地層は、窒化物半導体と異なる材料よりなる異種基板上部に形成され、かつ窒化物半導体が縦方向に成長しにくい性質を有する保護膜上部に横方向に成長された窒化物半導体よりなることが望ましい
【0011】
さらにまた、前記下地層の結晶欠陥が多い領域は、保護膜と保護膜との間に成長する窒化物半導体上部であり、前記下地層の結晶欠陥が少ない部分は、保護膜上部に成長する窒化物半導体上部であることが望ましい
【0012】
本発明において、結晶欠陥の多い領域は、GaN下地層の表面近傍に現れる結晶欠陥の多い部分であり、結晶欠陥の多くなりやすい部分として、例えばGaN下地層が保護膜上部に横方向の成長(ラテラル成長)を利用して形成されたものである場合、保護膜と保護膜との間(窓部)に成長する窒化物半導体の表面部分が挙げられる。また、本発明において、結晶欠陥の少ない領域は、GaN下地層の表面近傍に現れる結晶欠陥の少ない部分であり、結晶欠陥の少ない部分として、例えばGaN下地層がラテラル成長を利用して形成されたものである場合、保護膜の上部に成長する窒化物半導体の表面部分が挙げられる。このような結晶欠陥密度の偏在は、窒化物半導体の成長方向と結晶欠陥の転位との関係によると推測される。
【0013】
【発明の実施の形態】
結晶欠陥の多い領域と少ない領域とを有するGaN下地層は、例えば次の2つの方法によって得られる。第1の方法は、窒化物半導体と異なる材料よりなる異種基板の上に窒化物半導体を成長後、若しくは成長前に、その窒化物半導体層表面、若しくは異種基板の表面に、窒化物半導体が縦方向に成長しにくい性質を有する保護膜を、例えばストライプ状、ドット状、碁盤目状等の形状で形成し、その保護膜上に窒化物半導体を横方向に成長させる方法である。第1の方法では保護膜を形成するに際し、保護膜形成面積と、露出面積(窓部)とを比較した場合、窓部の面積を少なくする方が、結晶欠陥の少ない領域が多い下地層が得られる傾向にある。
【0014】
一方、第2の方法は、異種基板上に成長させた窒化物半導体表面に凹凸部を形成し、その凸部及び凹部の平面上に前記保護膜を形成した後、側面に露出した窒化物半導体より横方向の成長を行い、保護膜上部に互いに横方向に成長した窒化物半導体を繋げる方法である。
【0015】
いずれの方法においても、前記保護膜を形成することにより、異種基板と窒化物半導体との格子定数不整、熱膨張係数差等の要因によって発生する窒化物半導体の結晶欠陥の転位を減少させたり、転位を止めることができる。即ち、窒化物半導体と異なる材料よりなる異種基板上部に形成され、かつ窒化物半導体が縦方向に成長しにくい性質を有するストライプ状の保護膜上部に横方向に成長された窒化物半導体は、その表面に現れる結晶欠陥密度が非常に少なくなるが、結晶欠陥の多い領域と、少ない領域とを有している。これは、保護膜形成後、その保護膜及び窓部(保護膜が形成されていない部分)の上に再度窒化物半導体を成長させると、窓部の下にある窒化物半導体から横方向に窒化物半導体の成長を促進させて、保護膜上部にまで窒化物半導体を成長させることによる。
【0016】
このように横方向の成長を利用して得られるGaN下地層の表面に現れる結晶欠陥は、従来のものに比べ非常に少なくなる。しかし、GaN下地層の成長初期における窓部の上部と保護膜の上部のそれぞれの結晶欠陥の数は著しく異なる。つまり、異種基板上部の保護膜が形成されていない部分(窓部)に成長されている窒化物半導体層の部分には、異種基板と窒化物半導体との界面から結晶欠陥が転位し易い傾向にあるが、保護膜の上部に成長されている窒化物半導体層の部分には、縦方向へ転位している結晶欠陥がほとんどない。
【0017】
例えば、図3の窒化物半導体の成長方法のウエーハの構造を示す模式的断面図に示すように、異種基板1から第1のGaN層2の表面に向かって示している複数の細線によって結晶欠陥を模式的に示している。このような結晶欠陥は、異種基板1と第1のGaN層2との格子定数のミスマッチにより、異種基板1の上に成長される第1のGaN層2に、非常に多く発生する。そして、保護膜11が形成されていない窓部の結晶欠陥のほとんどは、第2のGaN層3を成長中、表面方向に向かって転位をする。しかし、この窓部から発生した結晶欠陥は、図3に示すように、第2のGaN層3の成長初期にはほとんどが転位しているが、第2のGaN層3の成長を続けるうちに、途中で表面方向に転位する結晶欠陥の数が激減する傾向にあり、第2のGaN層3の表面まで転位する結晶欠陥が非常に少なくなる。一方、保護膜11上部に形成された第2のGaN層3は基板から成長したものではなく、隣接する第2のGaN層3が成長中につながったものであるため、結晶欠陥の数は基板から成長したものに比べて、成長のはじめから非常に少なくなる。この結果、成長終了後の第2のGaN層3の表面(保護膜上部及び窓部上部)には、転位した結晶欠陥が非常に少なく、あるいは透過型電子顕微鏡観察によると保護膜上部にはほとんど見られなくなる。
【0018】
上記のように、第2のGaN層3の窓部上部の表面及び保護膜上部の表面共に結晶欠陥が少なくなるが、成長初期に結晶欠陥が多かった窓部の上部に成長した第2のGaN層3の表面には、保護膜上部に成長したものに比べやや結晶欠陥が多くなる傾向がある。このことは恐らく、窓部に成長する第2のGaN層3の成長の途中で、多くの結晶欠陥の転位が止まったものの、わずかに転位を続ける結晶欠陥が窓部のほぼ直上部に転位し易い傾向があるからではないかと考えられる。
また窓部の窒化物半導体の成長初期に転位し、第2のGaN層3の成長の途中で転位を中断した結晶欠陥が、素子を作動中に再転位する恐れが考えられる。このため、第2のGaN層3表面の結晶欠陥密度は従来に比べ著しく減少してはいるものの、窓部上部の第2のGaN層3表面を結晶欠陥の多い領域としている。 上記の結晶欠陥の非常に少ない第2のGaN層3を、素子構造となる窒化物半導体の成長基板に用いることにより、従来よりも結晶性に優れた窒化物半導体素子を実現できる。
上記のようにして得られる本発明のGaN下地層の結晶欠陥密度は、表面透過型電子顕微鏡観察によると結晶欠陥の多い領域の窓部上部では、1×10 6 個/cm 2 以下、好ましい条件においては1×10 5 個/cm 2 以下であり、結晶欠陥の少ない領域の保護膜上部では1×10 5 個/cm 2 以下、好ましい条件においては1×10 4 個/cm 2 以下であることが望ましい。
【0019】
例えばストライプ状の保護膜を形成した場合、窒化物半導体の横方向の成長では、保護膜上において両側(ストライプ幅方向)から成長してきて、例えばストライプ中央部で繋がる。窓部上部の結晶欠陥密度は1×10 6 個/cm 2 以下であり、ストライプ状の保護膜上部の結晶欠陥密度は1×10 5 個/cm 2 以下になる。結晶欠陥の少ない好ましい数は前述したとおりである。この結晶欠陥は、例えば窒化物半導体をドライエッチングした際、そのエッチング面に表出するエッチピットの数を計測することにより測定できる。本発明の窒化物半導体素子では、結晶欠陥の多い領域上部にある活性層の面積を少なくする。特にレーザ素子では、この部分には発振領域を設けずに、結晶欠陥の少ない領域上部にレーザ発振領域を設ける。
【0020】
図1乃至図3は、第1の方法によりGaN下地層を作製する際の、窒化物半導体ウェーハの構造を示す模式的な断面図である。これらの図において、1は異種基板、2は第1のGaN層、3は第2のGaN層、11は保護膜を示しており、具体的にGaN下地層となるのは第2のGaN層3である。これらの図を元にしてGaN下地層の製法の一例を説明する。
【0021】
図1に示すように、異種基板1の表面に、第1のGaN層2を例えば10μm以下の膜厚で成長させる。この第1のGaN層は基板に直接、あるいはバッファ層を介して成長される層であり、結晶欠陥が全ての断面において、例えば1×10 8 個/cm 2 以上あるため、GaN基板若しくはGaN下地層とはなり得ない。異種基板1は窒化物半導体と異なる材料よりなる基板であればどのようなものでも良く、例えば、サファイアC面の他、R面、A面を主面とするサファイア、スピネル(MgA1 2 4 )のような絶縁性基板、SiC(6H、4H、3Cを含む)、ZnS、ZnO、GaAs、Si等の従来知られている窒化物半導体と異なる基板材料を用いることができる。また第1のGaN層2を成長させる前に、GaN、AlN等の第1のGaN層の成長温度よりも低い低温成長バッファ層を異種基板1の上に0.5μm以下の膜厚で成長させることもできる。
【0022】
次に第1のGaN層2の上に窒化物半導体が縦方向に成長しないか、若しくは成長しにくい性質を有する保護膜11を、例えばストライプ状に形成する。ストライプ幅は、第1のGaN層の露出部分、即ち保護膜が形成されていない部分(窓部)よりも保護膜の面積を大きくする方が、結晶欠陥の少ない第2のGaN層3が成長しやすく、またレーザ発振部分を設定するのに好都合である。保護膜11の材料としては、例えば酸化ケイ素(SiO X )、窒化ケイ素(Si X Y )、酸化チタン(TiO X )、酸化ジルコニウム(ZrO X )等の酸化物、窒化物、またこれらの多層膜の他、1200℃以上の融点を有する金属等を用いることができる。これらの保護膜材料は、窒化物半導体の成長温度600℃〜1100℃の温度にも耐え、その表面に窒化物半導体が成長しないか、成長しにくい性質を有している。保護膜材料を窒化物半導体表面に形成するには、例えば蒸着、スパッタ、CVD等の気相製膜技術を用いることができる。図1では第1のGaN層2の上にストライプ状の保護膜を形成し、そのストライプに対して垂直な方向でウェーハを切断した際の部分的な断面図を示しており、結晶欠陥を第1のGaN層2内部に示す細線でもって模式的に示している。この図に示すように、第1のGaN層2にはほぼ均一に無数の結晶欠陥が発生するのでGaN基板若しくはGaN下地層とすることは不可能である。この保護膜のストライプ幅は1μm以上、さらに好ましくは2μm以上、最も好ましくは5μm以上に調整する。1μmよりも小さいと、結晶欠陥の少ない領域が小さくなり、レーザ発振領域を結晶欠陥の少ない領域の上に確保するのが難しくなる傾向にある。ストライプ幅の上限は特に限定しないが、通常は100μm以下に調整することが望ましい。
【0023】
保護膜11を形成したウェーハの上にさらに第2のGaN層3を成長させる。図2に示すように、保護膜11を形成した第1のGaN層2の上に、第2のGaN層3を成長させると、最初は第1の保護膜11の上にはGaN層が成長せず、窓部の第1のGaN層2の上に第2のGaN層3が選択成長される。図2は、窓部に多くGaNが成長して、第1の保護膜11の上にほとんど成長されないことを示している。
【0024】
しかし、第2のGaN層3の成長を続けると、第2のGaN層3が第1の保護膜11の上において横方向に成長して、隣接した第2のGaN層3同士で繋がって、図3に示すように、あたかも保護膜11の上に第2のGaN層3が成長したかのような状態となる。第2のGaN層3の表面には結晶欠陥が平均的に少ないが、表面透過型電子顕微鏡観察によると、保護膜上部ではほとんど結晶欠陥が見られないのに対し(結晶欠陥の少ない領域)、窓部上部ではやや多く結晶欠陥が見られる(結晶欠陥の多い領域)。このことは、前記したように、窓部に成長する窒化物半導体の成長初期には、結晶欠陥の多くが転位を続け、成長の途中で転位が激減するものの、わずかに転位を続ける結晶欠陥があるからではないかと推測される。更に保護膜上部では、窒化物半導体が横方向の成長により保護膜上に成長する際には結晶欠陥も横方向に転位を続けるが、再び窒化物半導体が縦方向に成長しても結晶欠陥に転位が縦方向に起こらないためではないかと考えられる。図3において、基板から第1の窒化物半導体層の表面に渡って示している複数の細線は図1、2と同じく結晶欠陥を模式的に示している。つまり、窓部から成長した結晶欠陥は、窒化物半導体の成長初期には転位しているが途中で激減し、また保護膜上部においては縦方向に転位する結晶欠陥がほとんど見られない傾向がある。従って、保護膜上部の表面にある結晶欠陥は10 5 個/cm 2 以下であり、窓部の上部の表面では10 6 個/cm 2 以下である。
【0025】
図4及び図5は、第2の方法によるGaN下地層の製法を示したものである。この方法は異種基板上に、直接、あるいは低温成長バッファ層を介して成長された第1のGaN層2の表面に凹凸を設けている。そして図2に示すように凹凸部の平面部に保護膜11、11’を形成して、さらに第2のGaN層3を成長させると、図5に示すように端面に露出した第1のGaN層2から、第2のGaN層が横方向に成長して保護膜上部で繋がった状態となり、結晶欠陥の少ないGaN下地層ができる。この第2の方法の場合、保護膜11及び11’により第2のGaN層3は保護膜上に形成されるので第1の方法に比べ、結晶欠陥の多い領域と少ない領域との差が少なく、平均して結晶欠陥が少ない。このように、第2の方法の場合、第2のGaN層3は第1のGaN層2の側面部から成長させるため、第1の方法に比べて、結晶欠陥が多い領域の結晶欠陥の数は少なくなる傾向にある。但し、以上述べたGaN下地層の製法は単なる例を示すものであって、本発明のレーザ素子のGaN下地層が以上の2つの製法により拘束されるものではない。
【0026】
図6はさらに好ましいGaN下地層の製法を示したものであり、第2のGaN層3成長後、第2のGaN層3の結晶欠陥の多い領域に対応する表面に、第2の保護膜12を形成することにより、結晶欠陥を塞ぐ。さらにその保護膜の上に横方向に第3のGaN層4を成長させることにより、第3のGaN層が第2の保護膜12の上部で繋がっても、元々の窓部の結晶欠陥が少ないため、第2のGaN層よりもさらに結晶性の欠陥の少ないGaN下地層が得られる。
【0027】
【実施例】
[実施例1]
図7は本発明の一実施例に係る窒化物半導体素子の構造を示す模式的な断面図であり、具体的にはLED素子の構造を示している。また図8は図7に示すLED素子をp電極側から見た形状を示す平面図である。以下、図1乃至図3でGaN下地層の製法を説明しながら、本発明の窒化物半導体素子について説明する。
【0028】
2インチφ、C面を主面とするサファイア基板1を反応容器内にセットし、500℃にてサファイア基板1の上にGaNよりなるバッファ層を200オングストロームの膜厚で成長させた後、温度を1050℃にしてGaNよりなる第1のGaN層2を5μmの膜厚で成長させる。この第1のGaN層はAl混晶比X値が0.5以下のAl X Ga 1-X N(0≦X≦0.5)を成長させることが望ましい。0.5を超えると、結晶欠陥というよりも結晶自体にクラックが入りやすくなってしまうため、結晶成長自体が困難になる傾向にある。また膜厚はバッファ層よりも厚い膜厚で成長させて、10μm以下の膜厚に調整することが望ましい。なお図1においてバッファ層は特に図示していない。
【0029】
第1のGaN層2成長後、ウェーハを反応容器から取り出し、第1のGaN層2の表面に、ストライプ状のフォトマスクを形成し、CVD装置によりストライプ幅20μm、ストライプ間隔(窓部)5μmのSiO 2 よりなる保護膜11を0.1μmの膜厚で形成する。図1はストライプの長軸方向に垂直な方向で切断した際の部分的なウェーハの構造を示す模式断面図である。
【0030】
保護膜11形成後、ウェーハを再度反応容器内にセットし、1050℃で、Siを1×10 18 /cm 3 ドープしたGaNよりなる第2のGaN層3を100μmの膜厚で成長させる(図2、図3)。第2のGaN層3の好ましい成長膜厚は、先に形成した保護膜11の膜厚、大きさによっても異なるが、保護膜11の表面を覆うように第2のGaN層3を成長させる。保護膜11の大きさは特に限定しないが、保護膜11の面積を窓部の面積よりも大きくする方が結晶欠陥の少ないGaN基板を得る上で非常に好ましい。
【0031】
第2のGaN層3成長後、ウェーハを反応容器から取り出し、第2のGaN層3の表面をラッピングして鏡面状として、GaN下地層を得る。(以下、第2のGaN層をGaN下地層50と記載する。)このGaN下地層50において、表面透過型電子顕微鏡観察によると、保護膜11上部に相当する結晶欠陥は10 5 個/cm 2 以下であり、窓部上部に相当する結晶欠陥は10 6 個/cm 2 以下であり、全体的に結晶欠陥が減少しており、更に、結晶欠陥の少ない領域の方が、多い領域よりも広い面積を有していた。
【0032】
次にサファイア基板1を有するGaN基板50を再度反応容器に設置し、GaN基板50の上にSiを1×10 18 /cm 3 ドープしたGaNよりなるn側クラッド層51を成長させる。このn側クラッド層51は活性層52を成長させる前のバッファ層として作用し、Al混晶比が0.5以下のAl Y Ga 1-Y Nを成長させることが望ましい。
【0033】
続いて、n側クラッド層51の上に膜厚20オングストローム、単一量子井戸構造のアンドープIn 0.4 Ga 0.6 Nよりなる活性層52、膜厚0.3μmのMgを1×10 20 /cm 3 ドープしたAl 0.2 Ga 0.8 Nよりなるp側クラッド層53、膜厚0.5μmのMgを1×10 20 /cm 3 ドープしたGaNよりなるp側コンタクト層54を順に成長させる。
【0034】
成長後、ウェーハを反応容器から取出し、窒素雰囲気中、600℃でアニーリングして、p側クラッド層53、p側コンタクト層54を低抵抗にする。その後、p側コンタクト層54側からエッチングを行い、n側クラッド層51、若しくはGaN基板50の表面を露出させる。このように、活性層から下の窒化物半導体層をエッチングにより露出させ、チップ切断時の「切りしろ」を設けることにより、切断時にp−n接合面に衝撃を与えにくくなるため、歩留も向上し、信頼性の高い素子が得られる。なおこの「切りしろ」はストライプ状の保護膜の窓部に相当する部分に形成することにより、ストライプ状の窓部の中心線でウェーハが切断できるようにする。さらにこの「切りしろ」を設けることにより後にサファイア基板、保護膜を除去した際、結晶欠陥の多い領域と、少ない領域とを示すチップ切断位置を明確に判別することができる。
【0035】
エッチング後、p側コンタクト層54の表面のほぼ全面にNi/Auよりなる透光性のp電極55を200オングストロームの膜厚で形成し、そのp電極55の上に、ボンディング用のpパッド電極56を0.5μmの膜厚で形成する。
【0036】
pパッド電極56形成後、ウェーハのサファイア基板、バッファ層を研磨、除去し、GaN基板50の裏面を露出させ、その裏面のほぼ全面にWとAlよりなるn電極57を0.5μmの膜厚で形成する。
【0037】
次に前述の「切りしろ」からウェーハを割ってバー状とし、さらにそのバーの短辺に垂直な方向でバーを割ってLEDチップとする。このLEDチップの活性層の下の窒化物半導体層の結晶欠陥は少ない領域の方が圧倒的に多い。このように結晶欠陥の少ない領域に活性層の面積を多く配設することにより、信頼性が高い素子が得られる。このLEDは20mAにおいて、520nmの緑色発光を示し、出力は従来のサファイア基板上に窒化物半導体素子構造を成長されたものに比較して2倍以上、静電耐圧も2倍以上と、非常に優れた特性を示した。
【0038】
なお本実施例では保護膜の形状をストライプ状としたが、予め切り出そうとするチップの形状に合わせた形状(例えば、四角形)の保護膜を、規則正しいドット、碁盤目状に形成しておき、その保護膜の結晶欠陥の多い領域に相当する位置でチップを切り出すようにすることもできる。
【0039】
[実施例2]
図9は本発明の他の実施例に係る窒化物半導体素子の構造を示す斜視図であり、具体的にはレーザ素子の構造を示している。以下、図9を元に実施例2について説明する。
【0040】
実施例1においてGaN下地層を6μmの膜厚で成長させる他は同様にして、サファイア基板上に成長されたGaN下地層50を得る。
【0041】
(第2のバッファ層71)
実施例1で得られたGaN下地層50を主面とするウェーハを反応容器内にセットし、1050℃でこのGaN下地層50上にSiを1×10 18 /cm 3 ドープしたGaNよりなる第2のバッファ層71を成長させる。第2のバッファ層71は900℃以上の高温で成長させる窒化物半導体単結晶層であり、従来より成長される基板と窒化物半導体との格子不整合を緩和するため、次に成長させる窒化物半導体よりも低温で成長させるバッファ層とは区別される。レーザ素子を作製する場合、この第2のバッファ層71は膜厚100オングストローム以下、さらに好ましくは70オングストローム以下、最も好ましくは50オングストローム以下の互いに組成が異なる窒化物半導体を積層してなる歪超格子層とすることが好ましい。歪超格子層とすると、単一窒化物半導体層の結晶性が良くなるため、高出力なレーザ素子が実現できる。またLED素子のn側クラッド層51に歪超格子層を適用しても良い。
【0042】
(クラック防止層72)
次にSiを5×10 18 /cm 3 ドープしたIn 0.1 Ga 0.9 Nよりなるクラック防止層42を500オングストロームの膜厚で成長させる。このクラック防止層72はInを含むn型の窒化物半導体、好ましくはInGaNで成長させることにより、Alを含む窒化物半導体層中にクラックが入るのを防止することができる。クラック防止層は100オングストローム以上、0.5μm以下の膜厚で成長させることが好ましい。100オングストロームよりも薄いと前記のようにクラック防止として作用しにくく、0.5μmよりも厚いと、結晶自体が黒変する傾向にある。なお、このクラック防止層72は省略することもできる。
【0043】
(n側クラッド層73)
次に、Siを5×10 18 /cm 3 ドープしたn型Al 0.2 Ga 0.8 Nよりなる第1の層、20オングストロームと、アンドープ(undope)のGaNよりなる第2の層、20オングストロームとを交互に100層積層してなる総膜厚0.4μmの超格子構造とする。n側クラッド層73はキャリア閉じ込め層、及び光閉じ込め層として作用し、Alを含む窒化物半導体、好ましくはAlGaNを含む超格子層とすることが望ましく、超格子層全体の膜厚を100オングストローム以上、2μm以下、さらに好ましくは500オングストローム以上、1μm以下で成長させることが望ましい。超格子層にするとクラックのない結晶性の良いキャリア閉じ込め層が形成できる。なお超格子層とする場合、互いにバンドギャップエネルギーの異なる窒化物半導体層を積層して、いずれか一方の不純物濃度を大きく、もう一方を小さくするようにして変調ドープを行うと、閾値が低下しやすい傾向にある。
【0044】
(n側光ガイド層74)
続いて、Siを5×10 18 /cm 3 ドープしたn型GaNよりなるn側光ガイド層74を0.1μmの膜厚で成長させる。このn側光ガイド層74は、活性層の光ガイド層として作用し、GaN、InGaNを成長させることが望ましく、通常100オングストローム〜5μm、さらに好ましくは200オングストローム〜1μmの膜厚で成長させることが望ましい。このn側光ガイド層74は通常はSi、Ge等のn型不純物をドープしてn型の導電型とするが、特にアンドープにすることもできる。超格子とする場合には第1の層及び第2の層の少なくとも一方にn型不純物をドープしてもよいし、またアンドープでも良い。
【0045】
(活性層75)
次に、アンドープのIn 0.2 Ga 0.8 Nよりなる井戸層、25オングストロームと、アンドープIn 0.01 Ga 0.99 Nよりなる障壁層、50オングストロームを交互に積層してなる総膜厚175オングストロームの多重量子井戸構造(MQW)の活性層75を成長させる。
【0046】
(p側キャップ層76)
次に、バンドギャップエネルギーがp側光ガイド層77よりも大きく、かつ活性層75よりも大きい、Mgを1×10 20 /cm 3 ドープしたp型Al 0.3 Ga 0.7 Nよりなるp側キャップ層76を300オングストロームの膜厚で成長させる。このp側キャップ層76はp型としたが、膜厚が薄いため、n型不純物をドープしてキャリアが補償されたi型、若しくはアンドープとしても良く、最も好ましくはp型不純物をドープした層とする。p側キャップ層76の膜厚は0.1μm以下、さらに好ましくは500オングストローム以下、最も好ましくは300オングストローム以下に調整する。0.1μmより厚い膜厚で成長させると、p型キャップ層76中にクラックが入りやすくなり、結晶性の良い窒化物半導体層が成長しにくいからである。Alの組成比が大きいAlGaN程薄く形成するとLD素子は発振しやすくなる。例えば、Y値が0.2以上のAl Y Ga 1-Y Nであれば500オングストローム以下に調整することが望ましい。p側キャップ層76の膜厚の下限は特に限定しないが、10オングストローム以上の膜厚で形成することが望ましい。
【0047】
(p側光ガイド層77)
次に、バンドギャップエネルギーがp側キャップ層76より小さい、Mgを1×10 20 /cm 3 ドープしたp型GaNよりなるp側光ガイド層77を0.1μmの膜厚で成長させる。この層は、活性層の光ガイド層として作用し、n側光ガイド層44と同じくGaN、InGaNで成長させることが望ましい。また、この層はp側クラッド層78を成長させる際のバッファ層としても作用し、100オングストローム〜5μm、さらに好ましくは200オングストローム〜1μmの膜厚で成長させることにより、好ましい光ガイド層として作用する。このp側光ガイド層は通常はMg等のp型不純物をドープしてp型の導電型とするが、特に不純物をドープしなくても良い。なお、このp側光ガイド層を超格子層とすることもできる。超格子層とする場合には第1の層及び第2の層の少なくとも一方にp型不純物をドープしてもよいし、またアンドープでも良い。
【0048】
(p側クラッド層78)
次に、Mgを1×10 20 /cm 3 ドープしたp型Al 0.2 Ga 0.8 Nよりなる第1の層、20オングストロームと、Mgを1×10 20 /cm 3 ドープしたp型GaNよりなる第2の層、20オングストロームとを交互に積層してなる総膜厚0.4μmの超格子層よりなるp側クラッド層78を成長させる。この層はn側クラッド層73と同じくキャリア閉じ込め層として作用し、超格子構造とすることによりp型層側の抵抗率を低下させるための層として作用する。このp側クラッド層78の膜厚も特に限定しないが、100オングストローム以上、2μm以下、さらに好ましくは500オングストローム以上、1μm以下で成長させることが望ましい。特に超格子構造を有する窒化物半導体層をクラッド層とする場合、p層側に超格子層を設ける方が、閾値電流を低下させる上で、効果が大きい。なおn型クラッド層と同じく、超格子層とする場合、互いにバンドギャップエネルギーの異なる窒化物半導体層を積層して、いずれか一方の不純物濃度を大きく、もう一方を小さくするようにして変調ドープを行うと、閾値が低下しやすい傾向にある。
【0049】
量子構造の井戸層を有する活性層を有するダブルへテロ構造の窒化物半導体素子の場合、活性層に接して、活性層よりもバンドギャップエネルギーが大きい膜厚0.1μm以下のAlを含む窒化物半導体よりなるキャップ層を設け、そのキャップ層よりも活性層から離れた位置に、キャップ層よりもバッドギャップエネルギーが小さいp側光ガイド層を設け、そのp側光ガイド層よりも活性層から離れた位置に、p側光ガイド層よりもバンドギャップが大きいAlを含む窒化物半導体を含む超格子層よりなるp側クラッド層を設けることは非常に好ましい。しかもp側キャップ層のバンドギャップエネルギーが大きくしてあるため、n層から注入された電子がこのキャップ層で阻止されるため、電子が活性層をオーバーフローしないために、素子のリーク電流が少なくなる。
【0050】
(p側コンタクト層79)
最後に、Mgを2×10 20 /cm 3 ドープしたp型GaNよりなるp側コンタクト層79を150オングストロームの膜厚で成長させる。p側コンタクト層は500オングストローム以下、さらに好ましくは400オングストローム以下、20オングストローム以上に膜厚を調整すると、p層抵抗が小さくなるため閾値における電圧を低下させる上で有利である。
【0051】
反応終了後、反応容器内において、ウェーハを窒素雰囲気中、700℃でアニーリングを行い、p層をさらに低抵抗化する。アニーリング後、ウェーハを反応容器から取り出し、図9に示すように、RIE装置により最上層のp側コンタクト層79と、p側クラッド層78とをエッチングして、4μmのストライプ幅を有するリッジ形状とする。リッジ形成位置は保護膜のストライプと平行方向に形成し、GaN下地層にあるストライプ状の結晶欠陥の多い領域をはずす。
【0052】
即ち、幅20μm、窓部5μmの保護膜上に形成されたGaN層は、およそ5μmの窓部の上部に結晶欠陥の比較的多いストライプ領域を有しており、前記リッジが、この5μmのストライプ領域にかからないように設計する。このように設計することにより、ストライプ状のリッジ下部に存在する活性層がレーザ発振領域に相当するため、レーザ発振領域が、結晶欠陥の多い領域にかからないようにできる。図9の素子ではリッジを設けて、発光をリッジ下部の活性層に集中させてレーザ発振領域を作製する手法を採用したが、この他に、例えばp層最上層に、絶縁層を形成して電流狭窄できるような細いストライプ幅の電極を設ける手法、窒化物半導体層中に、電流狭窄層を形成する手法等によっても、活性層にレーザ発振領域を設けることもできる。このような場合も同様に、結晶欠陥の多い領域上部にある活性層をレーザ発振領域からずらすようにする。
【0053】
リッジ形成後、図9に示すように、リッジストライプを中心として、そのリッジストライプの両側に露出したp側クラッド層77をエッチングして、n電極82を形成すべきn側クラッド層71の表面を露出させる。なおn電極82を形成する面は、図9に示すようにn側クラッド層71の表面でもよいし、またGaN下地層50の表面でもよいが、キャリア濃度の大きい方のn型窒化物半導体層面を露出させることが望ましい。また本実施例によるレーザ素子はn電極をp電極と同一面側に設けたが、図7のようにGaN下地層50の裏面に設けることもできることは言うまでもない。
【0054】
次にリッジ表面の全面にNi/Auよりなるp電極80を形成する。次に、図9に示すようにp電極80を除くp側クラッド層78、p側コンタクト層79の表面にSiO 2 よりなる絶縁膜83を形成し、この絶縁膜83を介してp電極80と電気的に接続したpパッド電極81を形成する。一方先ほど露出させたn側クラッド層71の表面にはWとAlよりなるn電極82を形成する。
【0055】
電極形成後、実施例1と同様にしてウェーハのサファイア基板のみ研磨して50μm厚とした後、ストライプ状のp電極80、n電極82のストライプに垂直な方向でサファイア基板1を劈開して、活性層の劈開面を共振面とする。劈開後のレーザ素子形状を図9に示している。このように同一面側にn電極と、p電極とを設けるレーザ素子の構造において、結晶欠陥が少ない領域と、結晶欠陥が多い領域とを有する窒化物半導体よりなる下地層上部に活性層を有する場合、n電極を設ける活性層を含まない窒化物半導体層の露出面積を、活性層を有する側の活性層面積よりも多くすることにより、熱が集中する活性層が結晶欠陥により破壊されることが少ないため信頼性が高く長寿命な素子が実現できる。なおこのレーザ素子を室温でレーザ発振させたところ、閾値電流密度2.0kA/cm 2 、閾値電圧4.0Vで、発振波長405nmの連続発振が確認され、1000時間以上の寿命を示した。
【0056】
[実施例3]
図10は本発明の他の実施例に係るレーザ素子の構造を示す模式的な断面図であり、具体的には面発光レーザ素子の構造を示している。この図において、50は結晶欠陥の多い領域と、少ない領域とをドット状、若しくはストライプ状に有するGaN下地層である。このレーザ素子はGaN下地層50の上に、Siドープn型GaN層よりなるn側バッファ層90(但し、このバッファ層も低温成長バッファ層と異なる。)、Siドープn型Al 0.3 Ga 0.7 N層40オングストロームと、アンドープGaN層40オングストロームとが積層されてなる0.2μmの歪み超格子よりなるn側クラッド層91、In 0.2 Ga 0.8 NとIn 0.01 Ga 0.99 Nとが積層されてなるMQW構造の活性層92、Mgドープp型Al 0.3 Ga 0.7 N層40オングストロームと、Mgドープp型GaN層40オングストロームとが積層されてなる0.2μmの歪み超格子よりなるp側クラッド層93、MgドープGaNよりなるp側コンタクト層94とが積層された基本構造を有する。さらにn側クラッド層91〜p側クラッド層93の周囲はn−p逆接合を有するAlGaN層よりなる電流阻止層で囲まれた構造を有する。電流阻止層はおよそ4μmφのn側クラッド層91〜p側クラッド層93を残して、その周囲を囲むようにされている。さらにこの面発光レーザ素子はGaN下地層側から孔が設けられて、n側バッファ層の表面に誘電体多層膜よりなるn側反射鏡101が設けられ、n側反射鏡と対応したp側コンタクト層の表面にも誘電体多層膜よりなるp側反射鏡100が設けられている。面発光レーザ素子はリング状のp電極と同じくリング状のn電極に通電することにより、反射鏡間で共振して、厚さ方向にレーザ発振する。
【0057】
このような面発光レーザ素子を作製する場合においても、レーザ発振領域は電流阻止層で囲まれた中にある活性層92であり、この活性層の位置を結晶欠陥の少ないGaN下地層50の上部に設定することにより、長寿命なレーザ素子が作製できる。さらに面発光レーザ素子の場合は共振器長が厚さ方向にあり、その面積が非常に小さいため、GaN下地層を作製する場合において、保護膜はドット状、ストライプ等自由に選択可能である。
【0058】
【発明の効果】
以上説明したように、本発明の窒化物半導体素子によると、基板となるGaN下地層を用いた新規な構造において、GaN下地層の結晶欠陥の多い領域には活性層面積が少なくなるように構成しているため、発光素子、パワーデバイスのような活性層の損傷により素子寿命が制限されるデバイスを実現すると、結晶欠陥が活性層に転位しないため非常に長寿命で、信頼性の高い素子が実現できる。
【図面の簡単な説明】
【図1】 GaN下地層を作製する第1の方法において得られる窒化物半導体ウェーハの一構造を示す模式断面図。
【図2】 GaN下地層を作製する第1の方法において得られる窒化物半導体ウェーハの一構造を示す模式断面図。
【図3】 GaN下地層を作製する第1の方法において得られる窒化物半導体ウェーハの一構造を示す模式断面図。
【図4】 GaN下地層を作製する第2の方法において得られる窒化物半導体ウェーハの一構造を示す模式断面図。
【図5】 GaN下地層を作製する第2の方法において得られる窒化物半導体ウェーハの一構造を示す模式断面図。
【図6】 GaN下地層を作製する好ましい第1の方法において得られる窒化物半導体ウェーハの一構造を示す模式断面図。
【図7】 本発明の一実施例に係るLED素子の構造を示す模式断面図。
【図8】 図5の素子をp電極側から見た平面図。
【図9】 本発明の他の実施例に係るLD素子の構造を示す模式断面図。
【図10】 本発明の他の実施例に係るLD素子の構造を示す模式断面図。
【符号の説明】
1・・・異種基板
2・・・第1のGaN層
3・・・第2のGaN層
11・・・保護膜
50・・・GaN下地層
71・・・第2のバッファ層
72・・・クラック防止層
73・・・n側クラッド層
74・・・n側光ガイド層
75・・・活性層
76・・・p側キャップ層
77・・・p側光ガイド層
78・・・p側クラッド層
79・・・p側コンタクト層

Claims (5)

  1. 結晶欠陥が少ない領域と結晶欠陥が多い領域とを有する窒化物半導体基板上に活性層を含む窒化物半導体層を形成する工程と、
    前記窒化物半導体層の表面からエッチングを行って、前記窒化物半導体基板の結晶欠陥が多い領域上の窒化物半導体層に切りしろを形成する工程と、
    前記切りしろから前記窒化物半導体基板を切断する工程と、を備えたことを特徴とする窒化物半導体素子の製造方法。
  2. 前記窒化物半導体基板は、結晶欠陥が少ない領域と結晶欠陥が多い領域とをほぼ平行なストライプ形状に有していることを特徴とする請求項1に記載の窒化物半導体素子の製造方法。
  3. 前記切りしろは、前記活性層よりも下の窒化物半導体層を露出していることを特徴とする請求項1又は2に記載の窒化物半導体素子の製造方法。
  4. 前記活性層の面積は、窒化物半導体基板の結晶欠陥が多い領域の上部に成長された活性層の面積よりも窒化物半導体基板の結晶欠陥が少ない領域の上部に成長された活性層の面積が大きいことを特徴とする請求項1乃至3のいずれか1項に記載の窒化物半導体素子の製造方法。
  5. 前記窒化物半導体基板は、窒化物半導体の横方向成長により形成されることを特徴とする請求項1乃至4のいずれか1項に記載の窒化物半導体素子の製造方法。
JP2002229368A 1997-06-30 2002-08-07 窒化物半導体素子の製造方法 Expired - Lifetime JP3800146B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002229368A JP3800146B2 (ja) 1997-06-30 2002-08-07 窒化物半導体素子の製造方法

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP9-174494 1997-06-30
JP17449497 1997-06-30
JP28871497 1997-10-21
JP9-288714 1997-10-21
JP2002229368A JP3800146B2 (ja) 1997-06-30 2002-08-07 窒化物半導体素子の製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP12698998A Division JP3496512B2 (ja) 1997-06-30 1998-05-11 窒化物半導体素子

Publications (2)

Publication Number Publication Date
JP2003101159A JP2003101159A (ja) 2003-04-04
JP3800146B2 true JP3800146B2 (ja) 2006-07-26

Family

ID=27323948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002229368A Expired - Lifetime JP3800146B2 (ja) 1997-06-30 2002-08-07 窒化物半導体素子の製造方法

Country Status (1)

Country Link
JP (1) JP3800146B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129246A1 (ja) * 2010-04-13 2011-10-20 並木精密宝石株式会社 単結晶基板、結晶性膜付き単結晶基板、結晶性膜、結晶性膜付き単結晶基板の製造方法、結晶性基板の製造方法、及び素子製造方法
JP7343607B2 (ja) * 2019-10-29 2023-09-12 京セラ株式会社 半導体素子および半導体素子の製造方法

Also Published As

Publication number Publication date
JP2003101159A (ja) 2003-04-04

Similar Documents

Publication Publication Date Title
JP3374737B2 (ja) 窒化物半導体素子
JP3436128B2 (ja) 窒化物半導体の成長方法及び窒化物半導体素子
JP3669848B2 (ja) 窒化物半導体レーザ素子
JP3346735B2 (ja) 窒化物半導体発光素子及びその製造方法
JP4005275B2 (ja) 窒化物半導体素子
JP3491538B2 (ja) 窒化物半導体の成長方法及び窒化物半導体素子
JP3660446B2 (ja) 窒化物半導体素子及びその製造方法
JP3460581B2 (ja) 窒化物半導体の成長方法及び窒化物半導体素子
JP3478090B2 (ja) 窒化物半導体素子
JP3496512B2 (ja) 窒化物半導体素子
JP4291960B2 (ja) 窒化物半導体素子
JPH1065213A (ja) 窒化物半導体素子
KR100625835B1 (ko) 질화물반도체소자
JP4337132B2 (ja) 窒化物半導体基板及びそれを用いた窒化物半導体素子
JP3951973B2 (ja) 窒化物半導体素子
JP3314641B2 (ja) 窒化物半導体レーザ素子
JP3448196B2 (ja) 窒化物半導体発光素子
KR100511530B1 (ko) 질화물반도체소자
JP3800146B2 (ja) 窒化物半導体素子の製造方法
JP4637503B2 (ja) 窒化物半導体レーザ素子の製造方法
JP4028635B2 (ja) 窒化物半導体発光素子
JP3857417B2 (ja) 窒化物半導体素子
JP2005101536A (ja) 窒化物半導体レーザ素子
JP4954407B2 (ja) 窒化物半導体発光素子
JP4370751B2 (ja) 窒化物半導体レーザ素子及びその製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060417

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term