JP3797413B2 - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
JP3797413B2
JP3797413B2 JP2000274511A JP2000274511A JP3797413B2 JP 3797413 B2 JP3797413 B2 JP 3797413B2 JP 2000274511 A JP2000274511 A JP 2000274511A JP 2000274511 A JP2000274511 A JP 2000274511A JP 3797413 B2 JP3797413 B2 JP 3797413B2
Authority
JP
Japan
Prior art keywords
barrier layer
electrode
semiconductor device
capacitor
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000274511A
Other languages
English (en)
Other versions
JP2002094000A (ja
Inventor
栄治 名取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2000274511A priority Critical patent/JP3797413B2/ja
Publication of JP2002094000A publication Critical patent/JP2002094000A/ja
Application granted granted Critical
Publication of JP3797413B2 publication Critical patent/JP3797413B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置およびその製造方法に関し、特に、キャパシタを有する半導体装置およびその製造方法に関する。
【0002】
【背景技術】
現在、強誘電体膜を適用した半導体装置(たとえば強誘電体メモリ(FeRAM))が提案されている。強誘電体膜は、自発分極を有し、また、高誘電率を有するなどの特徴がある。
【0003】
ところで、半導体装置の製造において、強誘電体膜を形成した後、層間絶縁層の形成工程やドライエッチング工程などにおいて、強誘電体膜が水素雰囲気下に曝されることがある。強誘電体膜は、一般に金属酸化物からなる。このため、強誘電体膜が水素に曝されると、強誘電体膜を構成する酸素がこの水素により還元される。これにより、強誘電体膜がダメージを受けることになる。たとえば、強誘電体膜がSBT(SrBi2Ta29)からなる場合には、SBTが水素によって還元されると、粒界部において金属Biが生じ、上部電極と下部電極とが短絡することになる。
【0004】
強誘電体膜が水素に曝されるのを防止する技術として、強誘電体膜を覆うようにして、Al23よりなるバリヤ層(水素ブロッキング層)を形成する技術が提案されている。このバリヤ層は、キャパシタを覆うようにして形成される。
【0005】
【発明が解決しようとする課題】
本発明の目的は、TaOXを主成分とするバリヤ層であって、微細加工がし易く、水素によって還元されるのが抑えられたバリヤ層を含む、半導体装置およびその製造方法を提供することにある。
【0006】
【課題を解決するための手段】
(半導体装置)
本発明の半導体装置は、
キャパシタを有する半導体装置であって、
前記キャパシタは、第1の電極と、第2の電極と、該第1の電極と該第2の電極との間に設けられた誘電体膜とを有し、
前記キャパシタの少なくとも上において、TaOXを主成分とするバリヤ層が設けられ、
前記バリヤ層は、AlOX、TiOX、ZrOXおよびHfOXの中から選択される少なくとも1種を含む。
【0007】
ここで、「x」は、正数である。一般的に、酸化物は完全に化学量論組成になることは無く、少なからず酸素欠損を生じるため数値化せずにxで表した。なお、「x」は、種類が異なる金属酸化物同士において同一の数値であってもよいし、または、異なった数値であってもよい。
【0008】
本発明においては、バリヤ層は、AlOX、TiOX、ZrOXおよびHfOXの中から選択される少なくとも1種を含む。これにより、半導体装置の製造プロセスにおいて、バリヤ層の形成後の工程で発生する水素によって、TaOXの酸素欠損が生じるのを抑えることができる。その結果、TaOXが還元されるのを抑えることができる。すなわち、バリヤ層によって、第1の電極と第2の電極とが短絡するのを抑えることができる。
【0009】
また、本願よりなるバリア層の材料は、背景技術で記載したサファイアに代表されるAl23のように頑強な材料ではないため、バリヤ層のエッチングを容易に行うことができる。すなわち、微細な加工を行う必要のある高集積化に適している。
【0010】
前記バリヤ層の態様は、次のものを挙げることができる。
(1)前記バリヤ層は、前記キャパシタの上にのみ設けられている態様である。
(2)前記バリヤ層は、さらに、前記キャパシタの側方において設けられている態様である。
【0011】
前記バリヤ層において、前記Taの原子数に対するAl、Ti、ZrおよびHfの原子数の総和の比(Al、Ti、ZrおよびHfの原子数の総和/Taの原子数)は、後述の理由で、0.05〜0.20であることが好ましい。
【0012】
前記誘電体膜は、強誘電体膜または常誘電体膜であることができる。
【0013】
前記半導体装置は、さらに、トランジスタを有し、
前記トランジスタと、前記キャパシタとで、メモリ装置を構成していることができる。
【0014】
前記メモリ装置は、強誘電体メモリ装置またはDRAMであることができる。
【0015】
(半導体装置の製造方法)
(A)本発明の第1の半導体装置の製造方法は、
キャパシタを有する半導体装置の製造方法であって、
前記キャパシタは、第1の電極と、第2の電極と、該第1の電極と該第2の電極との間に設けられた誘電体膜とを有し、
(a)前記キャパシタを形成する工程、および
(b)前記工程(a)の後において、前記キャパシタを覆うバリヤ層を形成する工程を含む、半導体装置の製造方法であって、
前記バリヤ層は、TaOXを主成分とし、かつ
前記バリヤ層は、AlOX、TiOX、ZrOXおよびHfOXの中から選択される少なくとも1種を含む。
【0016】
本発明の第1の半導体装置の製造方法によれば、前記バリヤ層は、AlOX、TiOX、ZrOXおよびHfOXの中から選択される少なくとも1種を含む。このため、バリヤ層の形成後の工程で発生する水素によってTaOXの酸素欠損が生じるのを、抑えることができる。その結果、水素によってTaOXが還元されるのを、抑えることができる。したがって、本発明によれば、リークが抑えられたキャパシタを形成することができる。すなわち、バリヤ層によって、第1の電極と第2の電極とが短絡するのを抑えることができる。
【0017】
また、本願よりなるバリア層の材料は、背景技術で記載したサファイアに代表されるAl23のように頑強な材料ではないため、バリヤ層のエッチングを容易に行うことができる。すなわち、微細な加工を行う必要のある高集積化に適している。
【0018】
(B)本発明の第2の半導体装置の製造方法は、
キャパシタを有する半導体装置の製造方法であって、
前記キャパシタは、第1の電極と、第2の電極と、該第1の電極と該第2の電極との間に設けられた誘電体膜とを有し、
(h)前記第1の電極を形成する工程、
(i)前記第1の電極の上に、前記誘電体膜を形成する工程、
(j)前記誘電体膜の上に、前記第2の電極を形成する工程、
(k)前記第2の電極の上に、バリヤ層を形成する工程および
(l)前記バリヤ層、前記第2の電極、前記誘電体膜および前記第1の電極を選択的に除去して、前記キャパシタを形成する工程を含む、半導体装置の製造方法であって、
前記バリヤ層は、TaOXを主成分とし、かつ
前記バリヤ層は、AlOX、TiOX、ZrOXおよびHfOXの中から選択される少なくとも1種を含む。
【0019】
本発明の第2の半導体装置の製造方法は、前記バリヤ層は、AlOX、TiOX、ZrOXおよびHfOXの中から選択される少なくとも1種を含む。このため、本発明の第1の半導体装置の製造方法と同様の作用効果を奏することができる。
【0020】
また、バリヤ層は、工程(l)において、誘電体膜や第2の電極を保護する機能を有する。
【0021】
本発明の第1および第2の半導体装置の製造方法は、次の態様をとることができる。
【0022】
前記バリヤ層の形成は、スパッタ法、CVD法またはレーザアブレーション法により行われることができる。これらの方法によれば、緻密な膜を有するバリヤ層を形成しやすく、さらに、被覆性が良好である。
【0023】
バリヤ層および誘電体膜の具体的な構成は、半導体装置と同様のものをとることができる。
【0024】
前記半導体装置は、さらに、トランジスタを有し、前記トランジスタと、前記キャパシタとで、メモリ装置を構成している場合にも、本発明の半導体装置の製造方法を適用することができる。メモリ装置の具体例は、半導体装置と同様である。
【0025】
【発明の実施の形態】
以下、本発明の好適な実施の形態について図面を参照しながら説明する。
【0026】
[第1の実施の形態]
(半導体装置)
以下、実施の形態に係る半導体装置について説明する。本実施の形態においては、半導体装置として、強誘電体メモリ装置の例を示す。図1は、第1の実施の形態に係る強誘電体メモリ装置を模式的に示す断面図である。
【0027】
強誘電体メモリ装置100は、電界効果型トランジスタ20と、キャパシタ30とを有する。
【0028】
電界効果型トランジスタ(以下「トランジスタ」という)20は半導体基板10の上に形成され、かつ、トランジスタ20の形成領域は素子分離領域12によって画定されている。トランジスタ20は、ゲート絶縁層22と、ゲート電極24と、ソース/ドレイン領域26とを有する。半導体基板10の上には、トランジスタ20を覆うようにして、第1の層間絶縁層40が形成されている。
【0029】
キャパシタ30は、第1の層間絶縁層40の上に形成されている。キャパシタ30は、下部電極32、強誘電体膜34および上部電極36が順次積層して、構成されている。
【0030】
キャパシタ30を被覆するようにして、バリヤ層50が形成されている。バリヤ層50は、キャパシタ30の上面および側面を覆っている。バリヤ層50は、水素をブロックして、強誘電体膜34が水素と接触するのを防止する機能を有する。すなわち、バリヤ層50は、強誘電体膜34が水素によって還元されるのを防止する機能を有する。また、バリヤ層50は、キャパシタ30の側面に形成されていることから、強誘電体膜34の構成物質が第2の層間絶縁層60に拡散するのを防止する機能も有する。バリヤ層50は、第1の層間絶縁層40の上にも形成されている。バリヤ層50の上には、第2の層間絶縁層60が形成されている。
【0031】
第2の層間絶縁層60を貫通するようにして、第1のスルーホール70が形成されている。また、第2の層間絶縁層60、バリヤ層50および第1の層間絶縁層40を貫通するようにして、第2のスルーホール72および第3のスルーホール74が形成されている。第1〜第3のスルーホール70,72,74内には、それぞれ、第1〜第3のコンタクト層80,82,84が形成されている。また、第2の層間絶縁層60の上には、第1のコンタクト層80と第2のコンタクト層84とを接続するための局所配線層90が形成されている。また、第2の層間絶縁層60の上には、第3のコンタクト層84と電気的に接続されているビット配線層92が形成されている。
【0032】
以下、バリヤ層50の具体的な構成を説明する。バリヤ層50は、TaOXを主体とする材質からなる。バリヤ層50がTaOXを主体とすることにより、バリヤ層50をエッチングし易いという利点がある。このため、微細な加工を行う必要のある高集積化に適している。また、バリヤ層50は、AlOX,TiOX,ZrOXおよびHfOXの中から選択される少なくとも1種を含む。このような金属酸化物が添加されていることにより、TaOXの酸素欠損が生じるのを抑えることができる。このため、バリヤ層50の形成後の水素が生じる工程において、TaOXが還元されるのが抑えられている。また、バリヤ層50の還元が抑えられているため、その分だけ、リークを防止する観点からバリヤ層50を厚くする必要性がなくなる。このため、バリヤ層50を薄くすることができるため、高集積化を図ることができる。
【0033】
また、AlOXは、TaOXが還元されるのを抑える効果の他に、水素バリヤ性の向上や、強誘電体膜34に起因する拡散しやすい元素(たとえばPb,Bi)の拡散防止をより強固なものにすることができる。また、TiOX,ZrOXおよびHfOXは、TaOXが還元されるのを抑える効果の他に、バリヤ層50の密着性を高める効果を有する。バリヤ層50において、Taの原子数に対するAl、Ti、ZrおよびHfの原子数の総和の比(Al、Ti、ZrおよびHfの原子数の総和/Taの原子数)は、好ましくは0.05〜0.20、さらに好ましくは0.05〜0.10である。その比が0.05未満であると、TaOXの酸素欠損が生じるのを抑える効果を奏し難い傾向にある。また、その比が0.20を超えると、バリヤ層50が水素をブロックする機能を発揮し難い傾向にある。
【0034】
なお、バリヤ層がTaOXのみからなると、次のような不具合がある。TaOXは、水素によって還元されやすい。TaOXが還元されると、バリヤ層は導電性を示すようになり上部電極と下部電極とが短絡し、リークの原因となったりする。また、強誘電体膜が水素に曝されるのを防止する能力が弱くなったりする。
【0035】
(半導体装置の製造方法)
以下、実施の形態に係る半導体装置の製造方法について説明する。図2〜図3は、第1の実施の形態に係る半導体装置の製造工程を模式的に示す断面図である。
【0036】
まず、図2(a)に示すように、半導体基板10の上に、素子分離領域12を形成する。素子分離領域12の形成方法は、たとえば、トレンチ法、LOCOS法を挙げることができる。次に、素子分離領域12によって画定された領域において、公知の方法により、メモリトランジスタ20を形成する。
【0037】
次に、半導体基板10の上に、公知の方法により、第1の層間絶縁層40を形成する。その後、必要に応じて、第1の層間絶縁層40を平坦化する。第1の層間絶縁層40の平坦化は、たとえば、CMP法により行うことができる。
【0038】
次に、図2(b)に示すように、第1の層間絶縁層40の上に、下部電極32を形成する。下部電極32の材質としては、特に限定されないが、たとえばIr,IrOy,Pt,Ru,RuOy,SrRuOy,LaSrCoOyを挙げることができる。下部電極32は、たとえばスパッタリング法により形成することができる。下部電極32の厚さは、たとえば100〜200nmである。
【0039】
次に、下部電極32の上に、強誘電体膜34を形成する。強誘電体膜34の材質としては、PZT(PbZrZTi1-Z3)、SBT(SrBi2Ta29)を挙げることができる。強誘電体膜34の形成方法は、たとえば、ゾルゲル材料やMOD材料を用いたスピンコート法やディッピング法、スパッタ法、MOCVD法、レーザアブレーション法を挙げることができる。強誘電体膜34の厚さは、たとえば50〜150nmである。
【0040】
次に、強誘電体膜34の上に、上部電極36を形成する。上部電極36の材質および形成方法は、下部電極32で説明したものを適用することができる。上部電極36の厚さは、たとえば100〜200nmである。
【0041】
次に、図2(c)に示すように、リソグラフィ技術を利用して、下部電極32、強誘電体膜34および上部電極36を選択的にエッチングする。こうして、第1の層間絶縁層40の上に、キャパシタ30が形成される。
【0042】
次に、図3(a)に示すように、第1の層間絶縁層40およびキャパシタ30の上に、本発明に係るバリヤ層50を形成する。バリヤ層50の形成方法は、たとえばスパッタ法、CVD法、レーザアブレーション法を挙げることができる。バリヤ層50の厚さは、たとえば10〜100nm、好ましくは20〜50nmである。
【0043】
次に、バリヤ層50の上において、公知の方法により、第2の層間絶縁層60を形成する。この際、キャパシタ30は、バリヤ層50によって覆われている。このため、第2の層間絶縁層60の形成の際に発生する水素と、キャパシタ30を構成する強誘電体膜34とが接触するのが防止されている。また、本発明に係るバリヤ層50は、TaOXに上述の金属酸化物が添加されているため、バリヤ層50の還元が抑えられている。第2の層間絶縁層の厚さは、たとえば400〜800nmである。
【0044】
次に、必要に応じて、リカバリーアニールをする。リカバリーアニールは、酸素雰囲気下で行うことができる。リカバリーアニールの温度条件は、強誘電体膜34がPZTからなる場合、たとえば400〜650℃、好ましくは500〜600℃である。また、強誘電体膜34がSBTからなる場合、たとえば500〜700℃、好ましくは600〜650℃である。リカバリーアニールの時間は、温度条件を考慮して規定され、たとえば0.5〜3時間である。リカバリーアニールをすることで、強誘電体膜34の特性を向上させることができる。
【0045】
次に、図3(b)に示すように、リソグラフィ技術を利用して、第2の層間絶縁層60、バリヤ層50および第1の層間絶縁層40を選択的にエッチングする。こうして、第1〜第3のスルーホール70,72,74が形成される。第1のスルーホール70は、上部電極36の上面を露出している。第2および第3のスルーホール72,74は、ソース/ドレイン領域26の上面を露出している。
【0046】
次に、図1に示すように、第1〜第3のスルーホール70,72,74内に、第1〜第3のコンタクト層80,82,84を形成する。第1〜第3のコンタクト層80,82,84は、たとえば、第1〜第3のスルーホール70,72,74を充填する導電層を全面に形成し、その導電層をエッチバックすることにより形成される。次に、第2の層間絶縁層60の上に、公知の方法により局所配線層90およびビット配線層92を形成する。こうして、実施の形態に係る強誘電体メモリ装置100が形成される。
【0047】
本実施の形態に係る半導体装置の製造方法における作用効果を説明する。
【0048】
バリヤ層50は、TaOXに上述の金属酸化物が添加されているため、第2の層間絶縁層60の形成の際に発生する水素によって、バリヤ層50の還元が抑えられている。すなわち、バリヤ層50によって、上部電極36と下部電極32とが短絡するのが抑えられている。このため、本実施の形態によれば、リークが抑えられた強誘電体メモリ装置100を製造することができる。
【0049】
(変形例)
第1の実施の形態は、次の変形が可能である。水素雰囲気中で、加熱処理によりトランジスタの劣化の回復工程を行う場合には、バリヤ層50は、この工程に影響を及ぼさない態様で形成される。つまり、トランジスタ20が形成された領域の上の第1の層間絶縁層40上にバリヤ層50が形成されないように、バリヤ層50がパターニングされる。具体的には、バリヤ層50は、キャパシタ30の上および側面のみ形成される。バリヤ層50が第1の層間絶縁層40と第2の層間絶縁層60との間に形成されていると、水素がバリヤ層50によってブロックされてトランジスタ20が形成されている領域まで侵入するのが難しくなるためである。この場合、バリヤ層50は、第2の層間絶縁層60を形成する前にパターニングされる。
【0050】
[第2の実施の形態]
(半導体装置)
以下、第2の実施の形態に係る半導体装置を説明する。第2の実施の形態においては、半導体装置の例として、強誘電体メモリ装置を示す。図4は、強誘電体メモリ装置を模式的に示す断面図である。
【0051】
第2の実施の形態に係る強誘電体メモリ装置200は、バリヤ層150が形成されている領域の点で、第1の実施の形態と異なる。すなわち、第2の実施の形態においては、バリヤ層150は、上部電極36の上にのみ形成されている。これ以外のバリヤ層150の構成は、第1の実施の形態と同様である。
【0052】
それ以外の点は、第1の実施の形態と同様であるため、同一の機能を有する部分には同一の符号を付し、その詳細な説明を省略する。
【0053】
(半導体装置の製造方法)
以下、第2の実施の形態に係る半導体装置の製造方法を説明する。図5は、第2の実施の形態に係るメモリ装置の製造工程を模式的に示す断面図である。
【0054】
図5(a)に示すように、上部電極36まで、第1の実施の形態と同様にして形成する。次に、上部電極36上にバリヤ層150を形成する。バリヤ層150は、第1の実施の形態と同様にして形成することができる。
【0055】
次に、図5(b)に示すように、リソグラフィ技術を利用して、バリヤ層150、上部電極36、強誘電体膜34および下部電極32を選択的にエッチングする。この際、バリヤ層150は、エッチング工程における強誘電体膜34のダメージを抑える効果を有する。
【0056】
この後は、第1の実施の形態と同様の方法により、強誘電体メモリ装置を完成させることができる。
【0057】
第2の実施の形態に係る半導体装置の製造方法は、第1の実施の形態と同様の作用効果を奏することができる。
【0058】
[実験例]
以下、実験例を説明する。
【0059】
TaOXに所定の金属酸化物を添加した場合としない場合とで、種々の特性においてどのような差が生じるか調べた。以下、TaOXに上記の金属酸化物を添加した場合を「実施例」といい、上記の金属酸化物を添加しない場合を「比較例」という。
【0060】
(Qsw:信号電荷量)
実施例と比較例とで、Qswにおいてどのような違いがあるか調べた。
【0061】
なお、実施例および比較例において、バリヤ層の態様は、キャパシタの上面および側面を覆う態様とした。バリヤ層の厚さは、20nmとした。バリヤ層の形成は、ヘリコン型スパッタ法によりArとO2との混合ガスを用い、真空度2×10-3Torr(0.26Pa)で行った。なお、ArにO2を加えた理由は、酸素欠損を抑制するためである。ヘリコン型スパッタ装置を用い、通常のスパッタ装置より低い圧力でバリヤ層を形成したのは、より緻密な膜を得るためである。キャパシタを構成する強誘電体膜は、SBTからなる。強誘電体膜は、MOD原料(高純度化学(株)製)をスピンコート法によりに塗布し、結晶化温度650〜700℃の条件下でMOD原料を結晶化させて得られた。強誘電体膜の厚さは、150nmであった。バリヤ層の上に、TEOS−CVD法により、酸化シリコン層からなる層間絶縁層を形成した。層間絶縁層を形成した後、酸素雰囲気中で700℃で30分間のリカバリーアニールを1度行った。
【0062】
表1は、添加比によってQswがどう変化するかを示した表である。
【0063】
【表1】
Figure 0003797413
【0064】
なお、添加比とは、Taの原子数に対する各添加物質の金属の原子数の比(添加物質の金属の原子数/Taの原子数)をいう。Qswの単位は、μC/cm2である。Qswの評価は、RT6000(ラジアント社(株)製)により行った。この時の測定に用いたサンプルは、トランジスタが形成されていない、キャパシタのみのダミーサンプルであった。キャパシタサイズは、□5μm(1辺が5μmの正方形)で、10,000個並列に配した。
【0065】
表1より、上記の金属酸化物を添加していない場合には、リーク電流が大きいためヒステリシスを得られず、Qswを導出することができなかった。一方、上記の金属酸化物が添加されている場合には、リーク電流が小さいためヒステリシスを得ることができ、強誘電体メモリとして動作し得るのに必要な信号電荷量を導出できている。なお、リーク電流とは、上部電極と下部電極との間において流れる電流をいう。
【0066】
Qswは、センスアンプの感度、インプリント、ファティーグ、ウエハー面内、ロット間のバラツキなどを考慮すると、10μC/cm2以上であることが好ましいとされている。表1から添加比が0.22以上であると、Qswは、いずれの添加物質においても、10μC/cm2を下回っている。このため、添加比は、0.05〜0.20の範囲内にあることが好ましいといえる。
【0067】
なお、実施例のいずれの態様においても、リーク電流は、10-7〜10-8A/cm2の範囲内に収まっていた。一方、比較例においては、リーク電流は、10-3A/cm2のレベルであった。比較例においてリーク電流が大きくなった理由は、TaOXが還元されて、バリヤ層が導電性を示すようになり、バリヤ層を介して上部電極と下部電極とが短絡したためと考えられる。
【0068】
(Pb拡散)
バリヤ層が、Pbの拡散をどの程度抑えることができるか調べた。
【0069】
なお、実験に使用した試験体の構成は、次のとおりである。キャパシタにおける強誘電体は、PZTからなる。強誘電体膜は、ゾルゲル原料(三菱マテリアル(株)製)を、結晶化温度550〜600℃の条件下で結晶化させて得られた。強誘電体膜の厚さは、120nmであった。
【0070】
バリヤ層は、キャパシタの上面および側面に形成した。バリヤ層の形成は、ヘリコン型スパッタ法によりArとO2との混合ガスを用い、真空度2×10-3Torr(0.26Pa)で行った。バリヤ層を形成した後、700℃で30分加熱した。バリヤ層に添加した金属酸化物は、AlOXであり、その添加比(金属酸化物の金属の原子数/Taの原子数)は、0.10であった。バリヤ層の上に酸化シリコンからなる層間絶縁層を形成した。層間絶縁層を形成した後、酸素雰囲気中で700℃で30分間のリカバリーアニールを1度行った。
【0071】
この試験体におけるPbの拡散状態をSIMSで評価した。そうしたところ、バリヤ層において、Pbの拡散を抑制していた。すなわち、Pbの層間絶縁層への拡散を抑制していた。
【0072】
なお、強誘電体膜がPZTからなる場合には、リカバリーアニールは、一般的に、600℃前後で行われる。しかし、本実験では、量産のマージンを考慮して、700℃でリカバリーアニールを行っている。つまり、本願のバリヤ層は、通常より高い温度でリカバリーアニールを行っても、Pbの拡散を抑制できることがわかった。
【0073】
[変形例]
本発明は、上記の実施の形態に限定されず、本発明の要旨を超えない範囲で種々の変更が可能である。
【0074】
上記の実施の形態においては、バリヤ層を強誘電体メモリ装置におけるキャパシタに適用した。しかし、バリヤ層は、DRAMにおけるキャパシタに適用してもよい。この場合、誘電体膜は、キャパシタの大容量化を図る観点から、BSTのような高誘電率の常誘電体からなることができる。
【0075】
また、メモリ装置におけるキャパシタに限らず、この他のキャパシタにおいても、バリヤ層を適用することができる。
【図面の簡単な説明】
【図1】第1の実施の形態に係る強誘電体メモリ装置を模式的に示す断面図である。
【図2】第1の実施の形態に係る半導体装置の製造工程を模式的に示す断面図である。
【図3】第1の実施の形態に係る半導体装置の製造工程を模式的に示す断面図である。
【図4】第2の実施の形態に係る強誘電体メモリ装置を模式的に示す断面図である。
【図5】第2の実施の形態に係る半導体装置の製造工程を模式的に示す断面図である。
【符号の説明】
10 半導体基板
12 素子分離領域
20 電界効果型トランジスタ
22 ゲート絶縁層
24 ゲート電極
26 ソース/ドレイン領域
30 キャパシタ
32 下部電極
34 誘電体膜
36 上部電極
40 第1の層間絶縁層
50,150 バリヤ層
60 第2の層間絶縁層
70 第1のスルーホール
72 第2のスルーホール
74 第3のスルーホール
80 第1のコンタクト層
82 第2のコンタクト層
84 第3のコンタクト層
90 局所配線層
92 ビット配線層
100,200 強誘電体メモリ装置

Claims (12)

  1. キャパシタを有する半導体装置であって、
    前記キャパシタは、第1の電極と、第2の電極と、該第1の電極と該第2の電極との間に設けられた誘電体膜とを有し、
    前記誘電体膜の側面に接するように前記キャパシタの上方および側方に設けられ、TaOXを主成分とするバリヤ層が設けられ、
    前記バリヤ層は、AlOX、TiOX、ZrOXおよびHfOXの中から選択される少なくとも1種を含み、
    前記バリヤ層において、前記Taの原子数に対するAl、Ti、ZrおよびHfの原子数の総和の比は、0.05〜0.20である、半導体装置。
  2. 請求項1において、
    前記誘電体膜は、強誘電体膜または常誘電体膜である、半導体装置。
  3. 請求項1または2において、
    前記半導体装置は、さらに、トランジスタを有し、
    前記トランジスタと、前記キャパシタとで、メモリ装置を構成している、半導体装置。
  4. 請求項3において、
    前記メモリ装置は、強誘電体メモリ装置である、半導体装置。
  5. 請求項3において、
    前記メモリ装置は、DRAMである、半導体装置。
  6. キャパシタを有する半導体装置の製造方法であって、
    前記キャパシタは、第1の電極と、第2の電極と、該第1の電極と該第2の電極との間に設けられた誘電体膜とを有し、
    (a)前記キャパシタを形成する工程、および
    (b)前記工程(a)の後において、前記キャパシタを覆うバリヤ層を形成する工程を含む、半導体装置の製造方法であって、
    前記バリヤ層は、TaOXを主成分とし、かつ
    前記バリヤ層は、AlOX、TiOX、ZrOXおよびHfOXの中から選択される少なくとも1種を含み、前記誘電体膜の側面に接するように前記キャパシタの上方および側方に設けられており、
    前記バリヤ層において、前記Taの原子数に対するAl、Ti、ZrおよびHfの原子数の総和の比は、0.05〜0.20である、半導体装置の製造方法。
  7. キャパシタを有する半導体装置の製造方法であって、
    前記キャパシタは、第1の電極と、第2の電極と、該第1の電極と該第2の電極との間に設けられた誘電体膜とを有し、
    (h)前記第1の電極を形成する工程、
    (i)前記第1の電極の上に、前記誘電体膜を形成する工程、
    (j)前記誘電体膜の上に、前記第2の電極を形成する工程、
    (k)前記第2の電極の上に、バリヤ層を形成する工程および
    (l)前記バリヤ層、前記第2の電極、前記誘電体膜および前記第1の電極を選択的に除去して、前記キャパシタを形成する工程を含む、半導体装置の製造方法であって、
    前記バリヤ層は、TaOXを主成分とし、かつ
    前記バリヤ層は、AlOX、TiOX、ZrOXおよびHfOXの中から選択される少なくとも1種を含み、前記誘電体膜の側面に接するように前記キャパシタの上方および側方に設けられており、
    前記バリヤ層において、前記Taの原子数に対するAl、Ti、ZrおよびHfの原子数の総和の比は、0.05〜0.20である、半導体装置の製造方法。
  8. 請求項6または7において、
    前記バリヤ層の形成は、スパッタ法、CVD法またはレーザアブレーション法により行われる、半導体装置の製造方法。
  9. 請求項6〜8のいずれかにおいて、
    前記誘電体膜は、強誘電体膜または常誘電体膜である、半導体装置の製造方法。
  10. 請求項6〜9のいずれかにおいて、
    前記半導体装置は、さらに、トランジスタを有し、
    前記トランジスタと、前記キャパシタとで、メモリ装置を構成している、半導体装置の製造方法。
  11. 請求項10において、
    前記メモリ装置は、強誘電体メモリ装置である、半導体装置の製造方法。
  12. 請求項10において、
    前記メモリ装置は、DRAMである、半導体装置の製造方法。
JP2000274511A 2000-09-11 2000-09-11 半導体装置およびその製造方法 Expired - Fee Related JP3797413B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000274511A JP3797413B2 (ja) 2000-09-11 2000-09-11 半導体装置およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000274511A JP3797413B2 (ja) 2000-09-11 2000-09-11 半導体装置およびその製造方法

Publications (2)

Publication Number Publication Date
JP2002094000A JP2002094000A (ja) 2002-03-29
JP3797413B2 true JP3797413B2 (ja) 2006-07-19

Family

ID=18760262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000274511A Expired - Fee Related JP3797413B2 (ja) 2000-09-11 2000-09-11 半導体装置およびその製造方法

Country Status (1)

Country Link
JP (1) JP3797413B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3964798B2 (ja) * 2003-01-31 2007-08-22 松下電器産業株式会社 誘電体メモリ及びその製造方法
JP2005277066A (ja) 2004-03-24 2005-10-06 Seiko Epson Corp 強誘電体メモリ素子およびその製造方法
JP4049119B2 (ja) * 2004-03-26 2008-02-20 セイコーエプソン株式会社 強誘電体メモリ素子の製造方法

Also Published As

Publication number Publication date
JP2002094000A (ja) 2002-03-29

Similar Documents

Publication Publication Date Title
US6713808B2 (en) Semiconductor capacitor with diffusion prevention layer
JP3961399B2 (ja) 半導体装置の製造方法
JP2009253033A (ja) 半導体記憶装置及びその製造方法
JP5668303B2 (ja) 半導体装置及びその製造方法
KR100973703B1 (ko) 반도체 장치 및 그 제조 방법
JP5672832B2 (ja) 半導体装置とその製造方法
WO2006134663A1 (ja) 半導体装置及びその製造方法
US7038264B2 (en) Semiconductor device and method for manufacturing the same
JP5168273B2 (ja) 半導体装置とその製造方法
JP3643091B2 (ja) 半導体記憶装置及びその製造方法
JP3166746B2 (ja) キャパシタ及びその製造方法
US7728370B2 (en) Semiconductor device and manufacturing method of the same
JP2005327847A (ja) 半導体装置及びその製造方法
JP3797413B2 (ja) 半導体装置およびその製造方法
JP2002231903A (ja) 誘電体素子およびその製造方法
JP2004153006A (ja) 容量素子の製造方法
JP3767675B2 (ja) 半導体装置およびその製造方法
JP4261021B2 (ja) 半導体装置及びその製造方法
JP2000349249A (ja) 半導体記憶装置の製造方法
JP5556059B2 (ja) 半導体装置の製造方法
JPWO2006011196A1 (ja) 半導体装置とその製造方法
KR100943011B1 (ko) 반도체 장치 및 그 제조 방법
WO2005081317A1 (ja) 半導体装置の製造方法
JP2004095678A (ja) 半導体記憶装置の製造方法
JP2003197772A (ja) キャパシタ、半導体記憶装置およびその製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050427

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees