JP3791170B2 - 多気筒エンジンの燃料制御装置 - Google Patents

多気筒エンジンの燃料制御装置 Download PDF

Info

Publication number
JP3791170B2
JP3791170B2 JP01746598A JP1746598A JP3791170B2 JP 3791170 B2 JP3791170 B2 JP 3791170B2 JP 01746598 A JP01746598 A JP 01746598A JP 1746598 A JP1746598 A JP 1746598A JP 3791170 B2 JP3791170 B2 JP 3791170B2
Authority
JP
Japan
Prior art keywords
fuel
engine
cylinder
air
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01746598A
Other languages
English (en)
Other versions
JPH11210536A (ja
Inventor
清孝 間宮
道宏 今田
雅之 鐵野
保義 堀
浩平 岩井
秀志 寺尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP01746598A priority Critical patent/JP3791170B2/ja
Priority to US09/237,855 priority patent/US6044824A/en
Publication of JPH11210536A publication Critical patent/JPH11210536A/ja
Application granted granted Critical
Publication of JP3791170B2 publication Critical patent/JP3791170B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、多気筒エンジンの各気筒への燃料供給を制御する燃料制御装置に関し、特に、エンジンがアイドル運転状態から加速運転状態に移行するときの異常燃焼の発生を抑制するための制御の技術分野に属する。
【0002】
【従来の技術】
従来より、この種のエンジンの燃料制御装置として、例えば特公平7−33783号公報に開示されるように、エンジンが加速運転状態に移行するとき、エンジン回転毎の燃料噴射(以下同期噴射という)とは別に、燃料増量のためにエンジン回転に同期しない燃料噴射(以下非同期噴射という)を行うようにしたものが知られている。このものでは、エンジンが定常運転状態から加速運転状態に移行する際にスロットル弁の開作動が検出されると、直ちに予め設定したパルス幅の非同期噴射によりエンジンへの供給燃料を増量することで、エンジンの各気筒において燃料の輸送遅れに伴い混合気がオーバーリーン状態になることを防止して、車両の加速運転性を良好に保つようにしている。
【0003】
また、上記従来の燃料制御装置では、上記の非同期噴射が行われた後に吸気行程に移行する各気筒に対し、吸気行程に移行するまでの時間が長いほど非同期噴射の噴射パルス幅をを小さく補正することで、吸気ポートから各気筒に吸入されるまでの気化霧化時間の相違に起因する空燃比のばらつきを改善するようにしている。
【0004】
【発明が解決しようとする課題】
ところで、近年、車両の燃費改善のためにエンジンを高圧縮比の仕様としたり、アイドル回転数を従来よりも低く設定したりすることが行われているが、このようにすると、アイドル運転状態から加速運転状態への移行時に急激な圧力上昇を伴う異常燃焼(プリイグニッション)が発生し易くなる。そして、この異常燃焼によりエンジンからかなり大きな異音が聞え、このことから運転者が強い不安感を感じるという不具合が生じる。
【0005】
このような異常燃焼は、吸気温度がある程度高い場合、高圧縮比のエンジンが低回転状態になっていれば必然的に発生する現象であり、その際、気筒内の混合気が一気に燃焼状態になって、通常の火炎伝播に伴う燃焼よりも遙かに大きな圧力上昇が生じていると考えられている。
【0006】
すなわち、図9に示すように、気筒内の混合気は圧力上昇に伴い同図のa点で活性化して化学反応を開始し、発火遅れ時間を経てb点で急激に燃焼状態に至るが、上記a点からb点までの発火遅れ時間に着目すると、この発火遅れ時間はエンジン回転数が変わってもあまり変化しないので、同図においてはエンジン回転数が低くなるほど短くなる。また、混合気の空燃比が理論空燃比よりもリーンである場合には、空燃比が濃いほど発火遅れ時間は短縮される傾向がある。従って、上記図9においてエンジン回転数が低いほど、また混合気の空燃比が濃いほどb点は圧縮上死点側に近づき、異常燃焼による圧力上昇の度合いが大きくなるのである。
【0007】
上述の如き異常燃焼とこれに伴う異音という問題に関して、上記従来の燃料制御装置では、アイドル運転状態から加速運転状態への移行時に行う非同期噴射によって、混合気の空燃比が過度に濃くなってしまうという問題がある。
【0008】
すなわち、上記従来の燃料制御装置では、非同期噴射の際に吸気行程にない気筒について空燃比のばらつきを改善するようにしているものの、ちょうど吸気行程にある気筒については何ら考慮されていない。この気筒すなわちスロットル弁の開作動時にちょうど吸気行程にある気筒では、該スロットル弁の開作動時期が遅くなるほど気筒への実際の吸気充填量が小さくなるにもかかわらず、非同期噴射によって一定量の燃料が供給されることから、図10に示すようにスロットル弁の開作動時期(加速開始タイミング)が遅くなるほど空燃比が濃くなっていき、プリイグニッションが発生する限界(プリイグ限界)を越えて過度に濃い状態になってしまう。
【0009】
したがって、例えば、車両が渋滞路から抜け出て加速を開始するような場合、サージタンク内で暖められた空気がスロットル弁の開作動に伴い略アイドル状態のエンジンに供給され、同時に非同期噴射が行われると、スロットル弁の開作動時にちょうど吸気行程にある気筒では、高吸気温度、高圧縮比及び低回転速度に加えて、混合気の空燃比が過度に濃くなってしまい、プリイグニッションにより極めて大きな異音が発生するのである。
【0010】
これに対し、空燃比が過度に濃くなることを防止するために非同期噴射の噴射量を予め小さく設定することも考えられるが、このようにすると、エンジンの加速開始時に燃料を増量して加速運転性の低下を防止するという初期の目的を十分に達成できなくなってしまう。
【0011】
本発明は斯かる点に鑑みてなされたものであり、その目的とするところは、アイドル運転状態から加速運転状態に移行するときの燃料制御の手順に工夫を凝らすことで、車両の加速運転性を損なうことなくプレイグニッションとこれに伴う異音の発生を防止することにある。
【0012】
【課題を解決するための手段】
上記目的を達成するために、本発明の解決手段では、エンジンがアイドル運転状態から加速運転状態に移行するとき、加速開始タイミング及び空燃比の変動幅を考慮して燃料増量の度合いを補正するようにした。
【0013】
具体的には、請求項1記載の発明では、図1に示すように、多気筒エンジン1の加速運転の開始条件が成立したことを判定する加速開始判定手段30aと、上記エンジン1の各気筒毎に独立して燃料を供給する燃料供給手段16と、上記加速開始判定手段30aによりエンジン1の加速開始条件の成立が判定されたとき、上記燃料供給手段16に対し加速時の燃料増量のための燃料供給を行わせる燃料増量手段30bとを備えた多気筒エンジンの燃料制御装置Aを前提とする。そして、エンジン1のアイドル運転状態を判定するアイドル判定手段30cと、該アイドル判定手段30cによりエンジン1のアイドル運転状態が判定された状態で、上記加速開始判定手段30aによりエンジン1の加速開始条件の成立が判定されたとき、該判定の後にスロットル弁14の開作動による吸気充填量の増大によって最初に圧縮圧力が実質的に増大する1番目の気筒2における混合気の空燃比が、所定範囲の値になるように、上記燃料増量手段30bによる燃料の増量度合いを減少補正する補正手段30dを設ける構成とする。
【0014】
ここで、上記の圧縮圧力が実質的に増大する気筒2とは、スロットル弁14の開作動に伴い吸気充填量が増大して、圧縮上死点における圧力(圧縮圧力)が混合気の自発火し得る程度にまで十分高くなっている気筒のことであり、このように圧縮圧力が十分に高まったときには、空燃比やエンジン回転数等の要因が揃っていれば自然にプリイグニッションが発生する。また、エンジンの仕様等によっても異なるが、通常、上記スロットル弁14の開作動時に排気行程の終期から吸気行程の中期にある気筒が1番目の気筒になる。
【0015】
また、上記空燃比の所定範囲とは、理論空燃比よりもリーンであってエンジンの加速に伴いプリイグニッションが発生する限界の空燃比と、該空燃比よりもさらにリーンであって加速ヘジテーションが起きる限界の空燃比との間の範囲である。
【0016】
さらに、上記補正手段30dは、上記1番目の気筒2が、上記加速開始判定手段30aによるエンジン1の加速開始判定時点で排気行程終期から吸気行程にあるときには、その加速開始判定時点が遅いほど、上記燃料増量手段30bによる燃料増量の度合いが小さくなるように補正を行うものとする。
【0017】
そして、上記の構成によれば、アイドル判定手段30cによりエンジン1のアイドル運転状態が判定されていて、かつ加速開始判定手段30aによりエンジン1の加速開始条件の成立が判定されたときには、加速開始判定の後に最初にプリイグニッションの発生が予想される上記1番目の気筒2において、混合気の空燃比が上記所定範囲の値になるように、燃料増量手段30bによる燃料増量の度合い補正手段30dによって減少補正される。このことで、上記1番目の気筒2において混合気の空燃比が過度に濃くなることを防止して、プリイグニッションとこれに伴う異音の発生とを防止することができる。
【0018】
その際、上記加速開始判定手段30aによるエンジン1の加速開始判定時点、すなわちスロットル弁14の開作動時点で1番目の気筒2が排気行程終期から吸気行程にあるときには、上記スロットル弁14の開作動時点が遅いほど1番目の気筒2への吸気充填量が減少するので、これに応じて上記燃料増量手段30bによる燃料増量の度合いが小さくなるように補正することで、上記1番目の気筒2における混合気の空燃比を上記所定範囲の値にすることができる。
【0019】
そうして、上記1番目の気筒2の燃焼によりエンジン1の回転速度が高まれば、続いて点火される気筒2では、混合気がばらついていてもプリイグニッションの発生は抑制される。
【0020】
請求項2記載の発明では、請求項1記載の発明における補正手段は、1番目の気筒に続いて圧縮圧力が実質的に増大する2番目の気筒における空燃比も所定範囲の値になるように、燃料増量手段による燃料増量の度合いを小さく補正するものとする。
【0021】
このことで、2番目の気筒においても混合気の空燃比が所定範囲の値にされるので、例えば1番目の気筒で失火等が起きてエンジン回転速度を高められなかったとしても、上記2番目の気筒におけるプリイグニッションを防止することができる。
【0022】
請求項3記載の発明では、請求項1又は2における補正手段は、エンジン未暖機状態では燃料増量度合いの補正を行わないものとする。すなわち、一般に、エンジン未暖機状態では燃料の気化霧化が悪くなって吸気ポートから気筒内へ吸入される量が減少するので、燃料増量度合いを補正せずに加速開始時の燃料増量を十分に行って、ヘジテーション等の運転性の悪化を防止することができる。尚、エンジン未暖機状態では一般にプリイグニッションは発生しない
【0023】
求項記載の発明では、請求項記載の発明における燃料増量手段は、加速開始判定手段によりエンジンの加速開始条件の成立が判定されたとき、燃料供給手段により直ちに燃料供給を行うものとする。このことで、エンジンの加速開始条件の成立が判定されたときに直ちに燃料増量のための燃料供給が行われるので、燃料の気化霧化時間をできるだけ長くして、気筒への供給量を確保することができる。
【0024】
請求項記載の発明では、請求項における燃料増量手段は、加速開始判定手段によりエンジンの加速開始条件の成立が判定されたとき、燃料供給手段により吸気行程における所定の供給時点で燃料供給を行うものとする。
【0025】
このことで、燃料が十分に気筒内に充填されるような吸気行程における所定の供給時点で、燃料増量のための燃料供給を行うことで、燃料を効率よく気筒内に供給することができる。また、上記燃料増量のための燃料供給をエンジン回転に同期して行われる基本的な燃料供給と異なる時点で行うようにすれば、両者の干渉による悪影響を回避することができる。
【0026】
請求項記載の発明では、請求項における燃料増量手段は、エンジン回転数が高いほど所定の供給時点を早期に補正する供給時点補正部を備えるものとする。このことで、エンジン回転数が高くなることで吸気弁の開弁時間が相対的に短くなっても、その分、燃料増量手段による燃料供給時点が早期に補正されるので、燃料の気化霧化時間を確保して十分に気筒内に供給することができる。
【0027】
請求項記載の発明では、請求項1〜のいずれか1つにおけるエンジンは、オートマチックトランスミッションが装備された車両に搭載されているものとする。すなわち、一般に、オートマチックトランスミッションが装備された車両では、車両の発進時に運転者のアクセル踏み操作によって、エンジンがアイドル運転状態から直ちに加速運転状態に移行されることが多くプリイグニッションが発生し易いので、このような車両に搭載されたエンジンに適用することで、本発明の作用効果を特に有効なものとすることができる。
【0028】
【発明の実施の形態】
以下、本発明の実施形態を図面に基いて説明する。
【0029】
(実施形態1)
図1は、本発明の燃料制御装置Aを直列4気筒4サイクルガソリンエンジン1に適用した実施形態1を示す。このエンジン1は燃費低減のために圧縮比が9.5の高圧縮比仕様とされ、アイドル回転数が600r.p.m.以下に設定されたものであり、また、オートマチックトランスミッションを装備した車両に搭載されるものである。
【0030】
上記エンジン1は4つの気筒2,2,…(1つのみ図示する)を有するシリンダブロック3と、該シリンダブロック3の上面に組付けられたシリンダヘッド4と、各気筒2内に往復動可能に嵌装されたピストン5とを備え、上記各気筒2内にはピストン5及びシリンダヘッド3により囲まれる燃焼室6が区画形成されている。この燃焼室6の上部には点火プラグ7が臨設され、該点火プラグ7はイグナイタ等を含む点火回路8に接続されている。
【0031】
さらに、10は上記各気筒2の燃焼室6に吸気(空気)を供給する吸気通路で、この吸気通路10の上流端はエアクリーナ11に接続される一方、下流端は吸気弁12を介して燃焼室6に連通されている。上記吸気通路10には、エンジン1に吸入される吸入空気量を検出するエアフローセンサ13と、吸気通路10を絞るスロットル弁14と、サージタンク15と、各気筒毎に独立に燃料を噴射供給する4つのインジェクタ(燃料供給手段)16,16,…(図には1つのみ示す)とが上流側から順に配設されている。また、17はエアクリーナ11に設けられていて吸気温度を検出する吸気温センサ、18はスロットル弁14の開度を検出するスロットル開度センサである。
【0032】
一方、20は上流端が上記燃焼室6に連通されていて、該燃焼室6から燃焼ガスを排出する排気通路であり、この排気通路20には排気ガス中の酸素濃度を基に空燃比を検出するO2センサ22と、排気ガスを浄化するための三元触媒からなる触媒コンバータ23とが上流側から順に配設されている。
【0033】
さらに、上記エンジン1には、図示しないクランクシャフトの回転角を検出する電磁ピックアップ等からなるクランク角センサ26が設けられている。このクランク角センサ26は、クランクシャフトの端部に設けた被検出用プレート27の外周に対応する箇所に配置され、該被検出用プレート27がクランクシャフトの回転とともに回転されたとき、その外周部に突設された4つの突起部の通過に応じて、各気筒毎の上死点位置を0度として、例えば、−6度、104度、174度、284度のクランク角ににそれぞれ対応するパルス信号を出力する。また、シリンダブロック3のウォータジャケットに臨設して冷却水温を検出する水温センサ28が設けられている。
【0034】
図1において、30はマイクロコンピュータ等により構成されたECU(Electronic Control Unit)である。このECU30には、エアフローセンサ13、リニアO2 センサ22、スロットル開度センサ18、クランク角センサ26、水温センサ28からの各出力信号が入力される。一方、上記ECU30からは、点火回路8に対し各気筒毎に点火時期の制御信号が出力されるとともに、各気筒毎のインジェクタ16,16,…に対して燃料噴射量及び噴射タイミングを制御するためのパルス信号が出力される。
【0035】
すなわち、上記ECU30による燃料制御は、各センサから入力される信号に基づいて、各気筒毎にエンジン回転に同期して行われる同期噴射の燃料制御に加えて、スロットル弁14の所定以上の開作動に基づいて、エンジン1の加速開始条件の成立を加速開始判定手段30aにより判定したとき、直ちに燃料増量手段30bにより燃料増量のための非同期噴射を実行するようにしている。
【0036】
さらに、上記ECU30は、エンジン1がアイドル運転状態になっていることを判定するアイドル判定手段30cと、アイドル運転状態で上記スロットル弁14の開作動を検出したとき、そのスロットル弁14の開作動に応じて非同期噴射の燃料噴射量を補正する補正手段30dとを備えている。
【0037】
以下に、エンジン1がアイドル運転状態になっているときの具体的な非同期噴射の制御手順を図2に示すフローチャート図に基づいて説明する。尚、エンジン1がアイドル運転状態になっているか否かの判定は、エンジン回転数neが所定値(例えば600r.p.m.)以下であるか否かにより行われ、アイドル運転状態でないと判定されれば以下の制御は行われない。
【0038】
まず、ステップSA1では、各種センサからの出力信号を受け入れ、そのうちのクランク角センサ26からのパルス信号に基づいて現在のエンジン回転数neを算出するとともに、スロットル開度センサ18からの入力信号に基づいて現在のスロットル開度accelを算出する。続いて、ステップSA2では、クランク角センサ26からのパルス信号に対応してオンオフ切り替えられる回転信号(SGT信号)がオンになる時期(Lエッジ)であるか否かを判定する。そして、SGTLエッジであるYESならば、例えば数ミリ秒毎にカウントアップされるカウンタをリセットする一方、SGTLエッジでないNOならば、カウンタをリセットせずにステップSA4に進む。
【0039】
ここで、上記SGT信号は、図3に示すように、エンジン1の各気筒2における吸気上死点位置(TDC)を0度として、−76度(76°BTDCのクランク角でオンになり、続いて−6度(6°BTDC)のクランク角でオフに、さらに104度(104°ATDC)でオン、174度(174°ATDC)でオフというように交互にオンオフ切り換えられるから、SGTLエッジを検出する毎にカウンタをリセットするようにすれば、カウンタ値に基づいて各気筒2の排気行程後期から吸気行程中期までのクランク角位置を正確に検出することができる。
【0040】
上記ステップSA3に続くステップSA4では、スロットル開度accelの前回値から今回値への変化に基づいてエンジン1の加速運転の開始条件が成立したか否かを判定し、変化が小さく加速開始でないNOと判定されればリターンする一方、スロットル開度accelが所定以上変化していて加速開始であるYESと判定されればステップSA5に進み、非同期噴射の燃料噴射量に対応するインジェクタ16の噴射パルス幅を算出する。すなわち、図4に示すように予めECU30のROMに電子的に格納されたマップを参照して、上記カウンタ値に基づいて噴射パルス幅を算出する。
【0041】
上記マップにおいては、加速開始条件の成立が判定された後、最初に圧縮圧力が実質的に増大する気筒(1番目の気筒)に対する非同期噴射の噴射パルス幅が、該1番目の気筒のクランク角位置に対応するカウンタ値に応じて設定されている。具体的には、エンジン1の加速開始判定時点で上記1番目の気筒が排気行程中期から終期(例えば76°BTDC〜6°BTDC)にあるときには、噴射パルス幅が最大とされる一方、上記1番目の気筒が排気行程終期から吸気行程中期(例えば6°BTDC〜104°ATDC)にあるときには、噴射パルス幅は上記加速開始判定時点が遅いほど小さくされる。
【0042】
このように、気筒への実際の吸気充填量の減少に合わせて非同期噴射のパルス幅を小さくすることで、図5に示すように混合気の空燃比が過度に濃くなることを防止することができる。すなわち、非同期噴射のパルス幅を一定値とした場合には、気筒への吸気充填量の減少に伴う圧縮圧力(圧縮TOP圧力)の低下に応じて、同図に丸印で示すように混合気の空燃比が濃くなってしまうが、非同期噴射のパルス幅をクランク角位置に応じて小さくすれば、同図に三角印で示すように混合気の空燃比ばらつきが抑制される。尚、上記非同期噴射のパルス幅を更にエンジン回転数neが低いほど小さく補正するようにしてもよく、このようにすれば、上記混合気の空燃比ばらつきをさらに小さく抑制することができる。
【0043】
そして、上記ステップSA5に続くステップSA6では、インジェクタ16にパルス信号を出力して非同期噴射を実行し、しかる後にリターンする。このように、エンジン1の加速開始条件の成立が判定されたときに直ちに非同期噴射を行うことで、吸気ポートに噴射供給された燃料の気化霧化時間をできるだけ長くして、気筒内への燃料供給量を十分に確保することができる。尚、上記加速開始判定と同時に非同期噴射を行うことから、この非同期噴射と基本的な同期噴射とが干渉することも考えられるが、この場合には、上記同期噴射のパルス幅に非同期噴射のパルス幅を加算して同期噴射のみを実行すればよい。
【0044】
上記図2のフローチャート図において、ステップSA4が加速開始判定手段30aに、ステップSA5が補正手段30dに、また、ステップSA6が燃料増量手段30bにそれぞれ対応している。
【0045】
したがって、この実施形態1では、エンジン1がアイドル運転状態になっていて、かつスロットル弁14の開作動に基づいてエンジン1の加速開始条件の成立が判定されたとき、燃料増量手段30bによって行われる非同期噴射の噴射パルス幅を、スロットル弁14の開作動のタイミングに応じて補正手段30dにより変更補正するようにしたので、上記加速判定時点の後に最初に圧縮圧力が実質的に増大する1番目の気筒において、混合気の空燃比ばらつきを所定範囲に抑えることができる。
【0046】
具体的に、混合気の空燃比を例えば16<A/F<21の範囲の値、すなわちエンジン1が加速時にヘジテーションを起こす限界(加速ヘジ限界)(図10参照)及びプリイグニッションを発生する限界(プリイグ限界)の間の値にすることができ、このことで、加速開始時のプリイグニッションとこれに伴う異音の発生及び運転性の低下を両方ともに防止することができる。
【0047】
また、エンジン1は高圧縮比でアイドル回転数が低く設定されている上、オートマチックトランスミッションを装備した車両に搭載されるので、車両の発進時にアイドル運転状態から加速運転状態に移行されることが多い。このようにプリイグニッションが発生し易いエンジン1に適用することで、この実施形態1の上述の如き作用効果が特に有効に発揮される。
(実施形態2)
図6は、本発明の実施形態2に係る燃料制御装置Aを示す。この実施形態2の燃料制御装置Aは実施形態1のもの(図1参照)と同様に構成されていて、ECU30による加速判定時の燃料増量制御の手順が一部異なるだけなので、以下、同一の部分には同一の符号を付し異なる部分だけを詳細に説明する。
【0048】
上記図6におけるステップSB1〜SB5までの各ステップは、それぞれステップSA1〜SA5までの各ステップと同様であり、上記ステップSB5でステップSA5と同様のマップ(図4参照)を参照して非同期噴射の噴射パルス幅を算出した後、続くステップSB6において噴射タイミングを算出する。
【0049】
すなわち、非同期噴射の噴射タイミングは、各気筒の吸気行程において図7に示すようにエンジン回転数neに応じて予め設定されたマップから読み込んで算出する。このマップでは、非同期噴射の噴射タイミングを図8に示すように各気筒の吸気行程の中期の所定時点(供給時点)を基本として設定して、エンジン回転数neが高いほど早期に補正するようになっている。
【0050】
そして、上記ステップSB6に続いて、ステップSB7では、上記の算出した噴射タイミングになったことを判定し、噴射タイミングでないNOであればリターンする一方、噴射タイミングになったYESであれば、ステップSB8に進んで非同期噴射を実行し、しかる後にリターンする。
【0051】
上記図6のフローチャート図において、ステップSB4が加速開始判定手段30aに、ステップSb5が補正手段30dにそれぞれ対応しており、また、ステップSB6が供給時点補正部30eに、ステップSB7,SB8が燃料増量手段30bにそれぞれ対応している。
【0052】
したがって、この実施形態2によれば、実施形態1と同様に、エンジン1の加速開始時のプリイグニッションとこれに伴う異音の発生及び運転性の低下を両方ともに防止することができ、さらに、非同期噴射を各気筒の吸気行程中期で行うようにしたので、噴射した燃料を効率よく気筒内に充填することができる。
【0053】
また、一般に、同期噴射は排気行程終期に行われるので、両者の干渉による悪影響を回避することができる。すなわち、例えば同期噴射と非同期噴射とが重なってその分インジェクタ16の開弁時間が短くなれば、燃料噴射量が不足して混合気の空燃比が極端にリーンになることがあり(図10にLとして示す)、一方、例えば同期噴射と非同期噴射との間隔が極めて短くなれば、その間インジェクタ16が開き放しになって混合気の空燃比が極端にリッチになることがある(図10にRとして示す)。これに対し、この実施形態2では、同期噴射と非同期噴射との干渉を防止して、上記の悪影響を回避することができる。
【0054】
さらに、エンジン回転数neが高いほど噴射タイミングを早期に補正するようにしているので、エンジン回転数neが高くなることで吸気弁の開弁時間が相対的に短くなっても、噴射された燃料の気化霧化時間を確保して十分に気筒内に供給することができる。
(他の実施形態)
尚、本発明は上記実施形態に限定されるものではなく、その他種々の実施形態を包含するものである。すなわち、上記実施形態1,2において、エンジン1が未暖機状態になっているときには、スロットル弁14の開作動のタイミングに応じた非同期噴射のパルス幅の変更補正を行わないようにしてもよい。このようにすれば、エンジン未暖機状態で燃料の気化霧化状態が悪化していても、加速開始時の燃料増量を十分に行ってヘジテーション等の運転性の低下を防止することができる。
【0055】
また、上記実施形態1,2において、エンジン1への吸気温度が例えば80度以上の場合にのみ非同期噴射のパルス幅を変更補正するようにしてもよい。すなわち、吸気温度が80度よりも低い場合にはプリイグニッションが発生しにくいので、この場合には、燃料増量を十分に行うことで加速運転性の向上を図ることができる。
【0056】
さらに、上記実施形態1,2では、非同期噴射の噴射パルス幅を変更補正することで、加速開始条件の成立が判定された後に最初に圧縮圧力が実質的に増大する1番目の気筒において、混合気の空燃比ばらつきを抑えて所定範囲の値にするようにしているが、上記1番目の気筒の次に点火される2番目の気筒についても同様に非同期噴射の噴射パルス幅を変更補正するようにしてもよい。
【0057】
すなわち、通常、上記1番目の気筒の燃焼によってエンジン1の回転速度が上昇することで、2番目の気筒におけるプリイグニッションを抑制することができるが、上述の如く上記2番目の気筒においても非同期噴射の噴射パルス幅を変更補正して混合気の空燃比を所定範囲の値にすれば、例えば1番目の気筒で失火等が起きてエンジン回転数が上昇しなかった場合でも該2番目の気筒におけるプリイグニッションの発生を防止することができる。
【0058】
【発明の効果】
以上説明したように、請求項1記載の発明における多気筒エンジンの燃料制御装置によれば、エンジンがアイドル運転状態から加速運転状態に移行するとき、加速開始判定の後、最初にプリイグニッションの発生が予想される1番目の気筒において、混合気の空燃比が所定範囲の値になるように燃料増量手段による燃料増量の度合いを補正手段によって減少補正するようにしたので、上記1番目の気筒において混合気の空燃比が過度に濃くなることを防止して、プリイグニッションとこれに伴う異音の発生を防止することができる。
【0059】
その際、上記燃料増量手段による燃料増量の度合いをスロットル弁の開作動時点に対応して変更補正することで、上記1番目の気筒における混合気の空燃比を所定範囲の値にすることができる。
【0060】
請求項2記載の発明によれば、1番目の気筒の失火等によりエンジンの回転速度が高くならなくても、2番目の気筒におけるプリイグニッションを防止することができる。
【0061】
請求項3記載の発明によれば、エンジン未暖機状態では、加速開始時の燃料増量を十分に行ってヘジテーション等の運転性の悪化を防止することができる
【0062】
求項記載の発明によれば、エンジンの加速開始条件の成立が判定されたときに直ちに燃料増量のための燃料供給を行うことで、気筒への十分な燃料供給量を確保することができる。
【0063】
請求項記載の発明によれば、増量のために供給する燃料を効率よく気筒内に供給することができ、また、エンジン回転に同期して行われる基本的な燃料供給との干渉による悪影響を回避することができる。
【0064】
請求項記載の発明によれば、エンジン回転数が高くなっても、増量のために供給する燃料の気化霧化時間を確保して十分に気筒内に供給することができる。
【0065】
請求項記載の発明によれば、オートマチックトランスミッションが搭載された車両に搭載されるエンジンに適用することで、本発明の作用効果を特に有効なものとすることができる。
【図面の簡単な説明】
【図1】 本発明の実施形態を示す全体構成図である。
【図2】 非同期噴射の制御手順を示すフローチャート図である。
【図3】 1番目の気筒におけるクランク角位置と、スロットル弁の開作動時点と、非同期噴射の噴射タイミングとの相関関係を示す説明図である。
【図4】 非同期噴射のパルス幅を1番目の気筒におけるクランク角位置に対応して設定したマップの一例を示す図である。
【図5】 クランク角位置とスロットル弁の開作動時点との相対位置の変化に対する1番目の気筒の空燃比の変化の一例を示すグラフ図である。
【図6】 実施形態2に係る図2相当図である。
【図7】 実施形態2に係る図4相当図である。
【図8】 実施形態2に係る図3相当図である。
【図9】 プリイグニッションによる気筒内圧力の異常上昇をクランク角位置に対応づけて示したグラフ図である。
【図10】 クランク角位置に対するスロットル弁の開作動時点が遅くなるほど、1番目の気筒の空燃比が濃くなっている様子を示した説明図である。
【符号の説明】
A 燃料増量装置
ne エンジン回転数
1 エンジン
2 気筒
16 インジェクタ(燃料供給手段)
30a 加速開始判定手段
30b 燃料増量手段
30c アイドル判定手段
30d 補正手段
30e 噴射時期補正部

Claims (7)

  1. 多気筒エンジンの加速運転の開始条件が成立したことを判定する加速開始判定手段と、
    上記エンジンの各気筒毎に独立して燃料を供給する燃料供給手段と、
    上記加速開始判定手段によりエンジンの加速開始条件の成立が判定されたとき、上記燃料供給手段に対し加速時の燃料増量のための燃料供給を行わせる燃料増量手段とを備えた多気筒エンジンの燃料制御装置において、
    エンジンのアイドル運転状態を判定するアイドル判定手段と、
    上記アイドル判定手段によりエンジンのアイドル運転状態が判定されている状態で、上記加速開始判定手段によりエンジンの加速開始条件の成立が判定されたとき、該判定の後にスロットル弁の開作動による吸気充填量の増大によって最初に圧縮圧力が実質的に増大する1番目の気筒における混合気の空燃比が、所定範囲の値になるように、上記燃料増量手段による燃料の増量度合いを減少補正する補正手段と
    が設けられており、
    上記空燃比の所定範囲が、理論空燃比よりもリーンであってエンジンの加速に伴いプリイグニッションが発生する限界の空燃比と、該空燃比よりもさらにリーンであって加速ヘジテーションが起きる限界の空燃比との間の範囲であり、
    上記補正手段は、上記1番目の気筒が、上記加速開始判定手段によるエンジンの加速開始判定時点で排気行程終期から吸気行程にあるときには、その加速開始判定時点が遅いほど、上記燃料増量手段による燃料増量の度合いが小さくなるように補正を行うものであることを特徴とする多気筒エンジンの燃料制御装置。
  2. 請求項1において、
    補正手段は、1番目の気筒に続いて圧縮圧力が実質的に増大する2番目の気筒における空燃比も所定範囲の値になるように、燃料増量手段による燃料増量の度合いを小さく補正するものである
    ことを特徴とする多気筒エンジンの燃料制御装置。
  3. 請求項1又は2において、
    補正手段は、エンジン未暖機状態では燃料増量度合いの補正を行わないように構成されていることを特徴とする多気筒エンジンの燃料制御装置。
  4. 請求項において、
    燃料増量手段は、加速開始判定手段によりエンジンの加速開始条件の成立が判定されたとき、燃料供給手段により直ちに燃料供給を行うものであることを特徴とする多気筒エンジンの燃料制御装置。
  5. 請求項において、
    燃料増量手段は、加速開始判定手段によりエンジンの加速開始条件の成立が判定されたとき、燃料供給手段により吸気行程における所定の供給時点で燃料供給を行うものであることを特徴とする多気筒エンジンの燃料制御装置。
  6. 請求項において、
    燃料増量手段は、エンジン回転数が高いほど所定の供給時点を早期に補正する供給時点補正部を備えていることを特徴とする多気筒エンジンの燃料制御装置。
  7. 請求項1〜のいずれか1つにおいて、
    エンジンは、オートマチックトランスミッションが装備された車両に搭載されていることを特徴とする多気筒エンジンの燃料制御装置
JP01746598A 1998-01-29 1998-01-29 多気筒エンジンの燃料制御装置 Expired - Fee Related JP3791170B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP01746598A JP3791170B2 (ja) 1998-01-29 1998-01-29 多気筒エンジンの燃料制御装置
US09/237,855 US6044824A (en) 1998-01-29 1999-01-27 Fuel control unit and fuel injection control method for multi-cylinder engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01746598A JP3791170B2 (ja) 1998-01-29 1998-01-29 多気筒エンジンの燃料制御装置

Publications (2)

Publication Number Publication Date
JPH11210536A JPH11210536A (ja) 1999-08-03
JP3791170B2 true JP3791170B2 (ja) 2006-06-28

Family

ID=11944781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01746598A Expired - Fee Related JP3791170B2 (ja) 1998-01-29 1998-01-29 多気筒エンジンの燃料制御装置

Country Status (2)

Country Link
US (1) US6044824A (ja)
JP (1) JP3791170B2 (ja)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6480781B1 (en) 2000-07-13 2002-11-12 Caterpillar Inc. Method and apparatus for trimming an internal combustion engine
US6386176B1 (en) 2000-07-13 2002-05-14 Caterpillar Inc. Method and apparatus for determining a start angle for a fuel injection associated with a fuel injection signal
US6467452B1 (en) 2000-07-13 2002-10-22 Caterpillar Inc Method and apparatus for delivering multiple fuel injections to the cylinder of an internal combustion engine
US6453874B1 (en) 2000-07-13 2002-09-24 Caterpillar Inc. Apparatus and method for controlling fuel injection signals during engine acceleration and deceleration
US6363314B1 (en) 2000-07-13 2002-03-26 Caterpillar Inc. Method and apparatus for trimming a fuel injector
US6450149B1 (en) 2000-07-13 2002-09-17 Caterpillar Inc. Method and apparatus for controlling overlap of two fuel shots in multi-shot fuel injection events
US6363315B1 (en) 2000-07-13 2002-03-26 Caterpillar Inc. Apparatus and method for protecting engine electronic circuitry from thermal damage
US6371077B1 (en) 2000-07-13 2002-04-16 Caterpillar Inc. Waveform transitioning method and apparatus for multi-shot fuel systems
US6415762B1 (en) 2000-07-13 2002-07-09 Caterpillar Inc. Accurate deliver of total fuel when two injection events are closely coupled
US6705277B1 (en) 2000-07-13 2004-03-16 Caterpillar Inc Method and apparatus for delivering multiple fuel injections to the cylinder of an engine wherein the pilot fuel injection occurs during the intake stroke
US6606974B1 (en) 2000-07-13 2003-08-19 Caterpillar Inc Partitioning of a governor fuel output into three separate fuel quantities in a stable manner
US6390082B1 (en) 2000-07-13 2002-05-21 Caterpillar Inc. Method and apparatus for controlling the current level of a fuel injector signal during sudden acceleration
US6516773B2 (en) 2001-05-03 2003-02-11 Caterpillar Inc Method and apparatus for adjusting the injection current duration of each fuel shot in a multiple fuel injection event to compensate for inherent injector delay
US6516783B2 (en) 2001-05-15 2003-02-11 Caterpillar Inc Camshaft apparatus and method for compensating for inherent injector delay in a multiple fuel injection event
JP2007077913A (ja) * 2005-09-15 2007-03-29 Toyota Motor Corp 内燃機関の燃料噴射制御装置
JP2011094534A (ja) * 2009-10-29 2011-05-12 Keihin Corp 燃料噴射制御装置
JP4999212B2 (ja) * 2010-06-07 2012-08-15 株式会社 テスク資材販売 プラスチックパイプ熱融着機
US8260530B2 (en) * 2010-08-05 2012-09-04 Ford Global Technologies, Llc Method and system for pre-ignition control
US8073613B2 (en) * 2010-08-05 2011-12-06 Ford Global Technologies, Llc Method and system for pre-ignition control
US8463533B2 (en) 2010-08-05 2013-06-11 Ford Global Technologies, Llc Method and system for pre-ignition control
US8095297B2 (en) * 2011-03-24 2012-01-10 Ford Global Technologies, Llc Method and system for pre-ignition control
US9038596B2 (en) 2011-12-02 2015-05-26 Ford Global Technologies, Llc Method and system for pre-ignition control
US11952935B2 (en) 2011-12-16 2024-04-09 Transportation Ip Holdings, Llc Systems and method for controlling auto-ignition
US20160222895A1 (en) * 2011-12-16 2016-08-04 General Electric Company Multi-fuel system and method
US9551288B2 (en) 2012-06-29 2017-01-24 Ford Global Technologies, Llc Method and system for pre-ignition control
US9043122B2 (en) 2012-06-29 2015-05-26 Ford Global Technologies, Llc Method and system for pre-ignition control
US8997723B2 (en) 2012-06-29 2015-04-07 Ford Global Technologies, Llc Method and system for pre-ignition control
DE102015006976A1 (de) 2015-06-01 2016-12-01 Man Truck & Bus Ag Magerbetrieb im Leerlauf zur Partikelzahlreduzierung

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6413245A (en) * 1987-07-06 1989-01-18 Seiko Epson Corp Optical pickup
JPS6432037A (en) * 1987-07-28 1989-02-02 Toyota Motor Corp Fuel injection controller
US5146882A (en) * 1991-08-27 1992-09-15 General Motors Corporation Method and apparatus for cold starting a spark ignited internal combustion engine fueled with an alcohol-based fuel mixture
DE4304163A1 (de) * 1993-02-12 1994-08-25 Bosch Gmbh Robert Einrichtung zur Steuerung der Kraftstoffeinspritzung bei einer Brennkraftmaschine
US5353768A (en) * 1993-11-15 1994-10-11 Ford Motor Company Fuel control system with compensation for intake valve and engine coolant temperature warm-up rates
US5765533A (en) * 1996-04-18 1998-06-16 Nissan Motor Co., Ltd. Engine air-fuel ratio controller
SE522177C2 (sv) * 1996-08-27 2004-01-20 Mitsubishi Motors Corp Styranordning för en förbränningsmotor med cylinderinsprutning och gnisttändning
US5931136A (en) * 1997-01-27 1999-08-03 Denso Corporation Throttle control device and control method for internal combustion engine
JP3858328B2 (ja) * 1997-03-31 2006-12-13 トヨタ自動車株式会社 内燃機関の燃料噴射制御装置
US5947088A (en) * 1998-08-31 1999-09-07 Chrysler Corporation Acceleration enrichment based on a fuel modifier

Also Published As

Publication number Publication date
JPH11210536A (ja) 1999-08-03
US6044824A (en) 2000-04-04

Similar Documents

Publication Publication Date Title
JP3791170B2 (ja) 多気筒エンジンの燃料制御装置
JP3815006B2 (ja) 内燃機関の制御装置
US6708668B2 (en) Control system and method for direct-injection spark-ignition engine
JP4158328B2 (ja) 筒内噴射式内燃機関の燃料噴射制御装置
JP3683681B2 (ja) 直噴火花点火式内燃機関の制御装置
JP5796635B2 (ja) 内燃機関の燃料カット制御装置及び燃料カット制御方法
EP0947682A2 (en) Idle speed control device for engine
JP3971004B2 (ja) 内燃機関の燃焼切換制御装置
EP0924420A2 (en) Torque controller for internal combustion engine
JP4054547B2 (ja) 内燃機関の制御装置
JP4438378B2 (ja) 直噴火花点火式内燃機関の制御装置
JP3797011B2 (ja) 筒内噴射式内燃機関
JP2010265877A (ja) 筒内噴射式の内燃機関の燃料噴射制御装置
JP3911855B2 (ja) 直噴火花点火式エンジンの制御装置
JP3648864B2 (ja) 希薄燃焼内燃機関
JP4416847B2 (ja) 内燃機関の燃料噴射制御装置
JP4379670B2 (ja) 内燃機関の燃料性状判定装置
JP3265999B2 (ja) 筒内噴射型内燃機関のノック制御装置
JP4339599B2 (ja) 筒内噴射式内燃機関の制御装置
JP3533888B2 (ja) 直噴火花点火式内燃機関の制御装置
JP4259375B2 (ja) エンジンの始動装置
JP4300681B2 (ja) 火花点火式エンジン
JP3489204B2 (ja) 内燃機関の制御装置
JP5195383B2 (ja) 筒内直接噴射式火花点火内燃機関
JP4389688B2 (ja) 内燃機関燃料噴射制御装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060327

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees