JP3786443B2 - タービンノズル、タービン動翼及びタービン段落 - Google Patents
タービンノズル、タービン動翼及びタービン段落 Download PDFInfo
- Publication number
- JP3786443B2 JP3786443B2 JP02548995A JP2548995A JP3786443B2 JP 3786443 B2 JP3786443 B2 JP 3786443B2 JP 02548995 A JP02548995 A JP 02548995A JP 2548995 A JP2548995 A JP 2548995A JP 3786443 B2 JP3786443 B2 JP 3786443B2
- Authority
- JP
- Japan
- Prior art keywords
- blade
- nozzle
- turbine
- sin
- outflow angle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2200/00—Mathematical features
- F05B2200/20—Special functions
- F05B2200/26—Special functions trigonometric
- F05B2200/261—Sine
Landscapes
- Turbine Rotor Nozzle Sealing (AREA)
Description
【産業上の利用分野】
本発明は、軸流タービンにおけるタービンノズル、タービン動翼、及びその組合わせからなるタービン段落に関する。
【0002】
【従来の技術】
一般に、軸流タービンにおいては、性能向上を目的として内部効率の向上のための種々の技術が採用されているが、タービン内部損失のうち特に2次流れ損失はタービンの各段落に共通する損失であるため、その改善策が要望されている。
【0003】
図10は一般的な軸流タービンのノズル翼構成を示す図であって、複数枚のノズル翼1がダイヤフラム外輪2とダイヤフラム内輪3との間に形成される環状流路4に周方向に配列されている。
【0004】
また、このように形成されたタービンノズルの下流側には、図11に示すように、上記各ノズル翼1に対向して複数枚の動翼5が配設されている。この動翼5はロータディスク6の外周に周方向に所定間隔で列状に植設されており、動翼5の外周端には、動翼を固定するため及び作動流体の漏洩を防止するためシュラウド7が装着してある。
【0005】
一般にタービン段落の流路は、図12(a)、(b)に示すフリーボルテックス設計法が多く採用されている。図12のsin -1(S/T)はノズル翼1または動翼5の翼列内部で形成された通路部の最小長さ(スロート)とその周方向の翼枚数から決まる翼間長さ(環状部でのピッチ)の比を用いたもので幾何学的な流出角である。
【0006】
上記フリーボルテックス設計法においては、ノズル翼は根元部から先端部へsin -1(S/T)が直線的に増加し、動翼はその逆の傾向で減少する。一方、上記フリーボルテックス設計法に対して、ノズル翼の根元部スロートを大にし、先端部スロートを小にしたコントロールドボルテックス設計法もある。
【0007】
ところが、上記フリーボルテックス及びコントロールドボルテックス設計法によって流路を形成したノズル翼の内部では、以下に述べる2次流れ損失が発生し、ノズル翼の下流にある性能に悪影響を及ぼしている。
【0008】
次に、上記の段落構成において、タービンノズルをノズル出口側から観察した斜視図である図10を参照して、ノズル翼1における2次流れの発生機構について説明する。すなわち、高圧蒸気などの作動流体は、隣接するノズル翼1の間で形成される翼間流路を流れるときに流路内で円弧状に曲げられて流れる。このときノズル翼1の背面Bから腹面F方向に遠心力を生じ、この遠心力と静圧が平衡しているため、腹面はFにおける静圧が高くなり、一方背面Bにおいては作動流体の流速が大きいため静圧が低くなる。そのため、流路内では腹面Fから背面Bに向って圧力勾配を生じる。この圧力勾配はダイアフラム外輪2とダイアフラム内輪3の周壁面上に形成される流速の遅い層、すなわち境界層においても同じである。
【0009】
ところが、境界層付近においては流速が小さく、作用する遠心力も小さいため、腹面Fから背面Bへの圧力勾配に抗しきれずに腹面F側から背面B側に向かう流れ、すなわち2次流れ8が生ずる。そして、この2次流れ8はノズル翼1の背面B側に衝突して巻き上がり、ノズル翼1の内輪側及び外輪側の両接合端において、それぞれ2次流れ渦9a、9bを発生する。このようにして作動流体が保有するエネルギは、2次流れ渦9a、9bを形成するためにその一部が散逸する。しかもノズル流路内で発生する上記2次流れ渦9a、9bは作動流体の不均一な流れを生じ、ノズル性能を著しく低下させる。
【0010】
ところで、上記ノズル流路内で発生する2次流れ渦9a、9bに起因する2次流れ損失を低減するためには種々のタービンノズルが研究されている。
【0011】
例えば、ノズル翼をタービンの回転中心を通るラジアル線(図10のE)に対して湾曲させて取り付けた形状を採用したタービンノズルがある。図13は、この湾曲ノズル1bを採用したタービンノズルを示す斜視図である。このような湾曲ノズル1bでは翼間流路における速度ベクトルを根元側ではダイアフラム内輪3、先端側では逆にダイアフラム外輪2の方向に向ける効果があり、ダイアフラム内輪3及びダイアフラム外輪2の両方で境界層の成長が抑制される。その結果図14の点線P2 に示すように、実線P1 で示す従来の圧力損失に比して、ノズル根元部、および先端部での圧力損失が大幅に低減される。
【0012】
また、上記従来の湾曲ノズルでは、速度ベクトルの向きが根元側及び先端側でそれぞれダイアフラム内輪、ダイアフラム外輪の方向となるため、図15の点線f2 に示すように、流体の流量分布が根元部と先端部で流量大、中央部で流量小となる。
【0013】
【発明が解決しようとする課題】
ところが、上述の如き湾曲ノズルでは、ノズル翼から下流の動翼を通過する際、図12で示した動翼の幾何学的流出角sin -1(S/T)の分布では、ノズルで根元部と先端部へと増加させた流量を流すのに十分な通路幅が確保できない。このため、余剰流量が中央部へと流れ込み、流線も中央部へと偏向される。したがって、湾曲ノズルの使用によってノズル翼単体の損失を低減しても段落効率が悪化することになる。さらに、通常ノズル翼および動翼の翼高さが小さい時にはノズル翼の根元部と先端部で発生した2次流れが動翼の内部で発達し、翼高さ中央部で互いに干渉することで損失が増大する。
【0014】
また、従来の湾曲ノズルは、根元部と先端部の2次流れを抑制するため、この部分に流量を多く流すが、動翼での流量分布とあまりに異なる分布だと、流線が偏向されることとなり、ノズルでの損失が減るにもかかわらず、動翼において損失が増加する等の問題がある。
【0015】
したがって、湾曲型ノズルに合った動翼のフローパターン(流出角)が不可欠である。
【0016】
本発明はこのような点に鑑み、簡単な構造を有し、タービンノズル、タービン動翼の2次流れ損失を低減させるとともに翼高さ方向の流体の流量分布をもコントロールすることで段落性能を向上させることができるタービンノズル、タービン動翼及びそれらを組合わせたタービン段落を得ることを目的とする。
【0017】
【課題を解決するための手段】
第一の発明は、ダイヤフラム内輪とダイヤフラム外輪との間に形成される環状流路にその周方向に複数のノズル翼を列状に配設し、各ノズル翼をダイヤフラム内輪側及び外輪側の接合端において固定したタービンノズル翼において、ノズル翼断面を周方向に移動させ湾曲したノズル流路を形成するとともに、当該ノズル翼の後端縁とそのノスル翼に隣接するノスル翼の背面との最短距離と環状ピッチの比S/Tから求められる幾何学的流出角α=sin−1(S/T)の最小値を翼高さ30%〜65%の範囲に位置させ、かつ前記幾何学的流出角α=sin−1(S/T)が、当該幾何学的流出角α=sin−1(S/T)が最小値となる位置と翼根元部との間、及び当該幾何学的流出角α=sin−1(S/T)が最小値となる位置と翼先端部との間においてそれぞれ極大値をもつようにしたことを特徴とする。
【0018】
第二の発明は、タービンロータの植え込み部に複数の動翼を列状に配設したタービン動翼において、動翼断面を周方向に移動させ湾曲した動翼流路を形成するとともに、当該動翼の後端縁とその動翼に隣接する動翼の背面との最短距離と環状ピッチの比S/Tから求められる幾何学的流出角α=sin−1(S/T)の最小値を翼高さ30%〜65%の範囲に位置させ、かつ前記幾何学的流出角α=sin−1(S/T)が、当該幾何学的流出角α=sin−1(S/T)が最小値となる位置と翼根元部との間、及び当該幾何学的流出角α=sin−1(S/T)が最小値となる位置と翼先端部との間においてそれぞれ極大値をもつようにしたことを特徴とする。
【0019】
また、第三の発明は、上記タービンノズルとタービン動翼の組み合わせからなるタービン段落である。
【0020】
【作用】
上述のように構成されたノズル翼或はタービン動翼によって、内周壁面近傍に流入した作動流体が内周壁面側に押圧される一方、外周壁面近傍に流入した作動流体が外周壁面側に押圧され、翼列間の2次流れが抑制され、2次流れ損失が低減される。さらにノズルの下流にある動翼も同様に根元部と先端部で流量が多く流れるが、動翼内での流体の流れが拘束されることなく動翼の下流へ導かれ、さらに動翼の高さ方向中央部での損失が大きい領域の流量が少なくなり、動翼で有効にエネルギーを変換することができる。また、このノズルと動翼の組合わせによって中央部の損失の大きい部分の流量を減らし、根元部と先端部の損失の小さい部分の流量を増すことができ、段落性能を向上させることができる。
【0021】
【実施例】
以下、図1乃至図9を参照して本発明の実施例について説明する。
【0022】
図1において、ノズルダイアフラム外輪2とノズルダイアフラム内輪3との間に形成される環状流路4に複数のノズル翼1を周方向に所定間隔をおいて列状に配設し、各ノズル翼1の先端部及び根元部の接合端をノズルダイアフラム外輪2とノズルダイアフラム内輪3に接合することによってタービンノズルが構成されている。また、図2は上記タービンノズルの後方に配設されている動翼5の斜視図であり、図3にノズル翼1および動翼5の流路部における断面を示す。
【0023】
ところで、図3に示すように、ノズル翼或は動翼の後端縁とそのノズル翼或は動翼に隣接するノズル翼或は動翼の背面との最短距離すなわち流路の最小通路幅をスロート幅Sとし、環状部の円周長さをノズル数或は動翼数で割った数を環状ピッチTとした場合、その比S/Tをノズル或は動翼出口からの流出方向と流量を決めるパラメータとし、図4の(a)、(b)に、それぞれノズル翼と動翼の幾何学的な流出角sin -1(S/T)を示す。
【0024】
本発明においては、図4(a)、(b)の実線に示すように、ノズル翼と動翼ともにsin -1(S/T)を根元部と先端部で点線で示す従来のものより大きくし、中央部では逆に小さくしてある。この場合における動翼の損失分布を図5に示しているが、翼長が小さい時には、中央部で損失が大きくなる傾向がある。しかして、本発明においてはノズル及び動翼共に中央部におけるsin -1(S/T)を小さくし、流量を減らし、根元部と先端部のsin -1(S/T)を大きくし、各流量を増やすようにしてある。
【0025】
このように、各部における幾何学的な流出角sin -1(S/T)を選定することによって、動翼の根元部と先端部での絞りによる中央部への流れの偏向が消滅し、損失が増加することを防止でき、各段落で有効にエネルギ変換を行うことができる。
【0026】
ノズル及び動翼のsin -1(S/T)は本実施例に関する試験によれば、下記条件が段落効率の最高となる。すなわち、翼長は図5の動翼の損失分布になる範囲とし、高さ(図11のH)は20mm〜55mm、高さH/根元部直径D≦0.07、またこの範囲においてsin -1(S/T)の最小値を、動翼の損失が大なる領域でノズル及び動翼の高さ方向30%〜65%の位置とすることが好ましい。
【0027】
このように、ノズル翼及び動翼ともにS/T分布が翼高さ中央部で最小値をもつような構造を有するため、動翼中央部の損失が大きい部分の流量を減らしつつ、内周壁面、外周壁面での2次流れ損失を低減する効果が得られる。さらに、このようなノズルと動翼を組み合わせることで、ノズルでの効率向上分を動翼で損なうことなくタービン段落の効率を向上することができる。
【0028】
図6は本発明の他の実施例を示すノズル翼1の斜視図であって、このノズル翼からなるタービンノズルは、図7に示すようにsin -1(S/T)分布が翼高さ中央部で最小点Mをもち、根元部と中央部間及び中央部と根元部間にそれぞれ極大値N1 、N2 が存在するようにS/Tが大きなくるようにしてある。すなわち、図6に示すように翼高さ中央部における中央スロート幅S2 が最小で、その上方及び下方に極大点スロート幅S4 、S5 が形成され、根元部及び先端部ではそれより小さなスロート幅S1 、S3 となるように形成されている。
【0029】
このように、翼高さ中央部で最小点Mをもつことにより中央の損失の大きい領域の流量を減らすことができ、かつ根元部及び先端側の極大値N1 、N2 より流量を多く流すことで、速度ベクトルを内周壁面及び外周壁面に向けることとなり、壁面部での2次流れ損失を低減できる。さらに同形状を有するタービン動翼と組み合わせることにより、第一実施例と同一の作用を行なう。
【0030】
図8は、本発明のさらに他の実施例を示す湾曲形のタービンノズルの斜視図であって、この場合も翼高さ中央部の中央スロート幅S2 が最小となるようにしてある。ところで、図13で示すような湾曲ノズルの場合には、図9の(a)に示すように流出偏向角度が根元部と先端部で大きく、中央部で小さくなる。したがって、図9の(b)に示すようにsin -1(S/T)を根元部と先端部で予め小さくし、根元側と先端側で極大値N1 、N2 をもつようにすることによって、その合成角△α+sin -1(S/T)が同図(c)に示すように、根元部と先端部で大、中央部で小の湾曲型ノズルに構成されている。
【0031】
しかして、この場合も第1及び第2の実施例と同様に2次流れ損失を低減でき、しかも幾何学的流出角αが最小値となる位置と翼根元部との間、及び当該幾何学的流出角αが最小値となる位置と翼先端部との間においてそれぞれ極大値N1、N2 をもつようにし、翼根元部と先端部において前記幾何学的流出角sin−1(S/T)を予め小さくすることにより、流出偏向角度が根元部と先端部で大きく中央部で小さくなる湾曲形のタービンノズル翼においても、上記流出偏向角度と幾何学的流出角sin−1(S/T)との合成によりノズル翼の根元部と先端部における流出角が大きく偏向されることがなく、ノズル翼からの流体における流出角の設計値からのずれを抑制することができ、上記ノズル翼からの流出角をノズル翼の全域にわたって最適値とすることができる。さらに同形状を有するタービン動翼と組合わせることにより、タービン段落においてノズル翼での効率向上分を損ねることなく動翼での効率を向上させ、タービン段落の性能を向上させることができる。
【0032】
【発明の効果】
以上説明したように、ノズル翼及び動翼のS/T分布を翼高さ中央部で最小値をもつようにしたので、損失の大きい領域での流量を減少させることができ、内周壁面及び外周壁面での2次流れ損失を低減することができる。さらに、上記形状を有するノズル翼と動翼を組み合わせた段落とすることにより、流線のシフトを防ぎ、段落出力を向上させることができる。
【図面の簡単な説明】
【図1】本発明の一実施例におけるノズルを流体流出側より見た斜視図。
【図2】本発明の一実施例における動翼を流体流出側より見た斜視図。
【図3】ノズル翼及び動翼の流路部の断面図。
【図4】(a)、(b)は本発明の上記一実施例におけるノズル及び動翼の流出角分布説明図。
【図5】上記一実施例の動翼の損失分布説明図。
【図6】本発明の他の実施例におけるノズル翼を流体流出側から見た斜視図。
【図7】図6に示す実施例のsin -1(S/T)分布図。
【図8】本発明のさらに他の実施例のノズル翼を流体流出側より見た斜視図。
【図9】(a)は図8に示す実施例のノズル翼の流出偏向角、(b)はsin -1(S/T)分布、(c)は△α+sin -1(S/T)の分布を示す図。
【図10】従来のノズルを流体流出側より見た斜視図。
【図11】タービン段落の半径方向縦断側面図。
【図12】(a)、(b)は従来のノズル翼及び動翼のsin -1(S/T)分布図。
【図13】湾曲ノズルを流体流出側より見た斜視図。
【図14】従来のノズル翼の圧力損失分布図。
【図15】従来のノズル翼の単位面積流量分布図。
【符号の説明】
1 ノズル翼
2 ダイアフラム外輪
3 ダイアフラム内輪
5 動翼
6 ロータディスク
7 シュラウド
Claims (3)
- ダイヤフラム内輪とダイヤフラム外輪との間に形成される環状流路にその周方向に複数のノズル翼を列状に配設し、各ノズル翼をダイヤフラム内輪側及び外輪側の接合端において固定したタービンノズル翼において、ノズル翼断面を周方向に移動させ湾曲したノズル流路を形成するとともに、当該ノズル翼の後端縁とそのノスル翼に隣接するノスル翼の背面との最短距離と環状ピッチの比S/Tから求められる幾何学的流出角α=sin−1(S/T)の最小値を翼高さ30%〜65%の範囲に位置させ、かつ前記幾何学的流出角α=sin −1 (S/T)が、当該幾何学的流出角α=sin −1 (S/T)が最小値となる位置と翼根元部との間、及び当該幾何学的流出角α=sin −1 (S/T)が最小値となる位置と翼先端部との間においてそれぞれ極大値をもつようにしたことを特徴とするタービンノズル翼。
- タービンロータの植え込み部に複数の動翼を列状に配設したタービン動翼において、動翼断面を周方向に移動させ湾曲した動翼流路を形成するとともに、当該動翼の後端縁とその動翼に隣接する動翼の背面との最短距離と環状ピッチの比S/Tから求められる幾何学的流出角α=sin−1(S/T)の最小値を翼高さ30%〜65%の範囲に位置させ、かつ前記幾何学的流出角α=sin −1 (S/T)が、当該幾何学的流出角α=sin −1 (S/T)が最小値となる位置と翼根元部との間、及び当該幾何学的流出角α=sin −1 (S/T)が最小値となる位置と翼先端部との間においてそれぞれ極大値をもつようにしたことを特徴とするタービン動翼。
- 請求項1記載のタービンノズル翼と請求項2記載のタービン動翼との組み合わせからなるタービン段落。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02548995A JP3786443B2 (ja) | 1995-02-14 | 1995-02-14 | タービンノズル、タービン動翼及びタービン段落 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02548995A JP3786443B2 (ja) | 1995-02-14 | 1995-02-14 | タービンノズル、タービン動翼及びタービン段落 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08218803A JPH08218803A (ja) | 1996-08-27 |
JP3786443B2 true JP3786443B2 (ja) | 2006-06-14 |
Family
ID=12167480
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02548995A Expired - Lifetime JP3786443B2 (ja) | 1995-02-14 | 1995-02-14 | タービンノズル、タービン動翼及びタービン段落 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3786443B2 (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10184304A (ja) * | 1996-12-27 | 1998-07-14 | Toshiba Corp | 軸流タービンのタービンノズルおよびタービン動翼 |
JP4086415B2 (ja) | 1999-06-03 | 2008-05-14 | 株式会社荏原製作所 | タービン装置 |
JP2011074804A (ja) * | 2009-09-30 | 2011-04-14 | Hitachi Ltd | 蒸気タービンのノズル |
JP5868605B2 (ja) | 2011-03-30 | 2016-02-24 | 三菱重工業株式会社 | ガスタービン |
US9157326B2 (en) * | 2012-07-02 | 2015-10-13 | United Technologies Corporation | Airfoil for improved flow distribution with high radial offset |
JP6396093B2 (ja) * | 2014-06-26 | 2018-09-26 | 三菱重工業株式会社 | タービン動翼列、タービン段落及び軸流タービン |
WO2022201932A1 (ja) * | 2021-03-24 | 2022-09-29 | 三菱パワー株式会社 | タービン、及びガスタービン |
-
1995
- 1995-02-14 JP JP02548995A patent/JP3786443B2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH08218803A (ja) | 1996-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100254284B1 (ko) | 축류 터빈의 터빈 노즐 및 터빈 동익 | |
JP4373629B2 (ja) | 軸流タービン | |
JP3621216B2 (ja) | タービンノズル | |
JP3910648B2 (ja) | タービンノズル、タービン動翼及びタービン段落 | |
EP2492440B1 (en) | Turbine nozzle blade and steam turbine equipment using same | |
US20080121301A1 (en) | Externally Mounted Vortex Generators for Flow Duct Passage | |
US6109869A (en) | Steam turbine nozzle trailing edge modification for improved stage performance | |
JP3786443B2 (ja) | タービンノズル、タービン動翼及びタービン段落 | |
JP3773565B2 (ja) | タービンノズル | |
JP2002256810A (ja) | 軸流タービン | |
JP3883245B2 (ja) | 軸流タービン | |
JP3697296B2 (ja) | タービン動翼 | |
WO2000061918A2 (en) | Airfoil leading edge vortex elimination device | |
JPH0893404A (ja) | タービンノズルおよびタービン動翼 | |
JP3070167B2 (ja) | タービンノズル | |
JP2004263679A (ja) | 軸流タービン | |
JP2000073702A (ja) | 軸流タービン | |
JPH0478803B2 (ja) | ||
JPS5951104A (ja) | タ−ビン段落の内部構造 | |
JP4090613B2 (ja) | 軸流タービン | |
JP2005030266A (ja) | 軸流タービン | |
JPH06212902A (ja) | タービン動翼 | |
JPH1061405A (ja) | 軸流形ターボ機械の静翼 | |
JPH03189303A (ja) | タービンノズル | |
JPH10220202A (ja) | 軸流タービン |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041201 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051111 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060110 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060314 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060320 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100331 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100331 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110331 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120331 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130331 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130331 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140331 Year of fee payment: 8 |
|
EXPY | Cancellation because of completion of term |