JP3776688B2 - インジェクタ駆動回路 - Google Patents

インジェクタ駆動回路 Download PDF

Info

Publication number
JP3776688B2
JP3776688B2 JP2000221033A JP2000221033A JP3776688B2 JP 3776688 B2 JP3776688 B2 JP 3776688B2 JP 2000221033 A JP2000221033 A JP 2000221033A JP 2000221033 A JP2000221033 A JP 2000221033A JP 3776688 B2 JP3776688 B2 JP 3776688B2
Authority
JP
Japan
Prior art keywords
current
injector
voltage
switch means
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000221033A
Other languages
English (en)
Other versions
JP2002039003A (ja
Inventor
道正 堀内
和隆 日野
文明 那須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000221033A priority Critical patent/JP3776688B2/ja
Publication of JP2002039003A publication Critical patent/JP2002039003A/ja
Application granted granted Critical
Publication of JP3776688B2 publication Critical patent/JP3776688B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、自動車用燃料噴射装置に用いるインジェクタ駆動回路に係り、特に、燃料噴射器(インジェクタ)にブースト電圧とバッテリ電圧を切替えて印加するインジェクタ駆動回路に関する。
【0002】
【従来の技術】
エンジンのシリンダ内に直接燃料を噴射する筒内燃料噴射式エンジンの実用化が進んでいる。この筒内燃料噴射式エンジンでは、特に希薄燃焼による排気ガスの低減、燃料消費量の低減が課題である。このような背景からインジェクタの駆動には、噴射信号に対するインジェクタの応答時間を速くし、噴射信号の時間幅が小さい範囲から比例的に制御することが求められる。
そのための手段として、噴射信号の立上がり時にインジェクタに高電圧を印加して大電流を流し、開弁時間を短縮し、その後は開弁を保持するための保持電流を制御する方法が一般的である。
【0003】
そして、高電圧の生成には、昇圧型のDC−DCコンバータが必要となる。このDC−DCコンバータの性能の一例を示すと、バッテリ電圧(14V)から70〜100V程度に昇圧し、10A程度のピーク電流を供給するものである。さらに、この高電圧は、6気筒エンジンで最高回転数が6600rpmを例にすると、時間3ms毎にインジェクタを駆動することになるので、一度インジェクタを駆動した後3msの間に高電圧が所定値に復帰していることが必要で、かつバッテリ電圧が10Vまで保証できる仕様となる。このような、昇圧型のDC−DCコンバータは、消費電力が大きくなり、熱的に過酷な環境では放熱の対応が大きな問題となる。
【0004】
この問題を解決する方法として提案されているものとしては、例えば特公平7−78374号、特開平10−153141号公報に記載されたものがある。これらの公報に記載の装置は、共にソレノイド(インジェクタ相当)に電流を流すことにより蓄積されるエネルギを、電流の遮断によってコンデンサに蓄積し、高電圧を得るようにしたものである。
また、ブースト電圧によるインジェクタの駆動に関しては、特表平08−512172号公報に記載されたものがある。
【0005】
この公報に記載の装置は、噴射信号と同期してインジェクタにブースト電圧を印加して電流を流し、第1の電流レベルに達した時点でブースト電圧を切離してバッテリ電圧の印加に切替える。バッテリ電圧の印加状態では、当初はインジェクタに流す電流値を第2の電流レベルで保持し、その後第3の電流レベルに下げて保持を持続する。このような電圧、電流の制御によりインジェクタの燃料噴射量が低領域から高領域まで直線的に制御可能となる。
【0006】
【発明が解決しようとする課題】
しかしながらこのような従来技術の装置にあっては、バッテリ電圧からブースト回路(DC−DCコンバータ)で生成されるブースト電圧が正常の場合について述べられており、ブースト電圧が異常の場合、すなわち、ブースト電圧が0、又はブースト作用がなくなりブースト電圧が入力電圧、すなわちバッテリ電圧を出力した場合については明示されていなかった。
上記ブースト電圧が異常の場合、インジェクタに流れる電流が前記第1の電流レベルに到達しないため次のような問題が生ずる。
【0007】
まず、ブースト電圧が0の場合には、噴射期間全域でインジェクタ電流が第3の電流レベルとなるため燃料の供給ができなくなる。次に、ブースト作用がなくなりブースト電圧がバッテリ電圧を出力した場合には、噴射期間全域でバッテリ電圧が印加され予定以上の電流が流れ続けるため、インジェクタのコイルの熱的な劣化に至る。
【0008】
本発明は、前記課題に鑑みてなされたものであり、その目的とするところは、ブースト電圧が0の場合でも燃料の噴射を可能にすることができ、ブースト電圧がバッテリ電圧を出力した場合でもインジェクタの熱的な劣化を回避することができるインジェクタ駆動回路を提供することにある。
【0009】
【課題を解決するための手段】
前記目的を達成すべく、本発明のインジェクタ駆動回路は、基本的には、インジェクタと、バッテリ電圧から高電圧を発生する高電圧発生手段と、前記インジェクタの一方に接続され、動作信号に応じて前記高電圧を印加する第1のスイッチ手段と、前記インジェクタの一方に接続され、動作信号に応じて前記インジェクタにバッテリ電圧を印加する第2のスイッチ手段と、前記第2のスイッチ手段と直列に接続され、前記高電圧を阻止する阻止手段と、アース間に接続されて、前記インジェクタに流れる電流を還流するダイオードと、前記インジェクタの他方に接続され、前記高電圧と前記バッテリ電圧が印加されている期間電流を通電する第3のスイッチ手段と、前記第3のスイッチ手段とアース間に接続された電流検出手段と、第1、第2及び第3の基準レベルを設定し、前記電流検出手段の検出値と前記設定した各基準レベルとの比較によって、インジェクタ電流を3つの電流レベルに制御するように前記第1、第2及び第3のスイッチ手段を切替える制御を行う制御手段とを備え、前記制御手段は、要求された噴射信号に基づいて、前記第3のスイッチ手段には前記噴射信号の期間全域で動作信号を与えるとともに、第1の基準レベルを設定し、前記第1のスイッチ手段に動作信号を与えてインジェクタ電流を第1の電流レベルに制御し、前記噴射信号に同期して所定設定時間だけ第2の基準レベルを設定し、前記第2のスイッチ手段に動作信号を与えてインジェクタ電流を第2の電流レベルになるように制御し、前記設定時間の経過後、前記噴射信号が終了するまでの期間、第3の基準レベルを設定し、前記第2のスイッチ手段に動作信号を与えてインジェクタ電流を第3の電流レベルになるように制御することを特徴としている。
【0010】
また、本発明のインジェクタ駆動回路は、第1及び第2のインジェクタと、バッテリ電圧から高電圧を発生する高電圧発生手段と、前記第1及び第2のインジェクタの共通接続された一方に接続され、動作信号に応じて前記高電圧を印加する第1のスイッチ手段と、前記第1及び第2のインジェクタの共通接続された一方に接続され、動作信号に応じて前記インジェクタにバッテリ電圧を印加する第2のスイッチ手段と、前記第2のスイッチ手段と直列に接続され、前記高電圧を阻止する阻止手段と、アース間に接続されて、前記第1及び第2のインジェクタに流れる電流を還流するダイオードと、前記第1のインジェクタの共通接続された他方に接続され、前記高電圧と前記バッテリ電圧が印加されている期間電流を通電する第3のスイッチ手段と、前記第2のインジェクタの共通接続された他方に接続され、前記高電圧と前記バッテリ電圧が印加されている期間電流を通電する第4のスイッチ手段と、前記第3及び第4のスイッチ手段とアース間に接続された電流検出手段と、第1、第2及び第3の基準レベルを設定し、前記電流検出手段の検出値と前記設定した各基準レベルとの比較によって、インジェクタ電流を3つの電流レベルに制御するように前記第1、第2、第3及び第4のスイッチ手段を切替える制御を行う制御手段とを備え、前記制御手段は、要求された噴射信号に基づいて、前記第3及び第4のスイッチ手段にはそれぞれ前記噴射信号の期間全域で動作信号を与えるとともに、第1の基準レベルを設定し、前記第1のスイッチ手段に動作信号を与えてインジェクタ電流を第1の電流レベルに制御し、前記噴射信号に同期して所定設定時間だけ第2の基準レベルを設定し、前記第2のスイッチ手段に動作信号を与えてインジェクタ電流を第2の電流レベルになるように制御し、前記設定時間の経過後、前記噴射信号が終了するまでの期間、第3の基準レベルを設定し、前記第2のスイッチ手段に動作信号を与えてインジェクタ電流を第3の電流レベルになるように制御することを特徴としている。
【0011】
また、本発明のインジェクタ駆動回路の具体的な態様は、前記制御手段が、前記電流検出手段の検出値と第1の基準レベルとを比較する第1の比較器と、前記検出値と第2の基準レベル又は第3の基準レベルとを比較する第2の比較器とを備え、前記第1の比較器は、前記第1の基準レベルとの比較によりインジェクタ電流を第1の電流レベルに制御する印加電圧を出力し、前記第2の比較器は、前記第2の基準レベルとの比較によりインジェクタ電流を前記第1の電流レベルより低い第2の電流レベルに制御する印加電圧を出力し、前記設定時間経過後、前記第2の基準レベルが第3の基準レベルに切替えられると、前記第3の基準レベルとの比較によりインジェクタ前記電流を第2の電流レベルより低い第3の電流レベルに制御する印加電圧を出力することを特徴としている。
【0012】
また、本発明のインジェクタ駆動回路の具体的な態様は、前記第1の比較器で前記第1の基準レベルとの比較によりインジェクタ電流を第1の電流レベルに制御する印加電圧は、前記第1のスイッチ手段に印加される前記バッテリ電圧より高いブースト電圧であり、前記第2の比較器で前記第2又は第3の基準レベルとの比較によりインジェクタ電流を前記第2又は第3の電流レベルに制御する印加電圧は、前記第2のスイッチ手段に印加される前記バッテリ電圧であることを特徴としている。
【0013】
また、本発明の他の具体的な態様は、前記設定時間が、前記噴射信号を入力としてワンショット回路により生成することを特徴としている。
また、本発明の他の具体的な態様は、前記設定時間が、前記噴射信号を入力としてワンショット回路により生成し、前記第1の基準レベルは、前記ワンショット回路が出力している期間、生成されることを特徴としている。
【0014】
また、本発明の他の具体的な態様は、前記制御手段が、マイクロコンピュータを有し、前記マイクロコンピュータが、前記噴射信号と前記設定時間とを生成することを特徴としている。
また、前記制御手段は、インジェクタ電流を前記第2の電流レベルに制御する前記第2のスイッチ手段の動作時間を、前記バッテリ電圧に応じて変化させることを特徴としている。
前記の如く構成された本発明のインジェクタ駆動回路によって、ブースト回路の異常に対して、インジェクタの噴射動作を確保することができ、ブースト電圧がバッテリ電圧を出力した場合でもインジェクタの熱的な劣化を回避することができる。
【0015】
【発明の実施の形態】
以下、図面により本発明のインジェクタ駆動回路の一実施形態について詳細に説明する。
図1は、第1の実施形態のインジェクタ駆動回路の構成を示す回路図である。図1では多気筒エンジンのインジェクタ駆動回路のうち1気筒分の回路を示している。
【0016】
図1において、1はバッテリ、70はインジェクタ、2はインジェクタ70を駆動するインジェクタ駆動回路、100はブースト電圧100Aを生成するブースト回路(高電圧発生手段)、200はインジェクタ70を駆動すべき噴射信号200Aを生成する制御回路、300は供給される噴射信号200A及び電流検出信号に基づいて各FETに印加する噴射信号(動作信号)10A,20A,40Aを生成する駆動ロジック回路(制御手段)である。
【0017】
ブースト回路100は、出力コンデンサ105(高電圧充電コンデンサ)の電圧を帰還して、出力コンデンサ105の電圧を所定値に制御するDC−DCコンバータであり、出力電圧と基準電圧を比較してスイッチング時間を制御するゲート制御回路101、インダクタンスであるコイル102、バッテリ1の+(プラス)側からコイル102の電流をオン/オフするDC−DCコンバータFET103、FET103がオフ時にコイル102の電流を通電するダイオード104、ダイオード104の通電電流を充電する出力コンデンサ105から構成されている。また、出力コンデンサ105の電圧は、ゲート制御回路101に帰還され、ゲート制御回路101は、出力コンデンサ105の電圧が所定の高電圧になるように制御する。
【0018】
インジェクタ駆動回路2は、インジェクタ70の一方に接続され、ブースト回路100で生成されたブースト電圧100Aを印加する高電圧印加用FET10(第1のスイッチ手段)と、噴射信号20Aに応じてバッテリ電圧1Aを印加するVB印加用FET20(第2のスイッチ手段)と、FET20と直列に接続され、FET10がオン時にFET20の寄生ダイオードを通じてブースト電圧100Aがバッテリ1にショートするのを阻止する阻止ダイオード30(阻止手段)と、FET10,FET20がオフしたときにインジェクタ70に流れていた電流をフリーホイールするフリーホイールダイオード60と、インジェクタ70の他方に接続され、インジェクタ70の噴射期間全領域で通電する電流制御用FET40(第3のスイッチ手段)と、電流制御用FET40とアース間に接続され、インジェクタ電流70Aを検出する電流検出抵抗50(電流検出手段)とを備え、電流検出抵抗50及びフリーホイールダイオード60のアノードは共にバッテリ1のマイナス側に接続される。
【0019】
制御回路200は、インジェクタ70を駆動すべき噴射信号(噴射パルス)200Aを生成し、駆動ロジック回路300に出力する。
駆動ロジック回路300は、第1、第2及び第3の基準レベルを設定し、噴射信号200Aと電流検出抵抗50で検出した検出値50Aにより、FET10、FET20,FET40のゲート信号(動作信号)10A、20A、40Aを生成する。ゲート信号10Aは、トランジスタ13のベースに制限抵抗14を介して与え、トランジスタ13をオンさせ抵抗11と抵抗12の分圧値をFET10のゲートに与える。ゲート信号20Aは、トランジスタ23のベースに制限抵抗24を介して与え、トランジスタ23をオンさせ抵抗21と22の分圧値をFET20のゲートに与える。FET40のゲート信号40Aは、噴射信号200Aと同じ時間幅の信号を与える。
【0020】
バッテリ1の+側は、ブースト回路100の出力コンデンサ105の出力側を介し、高電圧印加用FET10を通してインジェクタ70+側に接続される。また、このインジェクタ70+側には、バッテリ1の+側(以下、バッテリ1+という)からVB印加用FET20と逆流阻止用ダイオード30とからなる直列回路が接続される。
【0021】
インジェクタ70−(マイナス)側は、インジェクタ電流70Aを所定値に制御する電流制御用FET40と電流検出抵抗50によりバッテリ1の−側に接続されている。また、このバッテリ1の−側(以下、バッテリ1−という)からインジェクタ70+側には、FET10、FET20をオフした時にインジェクタ70のエネルギをフリーホイールするダイオード60が接続される。
【0022】
図2は、駆動ロジック回路300の回路図である。
図2において、駆動ロジック回路300は、コンパレータ302,310、FET311、ワンショット回路309、アンドゲート307,317、及び抵抗303〜306,308,311〜316から構成される。
【0023】
上記コンパレータ302(第1の比較器)、アンドゲート307、抵抗303〜306,308及びアンドゲート307は、全体としてFET10のゲート信号10Aを生成する第1の駆動回路を構成し、上記ワンショット回路309、コンパレータ310(第2の比較器)、FET311、抵抗311〜316及びアンドゲート317は、全体としてFET20のゲート信号20Aを生成する第2の駆動回路を構成する。
以下、上述のように構成されたインジェクタ駆動回路の動作を説明する。
【0024】
図3は、上記インジェクタ駆動回路の各回路部の電圧及び電流の変化を示す動作波形図であり、図3における番号は図1及び図2の該当する信号に対応している。
まず、駆動ロジック回路300の動作について説明する。
図2に示すように、コンパレータ302の+端子には、基準電圧301を抵抗303と抵抗304で分圧した値302Aが入力されており、コンパレータ302の−端子に入力されているインジェクタ電流70Aによる電流検出値50Aすなわち302Bが、+端子電圧302Aより低い期間はコンパレータ302の出力302Cはハイレベルを出力している。これにより、図3に示すように、噴射信号200Aが出力していると、アンドゲート307の出力はハイレベルとなりFET10のゲート信号10Aが出力される。
一方、バッテリ電圧1Aを印加するFET20のゲート信号20Aは次のように生成される。
【0025】
図3に示すように、ワンショット回路309は、噴射信号200Aの立上りに同期してワンショット信号309Aを所定設定時間(T3)出力する。このワンショット信号309Aが出力されている期間T3、FET311がオンする。FET311がオンした時、コンパレータ310の+端子には、基準電圧301を抵抗312及び抵抗313の並列と抵抗314とで分圧した値310Aが入力されており、−端子に入力されているインジェクタ電流70Aによる電流検出値50Aすなわち310Bが、+端子電圧310Aより低い期間はコンパレータ310の出力310Cはハイレベルを出力している。これにより、噴射信号200Aが出力していると、アンドゲート317の出力はハイレベルとなりFET20のゲート信号20Aが出力される。
【0026】
ワンショット回路309が設定時間(T3)経過後0になると、FET311がオフするのでコンパレータ310の+端子電圧310Aは抵抗313と抵抗314の分圧となり、FET311がオンの時より小さくなる。−端子電圧310Bが+端子電圧310Aより小さくなるまではコンパレータ310の出力310CはローレベルでFET20のゲート信号20AもローレベルとなってFET20はオフする。インジェクタ電流70Aがさらに減少して−端子電圧310Bが+端子電圧310Aより大きくなると、コンパレータ310の出力310CはハイレベルとなりFET20のゲート信号20AもハイレベルとなってFET20はオンする。
次に、開弁時の動作は次のようになる。
【0027】
図3に示すように、噴射信号200Aは、期間T1の間出力され、またこの噴射信号200Aの立上りに同期してFET10のゲート信号10Aが発生し、FET10がオンしてインジェクタ70にブースト電圧100Aが印加され、インジェクタ電流70Aが流れ始める。
【0028】
このインジェクタ電流70Aによって電流検出抵抗50に電圧降下が生じる。電流検出抵抗50の電圧変化は、駆動ロジック回路300により検出され、インジェクタ電流70Aが、第1の電流レベルI1に達すると、コンパレータ302の−端子電圧302Bが+端子電圧302Aより大きくなりコンパレータ302の出力302Cはローレベルとなるので、ゲート信号10AもローレベルとなってFET10はオフし、インジェクタ電流70Aはインジェクタ70、FET40、電流検出抵抗50、フリーホイールダイオード60の経路で流れて減少する。T2経過後の+端子電圧302Aは、抵抗303と抵抗304及び抵抗305の並列による分圧電圧となり、この値は第3の電流レベルI3より十分小さく設定してあるため、噴射信号200Aが0になるまでは出力302Cがハイレベルになることはなく、FET10はオフのままである。
【0029】
ここまでが、図1のゲート信号10Aの立下りであり、これで開弁時の動作を終え保持電流制御に移行する。本実施形態の保持電流制御は、従来技術と異なり、ブースト電圧100Aによる第1の電流レベルI1の制御中においても、噴射信号200Aの立上りに同期してワンショット回路309の出力期間T3は、最低限のインジェクタ動作を保証するものである。
次に、保持電流制御について説明する。
【0030】
インジェクタ電流70Aが減少して、コンパレータ310の−端子電圧310Bが+端子電圧310Aのロー電圧I2lになるとコンパレータ310の出力310Cがハイレベルとなり、ゲート信号20AがハイレベルとなってFET20がオンし、インジェクタ70にはバッテリ電圧1Aが印加されて電流70Aが増加する。コンパレータ310の−端子電圧310Bが、コンパレータ310の+端子電圧310Aのハイ電圧I2hになると出力310Cがローレベルとなり、ゲート信号20AがローレベルとなってFET20がオフする。ワンショット回路309の出力309Aが出力している期間T3は、この動作の繰返しにより、インジェクタ電流70Aは第2の電流レベルI2に制御される。
【0031】
T3経過後、ワンショット回路309の出力309Aが0になると、FET311がオフするので、コンパレータ310の+端子電圧310Aが小さくなり出力310Cがローレベル、ゲート信号20AもローレベルとなりFET20がオフしインジェクタ電流70Aが減少する。
【0032】
インジェクタ電流70Aが減少して、コンパレータ310の−端子電圧310Bが+端子電圧310Aのロー電圧I3lになると、コンパレータ310の出力310Cがハイレベルとなり、ゲート信号20AがハイレベルとなってFET20がオンし、インジェクタ70にはバッテリ電圧1Aが印加されて電流70Aが増加する。コンパレータ310の−端子電圧310Bが+端子電圧310Aのハイ電圧I3hになると、出力310Cがローレベルとなり、ゲート信号20AがローレベルとなってFET20がオフする。噴射信号200Aが0になるまでこの動作が繰り返され、インジェクタ電流70Aは第3の電流レベルI3に制御される。
【0033】
ところで、噴射信号200Aが出力され、FET10がオンすると、高電圧印加用FET100がオンしている期間はブースト回路(DC−DCコンバータ)100の出力コンデンサ105からインジェクタ電流70Aを供給するので、高電圧は減少し、第1高電圧設定値より小さくなってブースト回路100は動作を開始する。ゲート制御回路101によるブースト回路100の動作は次のようなものである。
【0034】
まず、FET103をオンしてコイル102に電流を流し、次にFET103をオフする。コイル102に流れていた電流がダイオード104を通って出力コンデンサ105に流れて出力コンデンサ105を充電する。該高電圧が第1高電圧設定値を越えるまでこの動作が繰返され、該高電圧が第2高電圧設定値になったところで動作が止まる。
【0035】
このように、ブースト回路100は、FET103をオンしてバッテリ電圧100Aからインダクタンス102に電流を流し、次にFET103をオフした時にインダクタンス102のエネルギーをダイオード104を介してコンデンサ105に充電する構成であり、ブースト電圧100Aを帰還してゲート制御回路101により所定値に制御している。
【0036】
次に、ブースト回路100が異常状態となりブースト電圧100Aが出力しない状態について説明する。ブースト回路100の異常状態として、ダイオード104あるいはインダクタンス102がオープンとなりブースト電圧100Aが出力しない場合について述べる。
【0037】
図4は、ブースト回路100の異常時における、インジェクタ駆動回路の各回路部の電圧及び電流の変化を示す動作波形図である。
図4に示すように、ブースト回路100の異常時には、噴射信号200Aによりゲート信号10Aが出力されてFET10をオンするものの、インジェクタ電流70Aの増加程度は小さく第1の電流レベルI1に達することはできない。従来例では、噴射期間全域で燃料の供給ができなくなる欠点があった。しかしながら、本実施形態では、この異常時にあっても駆動ロジック回路300のワンショット回路309が、噴射信号200Aの立上りに同期してワンショット信号309Aを出力しているので、ワンショット回路309の出力309Aを受けてFET311はオンする。これにより、コンパレータ310の−端子電圧310Bが+端子電圧310Aより小さい期間はゲート信号20Aが出力されてFET20をオンし、インジェクタ70にバッテリ電圧1Aを印加して電流70Aを増加させる。コンパレータ310の−端子電圧310Bが+端子電圧310Aのハイ電圧I2hになると出力310Cがローレベルとなり、ゲート信号20AがローレベルとなってFET20がオフする。電流70Aが減少してコンパレータ310の−端子電圧310Bが+端子電圧310Aのロー電圧I2lになると、コンパレータ310の出力310Cがハイレベルとなり、ゲート信号20AがハイレベルとなってFET20がオンし電流70Aが増加する。ワンショット回路309の出力309Aが出力している期間T3はこの動作の繰返しにより、インジェクタ電流70Aは第2の電流レベルI2に制御される。
【0038】
ここで、ブースト電圧100A、第1の電流レベルI1、第2の電流レベルI2、第3の電流レベルI3は、一例としてそれぞれ60V、12A、4.2A、2Aであり、ブースト電圧100Aが出力しない場合でもインジェクタの動作初期には4.2Aの電流を流すことができる。
したがって、本実施形態によれば、ブースト電圧100Aが出力されない場合でも、インジェクタ70の動作初期には第2の電流レベルI2(4.2A)の電流を流すことができるので、燃料噴射を可能にすることができる。
【0039】
以上詳細に説明したように、本実施形態のインジェクタ駆動回路は、ブースト電圧100Aを生成するブースト回路100、インジェクタ70を駆動すべき噴射信号200Aを生成する制御回路200、供給される噴射信号200A及び電流検出信号に基づいて各FETに印加する噴射信号10A,20A,40Aを生成する駆動ロジック回路300を備え、さらに、インジェクタ駆動回路2は、インジェクタ70の一方に接続され、ブースト回路100で生成されたブースト電圧100Aを印加する高電圧印加用FET10と、噴射信号20Aに応じてバッテリ電圧1Aを印加するVB印加用FET20と、FET20と直列に接続され、ブースト電圧100Aがバッテリ1にショートするのを阻止する阻止ダイオード30と、FET10,FET20がオフしたときにインジェクタ70に流れていた電流をフリーホイールするフリーホイールダイオード60と、インジェクタ70の他方に接続され、インジェクタ70の噴射期間全領域で通電する電流制御用FET40と、FET40とアース間に接続され、インジェクタ電流70Aを検出する電流検出抵抗50とを備えて構成する。
【0040】
そして、駆動ロジック回路300は、第2の電流レベルI2を与える基準レベルを、噴射信号200Aの立上りに同期してワンショット回路309の出力で生成する。ブースト電圧100Aが0の場合、インジェクタ電流は第2の電流レベルI2がワンショット回路309の出力期間T3継続し、最低限のインジェクタ動作を保証する。ブースト回路100の故障等によりブースト電圧100Aがバッテリ電圧1Aを出力した場合は、電流制御が不能となるが、その期間はワンショット回路309の出力期間T3だけであり、以降は第3の電流レベルI3で制御される。
【0041】
これにより、ブースト電圧100Aで第1の電流レベルI1、バッテリ電圧1Aで第2と第3の電流レベルI2,I3を制御するインジェクタ駆動回路において、ブースト電圧100Aが正常でない等のブースト回路の異常に対して、インジェクタの噴射動作の確保ができ、インジェクタの熱的な劣化の防止ができる効果がある。したがって、装置全体のフェールセーフ性を向上させることができる。
次に、本発明の第2の実施形態を説明する。
【0042】
図5は、第2の実施形態のインジェクタ駆動回路の駆動ロジック回路の回路図である。本実施形態の説明にあたり、図2と同一構成部分には同一符号を付して重複部分の説明を省略する。
図5において、駆動ロジック回路400は、さらに基準電圧301と抵抗303の間にスイッチング用FET318が設置され、FET318はワンショット回路309の出力309Aでオン/オフする。すなわち、駆動ロジック回路400は、第1の電流レベルI1を検出するコンパレータ302の+端子電圧302Aを、ワンショット回路309の出力309AでFET318をオンすることにより与えるように構成されている。
【0043】
本駆動ロジック回路400は、図1のインジェクタ駆動回路の駆動ロジック回路300に代えて設置される。
以下、上述のように構成されたインジェクタ駆動回路の動作を説明する。
ブースト回路100が異常状態となり、FET103がオープン、制御回路101が動作不能となり、ブースト作用が行われずブースト電圧100Aが入力電圧すなわちバッテリ電圧1Aを出力している状態について説明する。
【0044】
図6は、ブースト回路100の異常時における、インジェクタ駆動回路の各回路部の電圧及び電流の変化を示す動作波形図である。
噴射信号200Aによりゲート信号10Aが出力されてFET10をオンする。ブースト電圧100Aは、バッテリ電圧1Aであり、このバッテリ電圧1Aに従ってインジェクタ電流70Aの増加する。しかし、ブースト回路100の異常時には、インジェクタ電流70Aは第1の電流レベルI1に達することができず、コンパレータ302の出力302Cはハイレベルのままであり、ゲート信号10Aは出力を出し続けてFET10はオンのままとなり、インジェクタ70にバッテリ電圧1Aが印加され続けるので、第2の電流レベルI2を越えてインジェクタ電流70Aが流れ続ける。この状態はワンショット回路309が出力している期間T3まで継続し、インジェクタ電流70AはレベルI4に達する。期間T3が経過すると、FET318がオフするので、コンパレータ302の出力302Cはローレベルとなり、ゲート信号10Aが出力されなくなりFET10はオフする。FET10がオフすると、インジェクタ70には電圧が印加されないので、インジェクタ電流70Aは減少して第3の電流レベルI3で噴射信号200Aが0になるまで制御される。
【0045】
本実施形態によれば、ブースト電圧100Aが入力電圧すなわちバッテリ電圧1Aを出力する状態でも、噴射期間T1全域で無制御のままバッテリ電圧1Aを印加することなく、ワンショット回路309の出力期間T3までに制限できるので、インジェクタ70の熱的な劣化を防止することができる。
ところで、ワンショット回路309が出力している期間T3までのインジェクタ電流70Aは、バッテリ電圧1Aに依存するため、バッテリ電圧1Aの変動によって変化する。
【0046】
図7は、バッテリ電圧1Aが変動した場合のインジェクタ電流70Aの波形図である。
図7に示すように、バッテリ電圧1Aが小さくなると、インジェクタ電流70AはレベルI4より大きいI4hとなり、小さくなるとI4lとなる。このようなインジェクタ電流の変動は、電流レベルがI4hの時、インジェクタ70のコイルが焼損する可能性があり、また電流レベルI4lの時、インジェクタ70の動作が不十分な可能性がある。そこで、バッテリ電圧1Aの供給電圧の変化に応じてワンショット回路309の出力309Aの時間を、T3からT31又はT32に変えるようにする。
【0047】
このように構成すれば、インジェクタ70のコイルの焼損防止とインジェクタ70の不十分な動作の防止ができる効果がある。
前記のバッテリ電圧1Aによってワンショット回路309の出力309Aの時間を変える実施形態において、ブースト電圧100Aが出力しない0の場合に、バッテリ電圧1Aが変動したときの動作波形を図8に示す。
【0048】
図8に示すように、バッテリ電圧1Aが高い場合には、ワンショット回路309の出力時間をT3からT33に小さくして、電流レベルI2の期間を短くする。また、バッテリ電圧1Aが低い場合には、ワンショット回路309の出力時間をT3からT34に大きくして、電流レベルI2の期間を長くする。
【0049】
このように構成すれば、バッテリ電圧1Aが高い場合にはインジェクタ電流70Aを省電力化し、バッテリ電圧1Aが高い場合にも最低限のインジェクタ動作を保証できる効果がある。
次に、本発明の第3の実施形態を説明する。
【0050】
図9は、第3の実施形態のインジェクタ駆動回路の駆動ロジック回路の回路図である。本実施形態の説明にあたり、図1及び図2と同一構成部分には同一符号を付して重複部分の説明を省略する。
図9において、500はマイクロコンピュータ、600はマイクロコンピュータ500から供給される噴射信号200a及びワンショット信号309aに基づいて各FETに印加する噴射信号(動作信号)10A,20A,40Aを生成する駆動ロジック回路(制御手段)である。
【0051】
マイクロコンピュータ500は、図1の噴射信号200Aを生成する駆動回路200に代えて設置され、駆動ロジック回路700は、図1の駆動ロジック回路300に代えて設置される。すなわち、図1の噴射信号200Aを生成する制御回路200は、マイクロコンピュータ500により構成され、かつ、図1の駆動ロジック回路300のワンショット回路309はマイクロコンピュータ500からの出力309aに置き換えられて構成される。
【0052】
以上の構成において、マイクロコンピュータ500は、自動車のエンジン状態によって噴射信号200Aの算出を行うとともに、噴射信号200Aの他にワンショット信号309Aを駆動ロジック回路600のFET311に出力する。
マイクロコンピュータ500から出力される噴射信号200A及びワンショット信号309Aの波形は図3及び図4と同様である。
【0053】
本実施形態によれば、前記各実施形態と同一の効果が得られることに加え、ワンショット回路309を省略できる効果がある。特に、ワンショット回路309を使用しないためこの回路部分のコストが低減できるほか、ワンショット回路をCR回路で構成した場合のようにワンショット信号発生タイミングの調整や経年変化による修正等が不要になる。さらには、マイクロコンピュータ500によりワンショット時間を容易に可変することができる。
上記は、マイクロコンピュータ500を、図1及び図2のインジェクタ駆動回路に適用した例であるが、図5のインジェクタ駆動回路に適用してもよい。
【0054】
図10は、ワンショット回路を省略可能なインジェクタ駆動回路の駆動ロジック回路の回路図である。図5及び図9と同一構成部分には同一符号を付して重複部分の説明を省略する。
図10において、駆動ロジック回路650は、第1の電流レベルI1を検出するコンパレータ302の+端子電圧302Aを、マイクロコンピュータ500のワンショット信号309AでFET318をオンすることにより与えるように構成されている。
【0055】
したがって、図5の装置と同一の効果が得られることに加え、ワンショット回路309を省略できる効果がある。
次に、本発明の第4の実施形態を説明する。
自動車のエンジンは通常複数の気筒を有している。複数気筒、例えば4気筒エンジン、6気筒エンジンでは、対向気筒、すなわち4気筒の場合は第1気筒と第3気筒、第2気筒と第4気筒、また6気筒の場合は第1気筒と第4気筒、第2気筒と第5気筒、第3気筒と第6気筒で回路の共用化をする例が多い。
【0056】
図11は、第4の実施形態のインジェクタ駆動回路の構成を示す回路図である。図11では多気筒エンジンのインジェクタ駆動回路のうち2気筒分の回路を示している。図1と同一構成部分には同一符号を付して重複部分の説明を省略する。
図11において、700は対向気筒のインジェクタ70−1(第1のインジェクタ),70−2(第2のインジェクタ)を駆動するインジェクタ駆動回路、100はブースト電圧100Aを生成するブースト回路、800は対向気筒のインジェクタ70−1,70−2を駆動すべき噴射信号200A−1,200A−2を生成する制御回路、900は供給される噴射信号200A−1,200A−2及び電流検出信号に基づいて各FETに印加する噴射信号(ゲート信号)10A,20A,40A−1,40A−2を生成する駆動ロジック回路(制御手段)である。
【0057】
駆動ロジック回路900は、対向気筒のインジェクタ70−1と70−2の駆動に図2の駆動ロジック回路300を応用した回路であり、対向気筒のインジェクタ70−1,70−2の噴射信号200A−1,200A−2に対応する噴射信号40A−1,40A−2が出力される以外は、図2の駆動ロジック回路300と同じ構成で、ワンショット回路309も1つである。
【0058】
制御回路800から第1気筒の噴射信号200A−1と対向気筒の噴射信号200A−2が入力されており、駆動ロジック回路900で、この2信号200A−1,200A−2がFET40-1(第3のスイッチ手段)とFET40−2(第4のスイッチ手段)のゲート信号40A−1,40A−2を生成すると同時に、2信号200A−1,200A−2の論理和により、FET10,FET20のゲート信号10A,20Aが生成される。
【0059】
本実施形態によれば、2気筒分のインジェクタ電流70A−1,70A−2の制御ができ、第1の実施形態と同一の効果を得ることができることに加え、制御回路800及び駆動ロジック回路900の該当する回路部分を削減することができる。
本実施形態では、2気筒分のインジェクタ駆動回路を共用化しているが、より多くの駆動回路を共用化してもよく、このように構成すれば、さらに多気筒のインジェクタの制御ができる。
【0060】
また、制御回路800及び駆動ロジック回路900のワンショット回路を、第3の実施形態で述べたマイクロコンピュータにより構成するようにしてもよく、第3の実施形態と同様の効果を得ることができる。実際の回路上では、本実施形態のように制御回路を複数で構成する場合には、マイクロコンピュータを用いる方が好ましい。
【0061】
以上、本発明の実施形態について詳述したが、本発明は、前記各実施形態に限定されるものではなく、特許請求の範囲に記載された発明の精神を逸脱しない範囲で、設計において種々の変更ができるものである。
例えば、ブースト回路100を構成するコンデンサ、各スイッチ手段の種類や数、また、駆動ロジック回路におけるゲート信号生成方法は種々の設計変更が可能である。同様に、各スイッチ手段としてMOSFETを用いているが種類や組み合わせは一例に過ぎず、信号の立上り、立下り、アクティブ状態も適宜変更可能である。また、阻止手段や電流検出手段等の種類も適宜適当な部材を用いることができ同等の回路を構成することも可能である。
【0062】
【発明の効果】
以上の説明から理解できるように、本発明に係るインジェクタ駆動回路は、ブースト回路の異常に対して、インジェクタの噴射動作の確保ができ、インジェクタの熱的な劣化を防止ができる効果がある。
【図面の簡単な説明】
【図1】本発明の第1の実施形態のインジェクタ駆動回路の構成を示す回路図。
【図2】本実施形態のインジェクタ駆動回路の駆動ロジック回路の回路図。
【図3】本実施形態のインジェクタ駆動回路の各回路部の電圧及び電流の変化を示す動作波形図。
【図4】本実施形態のインジェクタ駆動回路のブースト回路の異常時における、インジェクタ駆動回路の各回路部の電圧及び電流の変化を示す動作波形図。
【図5】本発明の第2の実施形態のインジェクタ駆動回路の駆動ロジック回路の回路図。
【図6】本実施形態のインジェクタ駆動回路のブースト回路の異常時における、インジェクタ駆動回路の各回路部の電圧及び電流の変化を示す動作波形図である。
【図7】本実施形態のインジェクタ駆動回路のバッテリ電圧が変動した場合のインジェクタ電流の波形図。
【図8】本実施形態のインジェクタ駆動回路のブースト電圧が出力しない場合に、バッテリ電圧が変動したときの動作波形図。
【図9】本発明の第3の実施形態のインジェクタ駆動回路の駆動ロジック回路の回路図。
【図10】本実施形態のインジェクタ駆動回路のワンショット回路を省略可能なインジェクタ駆動回路の駆動ロジック回路の回路図。
【図11】本発明の第4の実施形態のインジェクタ駆動回路の構成を示す回路図。
【符号の説明】
1…バッテリ
2,700…インジェクタ駆動回路
10…高電圧印加用FET(第1のスイッチ手段)
20…VB印加用FET(第2のスイッチ手段)
30…阻止ダイオード(阻止手段)
60…フリーホイールダイオード
40…電流制御用FET(第3のスイッチ手段)
40−1…FET(第3のスイッチ手段)
40−2…FET(第4のスイッチ手段)
50…電流検出抵抗(電流検出手段)
60…フリーホイールダイオード
70…インジェクタ
70−1…インジェクタ(第1のインジェクタ)
70−2…インジェクタ(第2のインジェクタ)
100…ブースト回路(高電圧発生手段)
200,800…制御回路
300,600,650,900…駆動ロジック回路(制御手段)
302…コンパレータ(第1の比較器)
317…コンパレータ(第2の比較器)
500…マイクロコンピュータ

Claims (8)

  1. インジェクタと、
    バッテリ電圧から高電圧を発生する高電圧発生手段と、
    前記インジェクタの一方に接続され、動作信号に応じて前記高電圧を印加する第1のスイッチ手段と、
    前記インジェクタの一方に接続され、動作信号に応じて前記インジェクタにバッテリ電圧を印加する第2のスイッチ手段と、
    前記第2のスイッチ手段と直列に接続され、前記高電圧を阻止する阻止手段と、
    アース間に接続されて、前記インジェクタに流れる電流を還流するダイオードと、
    前記インジェクタの他方に接続され、前記高電圧と前記バッテリ電圧が印加されている期間電流を通電する第3のスイッチ手段と、
    前記第3のスイッチ手段とアース間に接続された電流検出手段と、
    第1、第2及び第3の基準レベルを設定し、前記電流検出手段の検出値と前記設定した各基準レベルとの比較によって、インジェクタ電流を3つの電流レベルに制御するように前記第1、第2及び第3のスイッチ手段を切替える制御を行う制御手段とを備え、
    前記制御手段は、要求された噴射信号に基づいて、前記第3のスイッチ手段には前記噴射信号の期間全域で動作信号を与えるとともに、
    第1の基準レベルを設定し、前記第1のスイッチ手段に動作信号を与えてインジェクタ電流を第1の電流レベルに制御し、
    前記噴射信号に同期して所定設定時間だけ第2の基準レベルを設定し、前記第2のスイッチ手段に動作信号を与えてインジェクタ電流を第2の電流レベルになるように制御し、
    前記設定時間の経過後、前記噴射信号が終了するまでの期間、第3の基準レベルを設定し、前記第2のスイッチ手段に動作信号を与えてインジェクタ電流を第3の電流レベルになるように制御する
    ことを特徴とするインジェクタ駆動回路。
  2. 第1及び第2のインジェクタと、
    バッテリ電圧から高電圧を発生する高電圧発生手段と、
    前記第1及び第2のインジェクタの共通接続された一方に接続され、動作信号に応じて前記高電圧を印加する第1のスイッチ手段と、
    前記第1及び第2のインジェクタの共通接続された一方に接続され、動作信号に応じて前記インジェクタにバッテリ電圧を印加する第2のスイッチ手段と、
    前記第2のスイッチ手段と直列に接続され、前記高電圧を阻止する阻止手段と、
    アース間に接続されて、前記第1及び第2のインジェクタに流れる電流を還流するダイオードと、
    前記第1のインジェクタの共通接続された他方に接続され、前記高電圧と前記バッテリ電圧が印加されている期間電流を通電する第3のスイッチ手段と、
    前記第2のインジェクタの共通接続された他方に接続され、前記高電圧と前記バッテリ電圧が印加されている期間電流を通電する第4のスイッチ手段と、
    前記第3及び第4のスイッチ手段とアース間に接続された電流検出手段と、
    第1、第2及び第3の基準レベルを設定し、前記電流検出手段の検出値と前記設定した各基準レベルとの比較によって、インジェクタ電流を3つの電流レベルに制御するように前記第1、第2、第3及び第4のスイッチ手段を切替える制御を行う制御手段とを備え、
    前記制御手段は、要求された噴射信号に基づいて、前記第3及び第4のスイッチ手段にはそれぞれ前記噴射信号の期間全域で動作信号を与えるとともに、
    第1の基準レベルを設定し、前記第1のスイッチ手段に動作信号を与えてインジェクタ電流を第1の電流レベルに制御し、
    前記噴射信号に同期して所定設定時間だけ第2の基準レベルを設定し、前記第2のスイッチ手段に動作信号を与えてインジェクタ電流を第2の電流レベルになるように制御し、
    前記設定時間の経過後、前記噴射信号が終了するまでの期間、第3の基準レベルを設定し、前記第2のスイッチ手段に動作信号を与えてインジェクタ電流を第3の電流レベルになるように制御する
    ことを特徴とするインジェクタ駆動回路。
  3. 前記制御手段は、前記電流検出手段の検出値と第1の基準レベルとを比較する第1の比較器と、前記検出値と第2の基準レベル又は第3の基準レベルとを比較する第2の比較器とを備え、
    前記第1の比較器は、前記第1の基準レベルとの比較によりインジェクタ電流を第1の電流レベルに制御する印加電圧を出力し、
    前記第2の比較器は、前記第2の基準レベルとの比較によりインジェクタ電流を前記第1の電流レベルより低い第2の電流レベルに制御する印加電圧を出力し、
    前記設定時間経過後、前記第2の基準レベルが第3の基準レベルに切替えられると、前記第3の基準レベルとの比較によりインジェクタ前記電流を第2の電流レベルより低い第3の電流レベルに制御する印加電圧を出力する
    ことを特徴とする請求項1又は2に記載のインジェクタ駆動回路。
  4. 前記第1の比較器で前記第1の基準レベルとの比較によりインジェクタ電流を第1の電流レベルに制御する印加電圧は、前記第1のスイッチ手段に印加される前記バッテリ電圧より高いブースト電圧であり、
    前記第2の比較器で前記第2又は第3の基準レベルとの比較によりインジェクタ電流を前記第2又は第3の電流レベルに制御する印加電圧は、前記第2のスイッチ手段に印加される前記バッテリ電圧である
    ことを特徴とする請求項3記載のインジェクタ駆動回路。
  5. 前記設定時間は、前記噴射信号を入力としてワンショット回路により生成することを特徴とする請求項1又は2に記載のインジェクタ駆動回路。
  6. 前記設定時間は、前記噴射信号を入力としてワンショット回路により生成し、
    前記第1の基準レベルは、前記ワンショット回路が出力している期間、生成されることを特徴とする請求項1又は2に記載のインジェクタ駆動回路。
  7. 前記制御手段は、マイクロコンピュータを有し、前記マイクロコンピュータが、前記噴射信号と前記設定時間とを生成することを特徴とする請求項1又は2に記載のインジェクタ駆動回路。
  8. 前記制御手段は、インジェクタ電流を前記第2の電流レベルに制御する前記第2のスイッチ手段の動作時間を、前記バッテリ電圧に応じて変化させることを特徴とする請求項1又は2に記載のインジェクタ駆動回路。
JP2000221033A 2000-07-21 2000-07-21 インジェクタ駆動回路 Expired - Lifetime JP3776688B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000221033A JP3776688B2 (ja) 2000-07-21 2000-07-21 インジェクタ駆動回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000221033A JP3776688B2 (ja) 2000-07-21 2000-07-21 インジェクタ駆動回路

Publications (2)

Publication Number Publication Date
JP2002039003A JP2002039003A (ja) 2002-02-06
JP3776688B2 true JP3776688B2 (ja) 2006-05-17

Family

ID=18715529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000221033A Expired - Lifetime JP3776688B2 (ja) 2000-07-21 2000-07-21 インジェクタ駆動回路

Country Status (1)

Country Link
JP (1) JP3776688B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002237410A (ja) * 2001-02-08 2002-08-23 Denso Corp 電磁弁駆動回路
DE102006016892A1 (de) * 2006-04-11 2007-10-25 Robert Bosch Gmbh Verfahren zur Steuerung wenigstens eines Magnetventils
EP1903201B1 (en) * 2006-09-20 2017-04-12 Delphi International Operations Luxembourg S.à r.l. Valve control strategy and controller
WO2008048550A2 (en) * 2006-10-17 2008-04-24 Swagelok Company Solenoid control circuit
JP4871245B2 (ja) * 2007-10-26 2012-02-08 日立オートモティブシステムズ株式会社 内燃機関制御装置
JP5053868B2 (ja) * 2008-01-07 2012-10-24 日立オートモティブシステムズ株式会社 燃料噴射制御装置
JP2013087717A (ja) 2011-10-20 2013-05-13 Denso Corp 燃料噴射制御装置用電磁弁駆動装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5381297A (en) * 1993-06-18 1995-01-10 Siemens Automotive L.P. System and method for operating high speed solenoid actuated devices
JPH1182123A (ja) * 1997-09-04 1999-03-26 Unisia Jecs Corp 燃料噴射弁の駆動制御装置
JP3121304B2 (ja) * 1997-11-10 2000-12-25 株式会社ボッシュオートモーティブシステム 電磁弁駆動方法及び装置

Also Published As

Publication number Publication date
JP2002039003A (ja) 2002-02-06

Similar Documents

Publication Publication Date Title
JP5160581B2 (ja) インジェクタ駆動装置
JP4474423B2 (ja) 内燃機関制御装置
US7823860B2 (en) Drive of an electromagnetic valve with a coil by supplying high voltage from a discharging capacitor to the coil
US8649151B2 (en) Injector drive circuit
JP5023172B2 (ja) 電磁弁駆動回路
US20090107469A1 (en) Control unit for internal combustion engine
US20060075994A1 (en) Single device for controlling fuel electro-injectors and electrovalves in an internal-combustion engine, and method of operating the same
JP4600370B2 (ja) 電磁弁駆動装置
JP5300787B2 (ja) 内燃機関制御装置
JP4876174B2 (ja) 内燃機関制御装置
JP3776688B2 (ja) インジェクタ駆動回路
JP4970179B2 (ja) 電磁負荷の制御装置
US10837392B2 (en) Injection control device
JP4343380B2 (ja) 燃料噴射用ソレノイド駆動回路
JP5539177B2 (ja) 電磁負荷制御装置
JP7135809B2 (ja) 噴射制御装置
JP3825235B2 (ja) インジェクタ駆動回路
JP4062821B2 (ja) 電磁負荷の駆動装置
JP3765286B2 (ja) ピエゾアクチュエータ駆動回路
JP2021085378A (ja) 噴射制御装置
JP4089092B2 (ja) インジェクタ制御装置
JP7310386B2 (ja) 容量性負荷制御装置
JP2006161792A (ja) 過電流検出機能を有する誘導負荷駆動回路
US10957474B2 (en) Injection control device
JP4665359B2 (ja) 電磁式アクチュエータ駆動装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060223

R151 Written notification of patent or utility model registration

Ref document number: 3776688

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140303

Year of fee payment: 8

EXPY Cancellation because of completion of term