JP3770389B2 - 光磁気記録媒体 - Google Patents

光磁気記録媒体 Download PDF

Info

Publication number
JP3770389B2
JP3770389B2 JP2002188400A JP2002188400A JP3770389B2 JP 3770389 B2 JP3770389 B2 JP 3770389B2 JP 2002188400 A JP2002188400 A JP 2002188400A JP 2002188400 A JP2002188400 A JP 2002188400A JP 3770389 B2 JP3770389 B2 JP 3770389B2
Authority
JP
Japan
Prior art keywords
magnetic layer
magneto
layer
recording medium
optical recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002188400A
Other languages
English (en)
Other versions
JP2003091896A (ja
Inventor
純一郎 中山
善照 村上
順司 広兼
明 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2002188400A priority Critical patent/JP3770389B2/ja
Publication of JP2003091896A publication Critical patent/JP2003091896A/ja
Application granted granted Critical
Publication of JP3770389B2 publication Critical patent/JP3770389B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、光学的に情報の記録、再生、消去の少なくとも一つを行う光ディスク、光カード等に用いられる光磁気記録媒体に関するものである。
【0002】
【従来の技術】
光磁気記録方式とは、基板上に磁性体からなる垂直磁化膜を形成したものを記録媒体とし、以下の方法で記録、再生を行うものである。
【0003】
記録の際には、記録媒体をまず強力な外部磁場等によって初期化し、磁化の方向を一方向(上向き、または下向き)に揃えておく。その後、記録したいエリアにレーザビームを照射して、媒体部分の温度をキュリー点近傍以上、もしくは補償点近傍以上に加熱し、その部分の保磁力(Hc)をゼロ、またはほとんどゼロとした上で、初期化の磁化の方向と逆向きの外部磁場(バイアス磁場)を印加して磁化の向きを反転させる。レーザビームの照射を止めると、記録媒体は常温に戻るので反転した磁化は固定される。つまり、情報が熱磁気的に記録される。
【0004】
再生の際には、直線偏光したレーザビームを記録媒体に照射し、その反射光や透過光の偏光面が磁化の向きに応じて回転する現象(磁気カー効果、磁気ファラデー効果)を利用して、光学的に情報の読み出しを行う。
【0005】
また、記録方法としては、記録層を交換結合2層膜にし、初期化磁界(Hi)と記録磁界(Hw)を利用し光強度を変調してオーバーライトする、いわゆる光変調オーバーライトが提案されている。光変調オーバーライトのうち、まずHiを小さくし、かつ記録ビットの安定性に優れた光磁気記録媒体とするために、図18に示すように、第2磁性層25と第3磁性層26の間に第8磁性層29を設けた特開昭63−316343号公報の場合のオーバーライトの手順につき簡単に説明する。
【0006】
図19は、第2磁性層25、第3磁性層26、第8磁性層29の磁化状態をそれぞれ示し、横軸は温度を示している。各層は希土類遷移金属合金であるため、トータル磁化と希土類金属、遷移金属それぞれの副格子磁化があるが、矢印は各層の遷移金属の副格子磁化の向きを示している。
【0007】
室温では、第2磁性層25の磁化の向きが上向き(「0」)か下向き(「1」)かにより情報が記録されている。初期化においては、図19に示すように、初期化磁界(Hi)を印加することにより第3磁性層25の磁化のみを一方向(図では上向き)に揃える。Hiの大きさは、第2磁性層25の室温での保磁力より小さく、第3磁性層26の室温での保磁力より大きいので、第2磁性層25の磁化の反転は生じない。第8磁性層29は、室温で面内磁気異方性であるため、第2磁性層25、第3磁性層26の交換力による結合を妨げる効果を有する。
【0008】
記録は、記録磁界(Hw)を印加しながら、ハイパワーとローパワーに強度変調されたレーザ光を照射することにより行う。ハイパワーのレーザ光が照射されると、媒体は第3磁性層26のキュリー点付近まで昇温し、ローパワーのレーザ光が照射されると、第2磁性層25のキュリー点付近まで昇温するように、ハイパワー、ローパワーは設定されている。
【0009】
従って、ハイパワーのレーザ光が照射されると、第3磁性層26の磁化は図19に示すように、Hwにより下向きに反転し、冷却の過程で界面に作用する交換力により垂直磁気異方性となっている第8磁性層29に転写され、さらに第2磁性層25に転写される。従って、第2磁性層25の向きは下向き(「1」)となる。
【0010】
一方、ローパワーのレーザ光が照射されても、第3磁性層26の磁化はその保磁力がHwより大きいため、Hwにより反転することはない。第2磁性層25の磁化は、上記と同様に冷却の過程で界面に作用する交換力により第3磁性層26の磁化の向きと一致する。従って、第2磁性層25の向きは上向き(「0」)となる。
【0011】
なお、再生時のレーザパワーは、記録時のローパワーよりもかなり小さいレベルに設定されている。
【0012】
次に、Hiを完全になくし、従来装置で記録再生ができる光磁気記録媒体とするために、図20に示すように、第2磁性層25、第3磁性層26、第9磁性層30、第10磁性層31を設けたJ.Appl.Phys.67(9),1990,P4415に記載のオーバーライトの手順につき簡単に説明する。
【0013】
図21は、各磁性層の磁化状態の遷移を説明するものである。室温においては、第2磁性層25の磁化の向きが上向き(「0」)か下向き(「1」)かにより情報が記録されている。また、第10磁性層31の磁化は常に一方向(図中上向き)に揃えられており、第3磁性層26の磁化は、記録前には第9磁性層30を通して第10磁性層31の磁化と同じ方向に揃えられている。すなわち、第10磁性層31が、上述の初期化磁界の働きを行っている。
【0014】
記録は、Hwを印加しながらハイパワーとローパワーに強度変調されたレーザ光を照射することにより行い、上記図19の場合と同じであるので、詳細な説明は省略する。
【0015】
【発明が解決しようとする課題】
上記従来の光磁気記録媒体では、光変調オーバーライトが可能でHiがある程度小さく、かつ記録ビットが安定な光磁気記録媒体を供給することができたものの、第1磁性層のキュリー点が低く再生信号特性が低い、光ビームの径より小さい記録ビットの再生が行えず高密度記録に適さない等の問題点を有している。
【0016】
【課題を解決するための手段】
本発明の光磁気記録媒体は、上記の課題を解決するために、基板上に、室温において面内磁化状態であり温度上昇にともない垂直磁化状態となる第1磁性層と、非磁性材料からなる第1中間層と、垂直磁化膜からなる第2磁性層と、垂直磁化膜からなりかつ前記第2磁性層よりも室温での保磁力が低くキュリー点が高い第3磁性層とが順次形成されており、前記第1磁性層が垂直磁化状態になる温度において、前記第2磁性層の情報が前記第1磁性層に転写されることを特徴としている。
【0017】
また、上記の光磁気記録媒体は、非磁性材料からなる第1中間層が、透光性誘電体であることが好ましい。
【0018】
また、上記の光磁気記録媒体は、非磁性材料からなる第1中間層が、光反射性金属であることが好ましい。
【0019】
また、上記の光磁気記録媒体は、非磁性材料からなる第1中間層が、透光性誘電体/光反射性金属の積層であることが好ましい。
【0020】
【発明の実施の形態】
〔実施の形態1〕
本発明の実施の一形態について図1ないし図4に基づいて説明すれば、以下の通りである。
【0021】
本実施の形態に係る光磁気記録媒体は図1に示すように、透光性基板(基板)1上に、透光性を有する誘電体層2、第1磁性層3、第1中間層4、第2磁性層5、第3磁性層6、保護層7とが順次形成された構成になっている。さらに光磁気記録媒体の保護のために、オーバーコート層8が形成されている。
【0022】
図2は、第1磁性層3の磁気状態を示している。第1磁性層3は、希土類遷移金属合金からなり、希土類金属と遷移金属の磁気モーメントが釣り合う補償温度(Tcomp)の近辺(図中、斜線で示される領域)では垂直磁化を示し、キュリー温度(Tc)以下のそれ以外の領域では面内磁化を示す。また希土類金属と遷移金属の磁気モーメントの温度特性は異なり、高温では遷移金属の磁気モーメントが希土類金属のそれに比べて大きくなる。
【0023】
このため、Tcompが室温となる組成よりも希土類金属の量を多くした組成(図中、Pで示される組成)の合金を用いる。この組成の合金は、室温で面内磁化を示し、所定温度以上になると遷移金属の磁気モーメントが相対的に大きくなり、希土類金属の磁気モーメントと釣り合うようになって垂直磁化を示すようになる。すなわち、室温から温度T1までの温度では面内磁化を、温度T2から温度T3までの温度では垂直磁化を、温度T3からTcまでの温度では面内磁化を示す。
【0024】
上記の構成において、再生動作時に基板1側から集光レンズを介して再生光ビームが第1磁性層3に照射されると、再生光ビームの中心部近傍に対応する磁性層3の部位の温度が上昇しT1に達する。これは、再生光ビームが集光レンズにより回折限界まで絞り込まれ、その光強度分布がガウス分布となり、磁性層3の温度分布もほぼガウス分布となるためであり、T1以上の温度を有する領域は、再生光ビーム径よりも小さくなっている。第1磁性層3のうち、再生光ビームの中心部近傍に対応し温度がT1以上になった部位は垂直磁化となり、磁気光学カー効果を示すが、それ以外の部位では温度上昇が生じず、面内磁化となり、磁気光学カー効果をほとんど示さない。
【0025】
この時、例えば情報が図1の第2磁性層5に示すように記録されていると、第2磁性層5から発生する磁界により、第1磁性層3のT1以上の温度を有する領域にのみ情報が転写されるので、再生光ビームの径より小さい記録ビットの再生を行うことができ、記録密度が著しく向上することになる。
【0026】
また、記録方法においては、初期化磁界(Hi)と記録磁界(Hw)を利用し、光強度を変調してオーバーライトする。
【0027】
図3は、第2磁性層5及び第3磁性層6の温度と保磁力の関係を示している。また図4は、第1磁性層3、第2磁性層5、第3磁性層6の磁化状態を示し、横軸は温度を示している。各層は希土類遷移金属合金であるため、トータル磁化と希土類金属、遷移金属それぞれの副格子磁化があるが、矢印は各層の遷移金属の副格子磁化の向きを示す。
【0028】
室温では、第2磁性層5の磁化の向きが上向き(「0」)か下向き(「1」)かにより情報が記録されている。初期化においては、図4に示すようにHiを印加することにより、第3磁性層6の磁化のみを一方向(図では、上向き)に揃える。Hiの大きさは、第2磁性層5の室温での保磁力より小さく、第3磁性層6の室温での保磁力より大きいので、第2磁性層5の磁化の反転は生じない。
【0029】
記録はHwを印加しながら、ハイパワー(Ph)とローパワー(Pl)に強度変調されたレーザ光を照射することにより行う。Phのレーザ光が照射されると媒体は第3磁性層6のキュリー点付近まで昇温し、Plのレーザ光が照射されると第2磁性層5のキュリー点付近まで昇温するように、Ph、Plはそれぞれ設定されている。
【0030】
従って、Phのレーザ光が照射されると、第3磁性層6の磁化は図4に示すようにHwにより下向きに反転し、冷却の過程で界面に作用する交換力により、第2磁性層5に転写される。すなわち、第2磁性層5の向きは下向き(「1」)となる。
【0031】
一方、Plのレーザ光が照射されても、第3磁性層6の磁化はその保磁力がHwより大きいため、Hwにより反転することはない。第2磁性層5の磁化は、上記と同様に冷却の過程で界面に作用する交換力により第3磁性層6の磁化の向きと一致する。従って、第2磁性層5の向きは、図3に示すように上向き(「0」)となる。
【0032】
また、第1磁性層3、第1中間層4が形成されているため、従来の第8磁性層29が形成されている光磁気記録媒体と同じように、光変調オーバーライトがより円滑となる。
【0033】
次に、光磁気記録媒体の一例として、光磁気ディスクのサンプル#1を示す。透光性基板1は、外径86mm、内径15mm、厚さ1.2mmの円盤状のガラスからなっている。基板1の片側の表面には、光ビーム案内用の凹凸状のガイドトラックが反応性イオンエッチング法により直接形成されている。トラックピッチは1.6μm、グルーブ(凹部)の幅は0.8μm、ランド(凸部)の幅は0.8μmである。
【0034】
基板1のガイドトラック側の面上に、反応性スパッタリングにより膜厚70nmのAlNからなる誘電体層2と、Gd、Fe、Coターゲットの同時スパッタリングにより膜厚20nmのGdFeCoからなる第1磁性層3と、反応性スパッタリングにより膜厚20nmのAlNからなる第1中間層4と、Tb、Fe、Coターゲットの同時スパッタリングにより膜厚50nmのTbFeCoからなる第2磁性層5と、Tb、Fe、Coターゲットの同時スパッタリングにより膜厚100nmのTbFeCoからなる第3磁性層6と、膜厚30nmのAlNからなる保護層7とを積層した。
【0035】
第1磁性層3、第2磁性層5、第3磁性層6の成膜時のスパッタリング条件は、到達真空度2.0×10-4Pa以下、Arガス圧6.5×10-1Pa、放電電力300Wであり、誘電体層2、第1中間層4、保護層7の成膜時のスパッタリング条件は、到達真空度2.0×10-4Pa以下、N2ガス圧3.0×10-1Pa、放電電力800Wである。
【0036】
さらに、保護層7の上にアクリレート系紫外線硬化樹脂をコーティングし、紫外線照射により硬化させて、オーバーコート層8を形成した。
【0037】
第1磁性層3は、希土類金属リッチ、Tc1≧300℃、室温で面内磁化、約140℃で垂直磁化となる特性を示し、第2磁性層5は、遷移金属リッチ、Tc2=230℃、室温での保磁力(Hc2)=1200kA/mとなる特性を示し、第3磁性層6は、希土類金属リッチ、Tc3=280℃、Tcomp3=230℃、室温でのHc3=160kA/mとなる特性を示す。
【0038】
サンプル#1の光磁気ディスクに対して、Hi=240kA/m、Hw=32kA/m、Ph=10mW、Pl=5mWにて、記録ビット長=0.5μmの記録ビットを記録し、再生レーザパワー(Pr)と信号対雑音比(C/N)の関係を測定した。
【0039】
Pr=2〜3.5mWの範囲でC/Nが45dB以上となり、このレーザパワーで、磁性層3の温度はT1以上になり、垂直磁化で磁気光学カー効果を示し、Pr=2mW以下では、第1磁性層3の温度はT1以下になり、面内磁化で磁気光学カー効果を示していないことがわかった。また高温高湿テストを行ったところ、信頼性に関しても問題ないことがわかった。
【0040】
次に、図18に示す従来例のサンプルに対して、Hi=240kA/m、Hw=40kA/m、Ph=10mW、Pl=6mWにて、記録ビット長=0.5μmの記録ビットを記録し、PrとC/Nの関係を測定した。その結果、サンプル#1に比べてHw、Plともに感度が悪く、さらにPr=2〜3.5mWの範囲でもC/Nは45dB未満となり、高密度記録に適さないことがわかった。
【0041】
〔実施の形態2〕
本発明の第2の実施の形態について、図1に基づいて説明すれば以下の通りである。
【0042】
本実施の形態に係る光磁気記録媒体の構成は、第1中間層4を除いては、透光性基板1、誘電体層2、第1磁性層3、第2磁性層5、第3磁性層6、保護層7、オーバーコート層8は、サンプル#1と同じである。以下、光磁気記録媒体の一例として、光磁気ディスクのサンプル#2を示す。
【0043】
第1中間層4は、Alターゲットのスパッタリングにより膜厚20nmのAlからなり、成膜時のスパッタリング条件は、到達真空度2.0×10-4Pa以下、Arガス圧6.5×10-1Pa、放電電力300Wである。
【0044】
サンプル#2の光磁気ディスクに対して、Hi=240kA/m、Hw=32kA/m、Ph=10mW、Pl=5mWにて、記録ビット長=0.5μmの記録ビットを記録し、PrとC/Nの関係を測定したところ、Pr=2〜3.5mWの範囲でC/Nが45dB以上となった。またサンプル#1に比べると、第1中間層4の形成時間が約1/6となり、生産効率が向上した。
【0045】
〔実施の形態3〕
次に、本発明の第3の実施の形態について、図1に基づいて説明すれば以下の通りである。
【0046】
本実施の形態に係る光磁気記録媒体の構成は、第1中間層4を除いては、透光性基板1、誘電体層2、第1磁性層3、第2磁性層5、第3磁性層6、保護層7、オーバーコート層8は、サンプル#1と同じである。以下、光磁気記録媒体の一例として、光磁気ディスクのサンプル#3を示す。
【0047】
第1中間層4は、反応性スパッタリングにより膜厚20nmのAlNとAlターゲットのスパッタリングにより膜厚10nmのAlの積層からなり、成膜時のスパッタリング条件は、それぞれ、到達真空度2.0×10-4Pa以下、Arガス圧6.5×10-1Pa、放電電力300W、到達真空度2.0×10-4Pa以下、N2ガス圧3.0×10-1Pa、放電電力800Wである。
【0048】
サンプル#3の光磁気ディスクに対して、Hi=240kA/m、Hw=32kA/m、Ph=10mW、Pl=5mWにて、記録ビット長=0.5μmの記録ビットを記録し、PrとC/Nの関係を測定したところ、Pr=2〜3.5mWの範囲でC/Nが45.5dB以上となった。またサンプル#1に比べると、再生信号特性を改善することができた。
【0049】
〔実施の形態4〕
次に、本発明の第4の実施の形態について、図5に基づいて説明すれば以下の通りである。
【0050】
本実施の形態に係る光磁気記録媒体の構成は、第4磁性層9を除いては、透光性基板1、誘電体層2、第1磁性層3、第1中間層4、第2磁性層5、第3磁性層6、保護層7、オーバーコート層8は、サンプル#1と同じである。以下、光磁気記録媒体の一例として、光磁気ディスクのサンプル#4を示す。
【0051】
第4磁性層9は、Gd、Fe、Coターゲットの同時スパッタリングにより膜厚50nmのGdFeCoからなり、成膜時のスパッタリング条件は、到達真空度2.0×10-4Pa以下、Arガス圧6.5×10-1Pa、放電電力300Wである。第4磁性層9は、希土類金属リッチ、Tc4>300℃、Tcomp4=150℃、室温でのHc4=24kA/mとなる特性を示す。
【0052】
サンプル#4の光磁気ディスクに対して、Hi=240kA/m、Hw=24kA/m、Ph=10mW、Pl=5mWにて、記録ビット長=0.5μmの記録ビットを記録し、PrとC/Nの関係を測定したところ、Pr=2〜3.5mWの範囲でC/Nが45dB以上となった。またサンプル#1、#2、#3に比べると、Hwを低減することができた。
【0053】
〔実施の形態5〕
次に、本発明の第5の実施の形態について、図6に基づいて説明すれば以下の通りである。
【0054】
本実施の形態に係る光磁気記録媒体の構成は、第5磁性層10を除いては、透光性基板1、誘電体層2、第1磁性層3、第1中間層4、第2磁性層5、第3磁性層6、保護層7、オーバーコート層8は、サンプル#1と同じである。以下、光磁気記録媒体の一例として、光磁気ディスクのサンプル#5を示す。
【0055】
第5磁性層10は、Gd、Fe、Coターゲットの同時スパッタリングにより膜厚50nmのGdFeCoからなり、成膜時のスパッタリング条件は、到達真空度2.0×10-4Pa以下、Arガス圧6.5×10-1Pa、放電電力300Wである。第5磁性層10は、希土類金属リッチ、Tc5>300℃、Tcomp5=250℃、室温で面内磁化となる特性を示す。
【0056】
サンプル#5の光磁気ディスクに対して、Hi=200kA/m、Hw=24kA/m、Ph=10mW、Pl=5mWにて、記録ビット長=0.5μmの記録ビットを記録し、PrとC/Nの関係を測定したところ、Pr=2〜3.5mWの範囲でC/Nが45dB以上となった。またサンプル#1、#2、#3に比べると、Hi及びHwを低減することができた。
【0057】
〔実施の形態6〕
次に、本発明の第6の実施の形態について、図7に基づいて説明すれば以下の通りである。
【0058】
本実施の形態に係る光磁気記録媒体の構成は、第2中間層11を除いては、透光性基板1、誘電体層2、第1磁性層3、第1中間層4、第2磁性層5、第3磁性層6、保護層7、オーバーコート層8は、サンプル#1と同じである。以下、光磁気記録媒体の一例として、光磁気ディスクのサンプル#6を示す。
【0059】
第2中間層11は、反応性スパッタリングにより膜厚10nmのAlNからなり、成膜時のスパッタリング条件は、到達真空度2.0×10-4Pa以下、N2ガス圧3.0×10-1Pa、放電電力800Wである。
【0060】
サンプル#6の光磁気ディスクに対して、Hi=240kA/m、Hw=24kA/m、Ph=9mW、Pl=4mWにて、記録ビット長=0.5μmの記録ビットを記録し、PrとC/Nの関係を測定したところ、Pr=2〜3.5mWの範囲でC/Nが45dB以上となった。またサンプル#1、#2、#3に比べると、Hw及びレーザパワーを低減することができた。
【0061】
〔実施の形態7〕
次に、本発明の第7の実施の形態について、図8に基づいて説明すれば以下の通りである。
【0062】
本実施の形態に係る光磁気記録媒体の構成は、界面層12を除いては、透光性基板1、誘電体層2、第1磁性層3、第1中間層4、第2磁性層5、第3磁性層6、保護層7、オーバーコート層8は、サンプル#1と同じである。以下、光磁気記録媒体の一例として、光磁気ディスクのサンプル#7を示す。
【0063】
界面層12は、GdターゲットもしくはFeターゲットのスパッタリングにより膜厚1nmのGdもしくはFeからなり、成膜時のスパッタリング条件は、到達真空度2.0×10-4Pa以下、Arガス圧6.5×10-1Pa、放電電力300Wである。
【0064】
サンプル#7の光磁気ディスクに対して、Hi=240kA/m、Hw=24kA/m、Ph=9mW、Pl=4mWにて、記録ビット長=0.5μmの記録ビットを記録し、PrとC/Nの関係を測定したところ、Pr=2〜3.5mWの範囲でC/Nが45dB以上となった。またサンプル#1、#2、#3に比べると、Hw及びレーザパワーを低減することができた。
【0065】
〔実施の形態8〕
次に、本発明の第8の実施の形態について、図9及至図11に基づいて説明すれば以下の通りである。
【0066】
本実施の形態に係る光磁気記録媒体の構成は図9に示すように、第6磁性層13、第7磁性層14を除いては、透光性基板1、誘電体層2、第1磁性層3、第1中間層4、第2磁性層5、第3磁性層6、保護層7、オーバーコート層8は、サンプル#1と同じである。図10は、第2磁性層5、第3磁性層6、第6磁性層13及び第7磁性層14の温度と保磁力との関係を示し、また図11は、記録プロセスを説明する図であり、各磁性層の磁気状態を表している。
【0067】
記録方法は、Hwを利用し、PhとPlに強度変調されたレーザ光を照射することにより行うものであり、第1の実施の形態の場合と同じであるので詳細な説明は省略するが、第3磁性層6の磁化は、記録する前に第6磁性層13を通して第7磁性層14の磁化と同じ方向に揃えられている。すなわち、第7磁性層14が上述のHiの働きをするため、Hiは必要なくなる。
【0068】
以下、光磁気記録媒体の一例として、光磁気ディスクのサンプル#8を示す。第6磁性層13は、Tb、Fe、Coターゲットの同時スパッタリングにより膜厚20nmのTbFeCoからなり、第7磁性層14は、Tb、Fe、Coターゲットの同時スパッタリングにより膜厚60nmのTbFeCoからなる。成膜時のスパッタリング条件は、到達真空度2.0×10-4Pa以下、Arガス圧6.5×10-1Pa、放電電力300Wである。
【0069】
第6磁性層13は、遷移金属リッチ、Tc6=160℃、室温でのHc6=160kA/mとなる特性を示し、第7磁性層14は、希土類金属リッチ、Tc7>300℃、Tcomp7=280℃、室温でのHc7=320kA/mとなる特性を示す。
【0070】
サンプル#8の光磁気ディスクに対して、Hw=32kA/m、Ph=10mW、Pl=5mWにて、記録ビット長=0.5μmの記録ビットを記録し、PrとC/Nの関係を測定したところ、Pr=2〜3.5mWの範囲でC/Nが45dB以上となった。またサンプル#1、#2、#3に比べると、Hiを省略することができた。
【0071】
〔実施の形態9〕
次に、本発明の第9の実施の形態について、図9、図12及び図13に基づいて説明すれば以下の通りである。
【0072】
本実施の形態に係る光磁気記録媒体の構成は図9に示すように、第6磁性層13、第7磁性層14を除いては、透光性基板1、誘電体層2、第1磁性層3、第1中間層4、第2磁性層5、第3磁性層6、保護層7、オーバーコート層8は、サンプル#1と同じである。図12は、第2磁性層5、第3磁性層6、第6磁性層13及び第7磁性層14の温度と保磁力との関係を示し、また図13は、記録プロセスを説明する図であり、各磁性層の磁気状態を表している。
【0073】
記録方法は、Hwを利用し、PhとPlに強度変調されたレーザ光を照射することにより行うものであり、実施の形態1の場合と同じであるので詳細な説明は省略するが、第3磁性層6の磁化は、記録する前に第6磁性層13を通して第7磁性層14の磁化と同じ方向に揃えられている。すなわち、第7磁性層14が上述のHiの働きをするため、Hiは必要なくなる。
【0074】
以下、光磁気記録媒体の一例として、光磁気ディスクのサンプル#9を示す。第6磁性層13は、Dy、Fe、Coターゲットの同時スパッタリングにより膜厚20nmのDyFeCoからなり、第7磁性層14は、Dy、Fe、Coターゲットの同時スパッタリングにより膜厚60nmのDyFeCoからなる。成膜時のスパッタリング条件は、到達真空度2.0×10-4Pa以下、Arガス圧6.5×10-1Pa、放電電力300Wである。
【0075】
第6磁性層13は、遷移金属リッチ、Tc6=100℃、室温でのHc6=160kA/mとなる特性を示し、第7磁性層14は、希土類金属リッチ、Tc7=150℃、Tcomp無し、室温でのHc7=240kA/mとなる特性を示す。
【0076】
サンプル#9の光磁気ディスクに対して、Hw=32kA/m、Ph=10mW、Pl=5mWにて、記録ビット長=0.5μmの記録ビットを記録し、PrとC/Nの関係を測定したところ、Pr=2〜3.5mWの範囲でC/Nが45dB以上となった。またサンプル#8に比べると、第7磁性層はそのTc7が低いためHwにより初期化され、第7磁性層を初期化しておく必要がなくなった。
【0077】
〔実施の形態10〕
次に、本発明の第10の実施の形態について、図14に基づいて説明すれば以下の通りである。
【0078】
本実施例に係る光磁気記録媒体の構成は、第4磁性層9を除いては、透光性基板1、誘電体層2、第1磁性層3、第1中間層4、第2磁性層5、第3磁性層6、第6磁性層13、第7磁性層14、保護層7、オーバーコート層8は、サンプル#8もしくはサンプル#9と同じである。以下、光磁気記録媒体の一例として、光磁気ディスクのサンプル#10を示す。
【0079】
第4磁性層9は、Gd、Fe、Coターゲットの同時スパッタリングにより膜厚50nmのGdFeCoからなり、成膜時のスパッタリング条件は、到達真空度2.0×10-4Pa以下、Arガス圧6.5×10-1Pa、放電電力300Wである。第4磁性層9は、希土類金属リッチ、Tc4>300℃、Tcomp4=150℃、室温でのHc4=24kA/mとなる特性を示す。
【0080】
サンプル#10の光磁気ディスクに対して、Hw=24kA/m、Ph=10mW、Pl=5mWにて、記録ビット長=0.5μmの記録ビットを記録し、PrとC/Nの関係を測定したところ、Pr=2〜3.5mWの範囲でC/Nが45dB以上となった。またサンプル#8、#9に比べると、Hwを低減することができた。
【0081】
〔実施の形態11〕
次に、本発明の第11の実施の形態について、図15に基づいて説明すれば以下の通りである。
【0082】
本実施例に係る光磁気記録媒体の構成は、第5磁性層10を除いては、透光性基板1、誘電体層2、第1磁性層3、第1中間層4、第2磁性層5、第3磁性層6、第6磁性層13、第7磁性層14、保護層7、オーバーコート層8は、サンプル#8もしくはサンプル#9と同じである。以下、光磁気記録媒体の一例として、光磁気ディスクのサンプル#11を示す。
【0083】
第5磁性層10は、Gd、Fe、Coターゲットの同時スパッタリングにより膜厚50nmのGdFeCoからなり、成膜時のスパッタリング条件は、到達真空度2.0×10-4Pa以下、Arガス圧6.5×10-1Pa、放電電力300Wである。第5磁性層10は、希土類金属リッチ、Tc5>300℃、Tcomp5=250℃、室温で面内磁化となる特性を示す。
【0084】
サンプル#11の光磁気ディスクに対して、Hw=24kA/m、Ph=10mW、Pl=5mWにて、記録ビット長=0.5μmの記録ビットを記録し、PrとC/Nの関係を測定したところ、Pr=2〜3.5mWの範囲でC/Nが45dB以上となった。またサンプル#8、#9に比べると、Hwを低減することができた。
【0085】
〔実施の形態12〕
次に、本発明の第12の実施の形態について、図16に基づいて説明すれば以下の通りである。
【0086】
本実施の形態に係る光磁気記録媒体の構成は、第2中間層11を除いては、透光性基板1、誘電体層2、第1磁性層3、第1中間層4、第2磁性層5、第3磁性層6、第6磁性層13、第7磁性層14、保護層7、オーバーコート層8は、サンプル#8もしくはサンプル#9と同じである。以下、光磁気記録媒体の一例として、光磁気ディスクのサンプル#12を示す。
【0087】
第2中間層11は、反応性スパッタリングにより膜厚10nmのAlNからなり、成膜時のスパッタリング条件は、到達真空度2.0×10-4Pa以下、N2ガス圧3.0×10-1Pa、放電電力800Wである。
【0088】
サンプル#12の光磁気ディスクに対して、Hw=24kA/m、Ph=9mW、Pl=4mWにて、記録ビット長=0.5μmの記録ビットを記録し、PrとC/Nの関係を測定したところ、Pr=2〜3.5mWの範囲でC/Nが45dB以上となった。またサンプル#8、#9に比べると、Hw及びレーザパワーを低減することができた。
【0089】
〔実施の形態13〕
次に、本発明の第13の実施の形態について、図17に基づいて説明すれば以下の通りである。
【0090】
本実施例に係る光磁気記録媒体の構成は、界面層12を除いては、透光性基板1、誘電体層2、第1磁性層3、第1中間層4、第2磁性層5、第3磁性層6、第6磁性層13、第7磁性層14、保護層7、オーバーコート層8は、サンプル#8もしくはサンプル#9と同じである。以下、光磁気記録媒体の1例として、光磁気ディスクのサンプル#13を示す。
【0091】
界面層12は、GdターゲットもしくはFeターゲットのスパッタリングにより膜厚1nmのGdもしくはFeからなり、成膜時のスパッタリング条件は、到達真空度2.0×10-4Pa以下、Arガス圧6.5×10-1Pa、放電電力300Wである。
【0092】
サンプル#13の光磁気ディスクに対して、Hw=24kA/m、Ph=9mW、Pl=4mWにて、記録ビット長=0.5μmの記録ビットを記録し、PrとC/Nの関係を測定したところ、Pr=2〜3.5mWの範囲でC/Nが45dB以上となった。またサンプル#8、#9に比べると、Hw及びレーザパワーを低減することができた。
【0093】
以上の実施の形態において、透光性基板1としてはガラスを用いたが、これ以外にも、化学強化されたガラス、これらのガラス基板上に紫外線硬化型樹脂層を形成した、いわゆる2P層付きガラス基板、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)、アモルファスポリオレフィン(APO)、ポリスチレン(PS)、ポリ塩化ビフェニール(PVC)、エポキシ等を基板1として使用することが可能である。
【0094】
上記誘電体層2のAlNの膜厚は、80nmに限定されるものではない。誘電体層2の膜厚は、光磁気ディスクを再生する際に第1磁性層あるいは再生磁性層からの極カー回転角を光の干渉効果を利用して増大させる、いわゆるカー効果エンハンスメントを考慮して決定される。つまり再生時のC/Nをできるだけ大きくするには、極カー回転角をできるだけ大きくすることが必要であり、このため誘電体層2の膜厚は、極カー回転角が大きくなるように設定される。
【0095】
また、誘電体層2は上記のカー効果エンハンスメントだけでなく、保護層7とともに希土類金属−遷移金属合金磁性層の酸化を防止する役割がある。さらにAlNは、Alターゲットを用いて、N2ガスもしくはArとN2の混合ガスを導入して反応性DC(直流電源)スパッタリングを行うことが可能であり、RF(高周波)スパッタに比べて成膜速度が大きい点でも有利である。
【0096】
AlN以外の誘電体層2の材料としては、SiN、AlSiN、AlTaN、SiAlON、TiN、TiON、BN、ZnS、TiO2、BaTiO3、SrTiO3等が好適である。このうち、特にSiN、AlSiN、AlTaN、TiN、BN、ZnSは、その成分に酸素を含まず、耐湿性に優れた光磁気ディスクを提供することができる。
【0097】
各磁性層の希土類金属−遷移金属合金の材料、組成は、上記の材料、組成に限定されるものではない。各磁性層の材料として、Gd、Tb、Dy、Ho、Ndから選ばれた少なくとも1種の希土類金属と、Fe、Coから選ばれた少なくとも1種の遷移金属からなる合金を使用しても、同様の効果が得られる。また上記材料に、Cr、V、Nb、Mn、Be、Ni、Ti、Pt、Rh、Cuのうち少なくとも1種類の元素を添加すると、各磁性層自体の耐環境性が向上する。すなわち、水分、酸素侵入による酸化による特性の劣化を少なくし、長期信頼性に優れた光磁気ディスクを提供することができる。
【0098】
各磁性層の膜厚は、その材料、組成との兼ね合いで決まるものであり、上記膜厚に限定されるものではない。本実施例では、保護層7のAlNの膜厚は30nmとしたが、これに限定されるものではない。保護層7の膜厚の範囲としては、1〜200nmが好適である。
【0099】
保護層7は、誘電体層2とともにその熱伝導率が光磁気ディスクの記録感度特性に影響を及ぼす。このことは、光磁気ディスクの記録感度を保護層7の膜厚である程度制御できるということを意味し、例えば、記録感度を上げる(低いレーザパワーで記録消去が行える)目的であれば、保護層7の膜厚を薄くすれば良い。通常は、レーザ寿命を延ばすために記録感度がある程度高い方が有利であり、保護層7の膜厚は薄い方が良い。
【0100】
AlNはこの意味でも好適で、耐湿性に優れるので、保護層7として用いた場合、膜厚を薄くすることができ、記録感度の高い光磁気ディスクを提供することができる。本実施例では、保護層7を誘電体層2と同じAlNとすることで、耐湿性に優れた光磁気ディスクを提供でき、かつ保護層7と誘電体層2を同じ材料で形成することで、生産性も向上させることができる。
【0101】
また、保護層7の材料としては、AlN以外にも前述の目的、効果を考慮すれば、上述の誘電体層2の材料として用いられるSiN、AlSiN、AlTaN、SiAlON、TiN、TiON、BN、ZnS、TiO2、BaTiO3、SrTiO3が好適である。このうち特にSiN、AlSiN、AlTaN、TiN、BN、ZnSは、その成分に酸素を含まず、耐湿性に優れた光磁気ディスクを提供することができる。
【0102】
上記実施の形態で説明した光磁気ディスクは、一般に片面タイプと呼ばれる。誘電体層2〜保護層7の薄膜部分を総じて記録媒体層と称することにすると、片面タイプの光磁気ディスクは、基板1、記録媒体層、オーバーコート層の構造となる。これに対して、基板1の上に記録媒体層を形成したもの2枚を、記録媒体層が対向するように接着層で接着した光磁気ディスクは、両面タイプと呼ばれている。
【0103】
接着層の材料は、ポリウレタンアクリレート系接着剤が特に良い。この接着剤は、紫外線、熱及び嫌気性の3タイプの硬化機能が組み合わされたものであり、紫外線が透過しない記録媒体の影になる部分の硬化が熱及び嫌気性硬化機能により硬化されるという利点を持っており、極めて高い耐湿性を有し、長期安定性に極めて優れた光磁気ディスクを提供することができる。
【0104】
片面タイプは、両面タイプと比べて素子の厚みが半分で済むため、例えば小型化が要求される記録再生装置において有利であり、両面タイプは、両面再生が可能なため、例えば大容量を要求される記録再生装置において有利である。
【0105】
以上の実施の形態では、光磁気記録媒体として光磁気ディスクを例に説明したが、光磁気テープ、光磁気カードにも本発明を応用することができる。
【0106】
【発明の効果】
以上のように、本発明の請求項1に係る光磁気記録媒体によれば、光変調オーバーライトが可能で、かつ再生信号特性が高く、さらに光ビームの径より小さい記録ビットの再生が行え高密度記録に適した光磁気記録媒体を供給することができるという効果を奏する。
【0107】
また、本発明の請求項2に係る光磁気記録媒体によれば、光ビームの径より小さい記録ビットの再生を行うことができ、さらに信頼性を改善できるという効果を奏する。
【0108】
また、本発明の請求項3に係る光磁気記録媒体によれば、光ビームの径よりも小さい記録ビットの再生を行うことができ、さらに生産効率を改善できるという効果を奏する。
【0109】
また、本発明の請求項4に係る光磁気記録媒体によれば、光ビームの径よりも小さい記録ビットの再生を行うことができ、さらに再生信号特性を改善できるという効果を奏する。
【図面の簡単な説明】
【図1】本発明の第1、第2または第3の実施の形態に係る光磁気記録媒体の構成及び再生時の磁化状態を示す断面模式図である。
【図2】図1の光磁気記録媒体における第1磁性層の組成とキュリー温度、補償温度の関係を示す図である。
【図3】図1の光磁気記録媒体における第2磁性層、第3磁性層の温度と保磁力の関係を示す図である。
【図4】図1の光磁気記録媒体における記録プロセスを説明する図である。
【図5】本発明の第4の実施の形態に係る光磁気記録媒体の構成及び再生時の磁化状態を示す断面模式図である。
【図6】本発明の第5の実施の形態に係る光磁気記録媒体の構成及び再生時の磁化状態を示す断面模式図である。
【図7】本発明の第6の実施の形態に係る光磁気記録媒体の構成及び再生時の磁化状態を示す断面模式図である。
【図8】本発明の第7の実施の形態に係る光磁気記録媒体の構成及び再生時の磁化状態を示す断面模式図である。
【図9】本発明の第8または第9の実施の形態に係る光磁気記録媒体の構成及び再生時の磁化状態を示す断面模式図である。
【図10】図9の光磁気記録媒体における第2磁性層、第3磁性層、第6磁性層、第7磁性層の温度と保磁力の関係を示す図である。
【図11】図9の光磁気記録媒体における記録プロセスを説明する図である。
【図12】図9の光磁気記録媒体における第2磁性層、第3磁性層、第6磁性層、第7磁性層の温度と保磁力の関係を示す図である。
【図13】図9の光磁気記録媒体における記録プロセスを説明する図である。
【図14】本発明の第10の実施の形態に係る光磁気記録媒体の構成及び再生時の磁化状態を示す断面模式図である。
【図15】本発明の第11の実施の形態に係る光磁気記録媒体の構成及び再生時の磁化状態を示す断面模式図である。
【図16】本発明の第12の実施の形態に係る光磁気記録媒体の構成及び再生時の磁化状態を示す断面模式図である。
【図17】本発明の第13の実施の形態に係る光磁気記録媒体の構成及び再生時の磁化状態を示す断面模式図である。
【図18】従来の光磁気記録媒体の構成及び再生時の磁化状態を示す断面模式図である。
【図19】図18の光磁気記録媒体における記録プロセスを説明する図である。
【図20】従来の別の光磁気記録媒体の構成及び再生時の磁化状態を示す断面模式図である。
【図21】図20の光磁気記録媒体における記録プロセスを説明する図である。
【符号の説明】
1、21 基板
2、22 誘電体層
3 第1磁性層
4 第1中間層
5、25 第2磁性層
6、26 第3磁性層
7、27 保護層
8、28 オーバーコート層
9 第4磁性層
10 第5磁性層
11 第2中間層
12 界面層
13 第6磁性層
14 第7磁性層

Claims (4)

  1. 基板上に、室温において面内磁化状態であり温度上昇にともない垂直磁化状態となる第1磁性層と、非磁性材料からなる第1中間層と、垂直磁化膜からなる第2磁性層と、垂直磁化膜からなりかつ前記第2磁性層よりも室温での保磁力が低くキュリー点が高い第3磁性層とが順次形成されており、前記第1磁性層が垂直磁化状態になる温度において、
    前記第3磁性層の補償温度が、第2磁性層のキュリー点と等しく、
    前記第2磁性層の情報が前記第1磁性層に転写されることを特徴とする光磁気記録媒体。
  2. 前記非磁性材料からなる第1中間層が、透光性誘電体であることを特徴とする請求項1に記載の光磁気記録媒体。
  3. 前記非磁性材料からなる第1中間層が、光反射性金属であることを特徴とする請求項1に記載の光磁気記録媒体。
  4. 前記非磁性材料からなる第1中間層が、透光性誘電体/光反射性金属の積層であることを特徴とする請求項1に記載の光磁気記録媒体。
JP2002188400A 2002-06-27 2002-06-27 光磁気記録媒体 Expired - Fee Related JP3770389B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002188400A JP3770389B2 (ja) 2002-06-27 2002-06-27 光磁気記録媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002188400A JP3770389B2 (ja) 2002-06-27 2002-06-27 光磁気記録媒体

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8034689A Division JPH09231630A (ja) 1996-02-22 1996-02-22 光磁気記録媒体

Publications (2)

Publication Number Publication Date
JP2003091896A JP2003091896A (ja) 2003-03-28
JP3770389B2 true JP3770389B2 (ja) 2006-04-26

Family

ID=19195462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002188400A Expired - Fee Related JP3770389B2 (ja) 2002-06-27 2002-06-27 光磁気記録媒体

Country Status (1)

Country Link
JP (1) JP3770389B2 (ja)

Also Published As

Publication number Publication date
JP2003091896A (ja) 2003-03-28

Similar Documents

Publication Publication Date Title
US5644566A (en) Magneto-optical recording medium
JP2579631B2 (ja) 光磁気記録方法
US5663935A (en) Magneto-optical recording medium having two magnetic layers of exchange-coupled at ferromagnetic phase
JP3452451B2 (ja) 光磁気記録媒体及び光磁気記録方法
US5530685A (en) Magneto-optical recording apparatus having paired devices for applying external magnetic fields
JP3215311B2 (ja) 光磁気記録媒体および光磁気記録方法
US5768218A (en) Magneto-optical recording medium having a plurality of magnetic layers
JPH06302031A (ja) 光磁気記録媒体および光磁気記録装置
JP3192281B2 (ja) 光磁気記録媒体の記録方法
US5665467A (en) Magneto-optical recording medium
JP3359804B2 (ja) 光磁気記録媒体及びそれを用いた光磁気記録方法
JP3770389B2 (ja) 光磁気記録媒体
JP3249713B2 (ja) 光磁気記録媒体およびその記録方法
JP3192302B2 (ja) 光磁気記録媒体及びその記録方法
US5982713A (en) Magneto-optical recording medium
JP2955174B2 (ja) 光磁気記録媒体用カートリッジ
US5683803A (en) Magneto-optical recording medium and method of recording and reproducing using the same
JP3272539B2 (ja) 光磁気記録媒体
JP3316287B2 (ja) 光磁気記録方法及び光磁気記録装置
JP3490138B2 (ja) 光磁気記録媒体
JPH0863808A (ja) 光磁気記録媒体
JPH07130014A (ja) 光磁気記録媒体および光磁気記録方法
JPH11213468A (ja) 光磁気記録媒体及びその再生方法
JPH08161781A (ja) 光磁気記録媒体
JP2505602C (ja)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050204

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees