JP3763358B2 - 光ファイバのモードフィールド径拡大方法および拡大装置 - Google Patents

光ファイバのモードフィールド径拡大方法および拡大装置 Download PDF

Info

Publication number
JP3763358B2
JP3763358B2 JP2002328144A JP2002328144A JP3763358B2 JP 3763358 B2 JP3763358 B2 JP 3763358B2 JP 2002328144 A JP2002328144 A JP 2002328144A JP 2002328144 A JP2002328144 A JP 2002328144A JP 3763358 B2 JP3763358 B2 JP 3763358B2
Authority
JP
Japan
Prior art keywords
optical fiber
burner
heating
field diameter
mode field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002328144A
Other languages
English (en)
Other versions
JP2003337235A (ja
Inventor
英一郎 山田
和人 斎藤
充章 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2002328144A priority Critical patent/JP3763358B2/ja
Priority to DE60322997T priority patent/DE60322997D1/de
Priority to EP03005145A priority patent/EP1347320B1/en
Priority to CA2421350A priority patent/CA2421350C/en
Priority to US10/383,751 priority patent/US7142771B2/en
Priority to CN03120086.9A priority patent/CN1260588C/zh
Publication of JP2003337235A publication Critical patent/JP2003337235A/ja
Application granted granted Critical
Publication of JP3763358B2 publication Critical patent/JP3763358B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2552Splicing of light guides, e.g. by fusion or bonding reshaping or reforming of light guides for coupling using thermal heating, e.g. tapering, forming of a lens on light guide ends

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光ファイバをバーナーで加熱することにより、コア部に添加されているドーパントを熱拡散させて、光ファイバのモードフィールド径を拡大する方法および装置に関するものである。
【0002】
【従来の技術】
近年、波長多重伝送用光ファイバやラマン増幅用光ファイバ等のモードフィールド径を小さくした高機能光ファイバを、モードフィールド径(他に、「コア径」で表現する場合もある)が比較的大きい通常のシングルモード光ファイバと組合わせたハイブリッド光ファイバの開発が進められている。光ファイバのモードフィールド径が異なる前記の高機能光ファイバと、通常のシングルモード光ファイバの接続では、単に融着接続したのみでは実用的な接続損失得るのが難しい。このため、融着接続部を追加加熱処理して、コア部のドーパントをクラッド部側に熱拡散させ、接続部のモードフィールド径を一致させて滑らかな接続形状にする方法(Thermally Expanded Core 、以下、TECという)が知られている(例えば、特許文献1参照)。
【0003】
図12は上述のTEC処理の一例を示す図である。図12(A)は、モードフィールド径の異なる光ファイバ同士を融着接続した後にTEC処理する例を示す図、図12(B)は、モードフィールド径の小さい側の光ファイバを予めTEC処理した後に融着接続する例を示す図である。図中、1a,1bは光ファイバ、2はガラスファイバ部(クラッド部)、3a,3bはコア部、4はファイバ被覆部、5は融着接続部、6はバーナー、7はモードフィールド径の拡大部を示す。
【0004】
互いに融着接続される光ファイバ1aと1bは、ガラスファイバ部(クラッド部)2の外径は同じであるが、コア部3aと3bのモードフィールド径(上記特許文献1ではコア径としている)およびその比屈折率差が異なる。光ファイバ1aと1bは、接続端面を対向配置させた後、アーク放電等により接続端面を溶融して突合せ融着接続される。単に融着接続しただけでは、図12(A)に示すように融着接続部5において、光ファイバ1aのコア部3aと光ファイバ1bのコア部3bのモードフィールド径の違いにより、接続が不連続となり接続損失が大きくなる。
【0005】
これを改善するために、燃焼ガスを用いたマイクロトーチまたはバーナー6で、融着接続部5の近傍を追加加熱しTEC処理する。この加熱は、光ファイバ1a,1b自身は溶融しないが、コア部3a,3bに添加されている屈折率を上げるドーパントがクラッド部側に熱拡散する温度と時間で行なわれる。この加熱により、コア部3a,3bに添加されているドーパントがクラッド部2側に熱拡散して、コア部3a,3bの融着接続部におけるモードフィールド径が拡大され、拡大部7で示すように滑らかな接続形状が得られる。
【0006】
なお、モードフィールド径が小さくドーパント濃度が高い方の光ファイバ1aは、モードフィールド径が大きくドーパント濃度が低い方の光ファイバ1bより、ドーパントが多く熱拡散する。したがって、光ファイバ1a側のモードフィールド径が、光ファイバ1b側より大きくテーパー状に拡大されて、不連続状態を軽減する。このような異種光ファイバ同士を融着接続する場合は、上述したTEC処理を行なうことで、モードフィールド径の小さい光ファイバを、他方の光ファイバのモードフィールド径に徐々に近づけ、接続損失を低減できることが明らかになっている。
【0007】
また、図12(B)に示すように、モードフィールド径の小さい光ファイバ1aの中間部分を、予め加熱してTEC処理しておき、モードフィールド径の拡大部7を形成しておく。この後、モードフィールド径の拡大部7を中間部分でカットして接続端面5’とし、接続相手の光ファイバ1bのモードフィールド径に一致させた状態で融着接続する。この場合も、モードフィールド径の違いにより、接続が不連続となり接続損失が大きくなるのを低減することができる。さらに、このような加熱によるTEC処理は、同種の光ファイバ同士の接続でも、融着接続部分のコア径を拡大して偏心等による接続損失を低減することに有効であることが知られている(例えば、特許文献2参照)。
【0008】
上述のTEC処理は、通常、マイクロトーチまたはバーナーを用いて行なわれ、所定領域を加熱するために光ファイバの軸方向に、マイクロトーチを相対移動させている。また、複数個のマイクロトーチまたはバーナーを対向配置して光ファイバを加熱している。さらに、平行に並べられた光ファイバを同時に加熱するために、光ファイバの配列方向に複数のマイクロトーチまたはバーナーを配置する例(例えば、特許文献3参照)が知られている。また、多心テープファイバの幅寸法に対応した形状のものを用いる例(特許文献4参照)も知られている。
【0009】
TEC処理は、光ファイバの所定領域におけるコア部3a,3bのドーパントがクラッド部2に熱拡散するのに適切な温度と時間で加熱する必要がある。光ファイバ1a,1bは融点以下で加熱されるが、加熱が適切に行なわれないと、加熱部分9が軟化して光ファイバの自重で弛みを生じることがある。弛みによる変形が残ると損失増加の一因となる。さらに、バーナーの炎は、不均一な温度分布と広がりを有し、また、外部環境により炎にゆらぎが生じ、一定した加熱状態に管理するのが難しい。
【0010】
特に、光ファイバテープ心線等で、例えば、8心、12心、24心といった多心光ファイバを一括融着接続して、これをTEC処理することがある。この場合、バーナーの炎は、平行一列に配列された複数の光ファイバを外側から包み込むように加熱するため、外側に配列された光ファイバは、内側に配列された光ファイバより加熱量が多くなり、均一に加熱されない。このため、光ファイバ配列の外側と内側でTEC処理に差が生じ、各光ファイバの接続損失が一様に低減されず、バラツキが生じるというような問題がある。
【0011】
TEC処理における上記のような問題に対して、加熱用のバーナーの構成が大きく影響する。しかし、上述した従来のバーナーは、いずれも加熱範囲が限定的である。このため、光ファイバの所定領域あるいは多心光ファイバを均一に加熱するのが難しく、また、所望の温度分布を得るのが難しい。
【0012】
【特許文献1】
特開平3−130705号公報
【特許文献2】
特開昭61−117508号公報
【特許文献3】
特開平4−260007号公報
【特許文献4】
特開平8−82721号公報
【0013】
【発明が解決しようとする課題】
本発明は、上述した実情に鑑みてなされたもので、光ファイバをTEC処理する加熱で、光ファイバの所定範囲を均一に加熱することができる光ファイバのモードフィールド径拡大方法および拡大装置を提供することを課題とする。
【0014】
【課題を解決するための手段】
本発明の光ファイバのモードフィールド径拡大方法は、平行に配列した3心以上の光ファイバを、複数個のガス噴出口を2次元的に配列したバーナーで、バーナー火炎が内側から外側に向けて回り込むように加熱することにより、コア部に添加されているドーパントを熱拡散させて、光ファイバのモードフィールド径を拡大する方法であって、前記複数個のガス噴出口を2次元的に配列した形状が、前記光ファイバの軸方向に複数個のガス噴出口を配列するとともに、前記光ファイバの軸方向と平行に複数列配列した形状であり、かつ、前記バーナーによる加熱で、前記光ファイバの所定範囲を均一に加熱することができるように、前記光ファイバの軸方向と平行するバーナー部側の加熱量をバーナー中央部側の加熱量より少なくすることを特徴とする。
【0015】
また、本発明の光ファイバのモードフィールド径拡大装置は、平行に配列した3心以上の光ファイバを、複数個のガス噴出口を2次元的に配列したバーナーで、バーナー火炎が内側から外側に向けて回り込むように加熱することにより、コア部に添加されているドーパントを熱拡散させて、光ファイバのモードフィールド径を拡大する装置であって、前記複数個のガス噴出口を2次元的に配列した形状が、前記光ファイバの軸方向に複数個のガス噴出口を配列するとともに、前記光ファイバの軸方向と平行に複数列配列した形状であり、かつ、前記バーナーは、前記光ファイバの所定範囲を均一に加熱することができるように、前記光ファイバの軸方向と平行するバーナー部側の加熱量をバーナー中央部側の加熱量より少なくされていることを特徴とする。
【0017】
なお、「2次元的に配列」の意味は、加熱面が一平面をなすこと(ガス噴出口が同一平面状にあること)に限られるものではなく、後述するように、加熱面が複数の平面から構成される場合や、加熱面が曲面となるなど、ガス噴出口の高さに差が生じている場合も含まれるものであり、ガス噴出口の出口側から見て、ガス噴出口の高さに関係なく、ガス噴出口が2次元的に配列されていることを意味するものであり、ガス噴出口の軸線が2次元的に並んでいることを意味するものということもできる。より幾何学的に表現すれば、複数のガス噴出口の軸線と、該軸線と直交する1つの平面との交点が、当該平面上に2次元配列されていることを意味するものということができる。
【0018】
【発明の実施の形態】
図1により、本発明の第1の実施の形態を説明する。図1(A)はTEC処理の加熱方法の概略を説明する図、図1(B)は単心または2心の光ファイバを加熱する形態を説明する図、図1(C)は3心以上の多心光ファイバを加熱する形態を説明する図である。図中、1は光ファイバ、2はガラスファイバ部、4はファイバ被覆部、5は融着接続部、8はファイバフォルダ、9はファイバクランプ、10は光ファイバの加熱領域(TEC領域)、11はバーナー、11aは加熱面、12はガス噴出口を示す。
【0019】
光ファイバ1は、例えば、融着接続に引き続いて融着接続部5をTEC処理するために、図1(A)に示すような形態でモードフィールド径拡大装置にセットされる。前記装置は、ファイバフォルダ8、ファイバクランプ9、バーナー11を備えており、光ファイバ1の融着接続部5がバーナー11の中心位置するように、先ず、ファイバクランプ9で光ファイバ1の両側を固定する。バーナー11は、光ファイバ1の下側に配置し、加熱面11aが光ファイバ1に向けて上向きになるように配される。ファイバクランプ9により、光ファイバ1に適度の張力を付与した後、張力を付与した状態で内側のファイバフォルダ8によりファイバ被覆部2の端部を固定し、次いでファイバクランプ側の前記張力を解放する。この張力付与により、加熱中に光ファイバが弛まないようにすることができる。
【0020】
なお、本発明によるモードフィールド径拡大のためのTEC処理は、図12(A)に示した、光ファイバの融着接続部および図12(B)の光ファイバ中間部、並びに単心および多心光ファイバに対して適用することができる。
【0021】
バーナー11は、図1(B)または図1(C)に示すように、バーナー11の加熱面11aに光ファイバ1の軸方向(長手方向)に複数個のガス噴出口12を配列するとともに、このガス噴出口12の列を光ファイバの軸方向と平行に複数列配列して構成される。軸方向に配列するガス噴出口12の数および配列長は、光ファイバの所定の加熱領域(TEC領域)10をカバーする範囲で設けることができる。また、軸方向と平行に設ける配列数は、加熱する光ファイバの本数やファイバ間隔によって、適宜増減させることができる。さらに、複数個のガス噴出口12の配列パターンを変えることにより、任意の加熱温度分布とすることも可能となる。
【0022】
図1(B)の例のように、加熱する光ファイバが単心または2心のように少ない場合、バーナー11の火炎は、光ファイバ1の内側と外側から、光ファイバ1の所定範囲の加熱領域10を加熱する。この加熱領域10は、複数個のガス噴出口12によりバーナー11を軸方向に移動させなくても、ほぼ均一に加熱することができる。この結果、波長依存性(損失量が波長により変わる)の少ないモードフィールド径変換を行なうことができる。なお、後述する駆動機構により、バーナー11を光ファイバの軸方向に揺動させることにより、さらに、均一な温度分布で加熱することができる。なお、光ファイバのガラスファイバ部2の外径は、通常、0.125mmである。
【0023】
また、図1(C)の例のように、テープ状に平行一列に配した3心以上の複数の光ファイバ1を加熱する場合も、図1(B)の例と同様に、各光ファイバの加熱領域10は、複数個のガス噴出口12によりバーナー11を軸方向に移動させなくても、ほぼ均一に加熱することができる。この結果、複数の光ファイバの全てに対して、モードフィールド径の変換を一様に行なうことができる。なお、後述する駆動機構により、バーナー11を光ファイバの軸方向または配列方向に揺動させることにより、より均一な温度分布で加熱することもできる。
【0024】
単心および多心の光ファイバのいずれの場合も、上述したように、複数個のガス噴出口12を加熱面11aに設けることにより、バーナーを移動させることなく光ファイバの所定領域を広範囲に、均一または所望の温度分布が得られるように加熱することが可能となる。また、従来例のように、光ファイバの軸方向にバーナーを移動させて所定領域を加熱するのに比べ、少ない加熱時間でモードフィールド径を拡大することができる。
【0025】
図2は、本発明に用いられるバーナーの一例を示す図で、図2(A)は上面図、図2(B)はa−a断面図、図2(C)は右側面図である。図中、11aは加熱面、11bはバーナー本体、11cはガス導入室、11dはガス導入ポート、12はガス噴出口を示す。
【0026】
バーナー11は耐熱性の金属等で、1cm3 以下の立方体形状で形成され、バーナー本体11bにガス導入ポート11dを取付けて構成される。バーナー本体11bの内部は、ガス導入室11cで形成され、光ファイバを加熱する加熱面11aには、上述した複数個のガス噴出口12がガス導入室11cに連通して設けられる。ガス噴出口12は、例えば、直径0.3mm程度の孔で、0.7mm〜1.0mm程度のピッチで光ファイバの軸方向および軸方向に直交する方向にマトリックス状に設けられる。
【0027】
図3および図4は、単心または2心の光ファイバをTEC処理する例を示す図である。図3(A)はバーナーの加熱状態を示す図、図3(B)は加熱の温度分布を示す図、図4(A)〜図4(C)はバーナー形状の例を示す図である。図中の符号は、図1,図2に用いたのと同じ符号を用いることにより、説明を省略する。
【0028】
図3に示すように、加熱する光ファイバ1が単心ないし2心のように少ない場合、多心光ファイバのように光ファイバ間でのバラツキは考慮する必要がない。しかし、複数個のガス噴出口12で長手方向に火炎を生じさせて加熱する場合、バーナーの両端側より中央部側が強く加熱される。このため、図3(B)のfで示すように加熱される光ファイバ1の温度分布も、バーナー中央部側の温度が高く両端側で低くなる山形となる。光ファイバの所定領域を均一にTEC処理するには、加熱される温度分布も図3(B)のhで示すような、比較的フラットな状態になるように加熱されるのが望ましい。
【0029】
図4は、上記の温度分布をフラット化するに適したバーナー形状の例を示すもので、光ファイバの軸方向と直交するバーナー端部側の加熱量が、バーナー中央部側の加熱量より多くなるように構成する。図4(A)は、光ファイバの軸方向と直交するバーナー端部側のガス噴出口12bの開口断面積を、バーナー中央部側のガス噴出口12aの開口断面積より大きくすることにより、バーナー端部側の加熱量がバーナー中央部側の加熱量より多くなるようにしたものである。
【0030】
図4(B)は、ガス噴出口12の開口断面積は同じとし、光ファイバの軸方向と直交するバーナー端部側のガス噴出口12bの個数を、バーナー中央部側のガス噴出口12aの個数より多くする。言い換えると、中央部側のガス噴出口12aの配列密度をバーナー端部側のガス噴出口12bの配列密度より小さくすることにより、バーナー端部側の加熱量がバーナー中央部側の加熱量より多くなるようにしたものである。
【0031】
図4(C)は、ガス噴出口の開口断面積と配列密度は同じとし、バーナーの加熱面11aと光ファイバ1との距離が、光ファイバの軸方向と直交するバーナー端部側で小さく、バーナー中央部側で大きくなるようにする。これにより、バーナー端部側の加熱量がバーナー中央部側の加熱量より多くなるようにしたものである。このためのバーナーの加熱面11aの形状は、例えば、図4(C−ロ)に示すように中央部に凹部11eを設けるか、図4(C−ハ)に示すように中央部に向けて徐々に窪ませた傾斜凹部11eを設けた形状とする。
【0032】
図5および図6は、3心以上の光ファイバまたはテープ化された光ファイバをTEC処理する例を示す図である。図5(A)はバーナーの加熱状態を示す図、図5(B)は加熱の温度分布を示す図、図6(A)〜図6(C)はバーナー形状の例を示す図である。図中の符号は、図1,図2に用いたのと同じ符号を用いることにより、説明を省略する。
【0033】
図5に示すように、加熱する光ファイバ1が複数本で平行一列に配列されている場合、複数列のガス噴出口12から出る火炎で全光ファイバが一様に加熱される。しかし、複数列のガス噴出口12で光ファイバ1の配列方向に火炎を生じさせて加熱する場合、バーナー火炎は、内側から外側に向けて回り込むため、内側に配列された光ファイバより外側に配列された光ファイバの方が強く加熱される。このため、図5(B)のfで示すように、光ファイバの配列位置によって受ける加熱量が異なり、内側の光ファイバの加熱温度は低く、外側の光ファイバの加熱温度は高くなる。複数本の光ファイバ1が、均一にTEC処理されるには、加熱温度分も図5(B)のhで示すような、比較的フラットな状態になるように加熱されるのが望ましい。
【0034】
図6は、上記の温度分布をフラット化するに適したバーナー形状の例を示すもので、光ファイバの軸方向と平行するバーナー部側の加熱量をバーナー中央部側の加熱量より少なくなるように構成する。図6(A)は、光ファイバの軸方向と平行するバーナー部側のガス噴出口12の開口断面積を、バーナー中央部側のガス噴出口12の開口断面積より小さくし、バーナー中央部側の加熱量がバーナー側部側の加熱量より多くなるようにしたものである。
【0035】
図6(B)は、ガス噴出口12の開口断面積は同じとし、光ファイバの軸方向と平行するバーナー部側のガス噴出口12の数を、バーナー中央部側のガス噴出口12の数より少なくする。言い換えると、中央部側のガス噴出口12aの配列密度をバーナー側部側のガス噴出口12bの配列密度より大きくすることにより、バーナー中央側の加熱量がバーナー側部側の加熱量より多くなるようにしたものである。
【0036】
図6(C)は、ガス噴出口の開口断面積と配列密度は同じとし、光ファイバの軸方向と平行するバーナー部側の加熱面と光ファイバとの距離を、バーナー中央部側の加熱面と光ファイバとの距離より大きくする。これにより、バーナー中央側の加熱量がバーナー側部側の加熱量より多くなるようにしたものである。このためのバーナーの加熱面11aの形状は、例えば、図6(C−ロ)に示すように中央部に凸部11fを設けるか、図6(C−ハ)に示すように中央部側に向けて徐々に高くした傾斜凸部11fを設けた形状とする。
【0037】
上述した説明では、ガス噴出口は、いずれも、軸方向(長手方向)に複数個のガス噴出口を配列するとともに、このガス噴出口の列を光ファイバの軸方向と平行に複数列配列して構成されたものでる。しかしながら、本発明は、厳密に、軸方向(長手方向)に複数個のガス噴出口を配列し、かつ、ガス噴出口の列を光ファイバの軸方向と平行に複数列配列される必要はない。所定の加熱領域(TEC領域)をカバーできるように、ガス噴出口が2次元的に配列されればよい。「2次元的に配列」の意義については、上述したとおりである。
【0038】
図7は本発明の第2の実施の形態を説明する図である。図中の符号は、図1で用いたのと同じ符号を用いることにより説明を省略する。この実施の形態は、バーナー11を光ファイバ1の上方に配置し、バーナー11の加熱面11aを下方に向けて加熱する。バーナー11自体の形状、構造は、図1,図2,図4,図6に示したものと同じものを使用することができる。
【0039】
バーナー11を下向きにして光ファイバ1を上方から加熱する場合も、火炎の噴出する勢いにより第1の実施の形態と同様に、光ファイバ1の所定領域を均一に加熱することが可能となる。バーナー11を下向きにして加熱する場合、図7に示すように、バーナー火炎は光ファイバ1に突き当たって光ファイバ1を直接加熱した後、火炎は上方に流れるように向かう。このため、バーナー火炎が、光ファイバ1の内側から外側に回り込んで光ファイバを包み込むような状態がなくなる。この結果、外側に配列された光ファイバが内側に配列された光ファイバより強く加熱されるという状態が解消される。
【0040】
単心ないし2心の光ファイバを加熱する場合においては、バーナー11が上下いずれの側にあっても、光ファイバの配列方向での加熱のアンバランスは生じない。しかし、図3で説明したように、バーナー11を光ファイバ1の下側に配して加熱すると、バーナーの両端部側より中央部側が強く加熱されるが、バーナー11を下向きにして加熱することにより、これを改善することができ、より均一な加熱を行なうことが可能となる。なお、図7では多心の光ファイバに対する形態を示したが、単心または2心光ファイバについても前記の如く有用である。なお、図4,図6のバーナー形状のもので実施してもよい。
【0041】
また、このバーナー11は、光ファイバ1の配列方向および軸方向に揺動させて使用するのが望ましい。バーナー11の揺動量に特に制限はないが、例えば、8心のテープ心線の場合、光ファイバの配列幅は2.0mm程度であるので、この場合は、2.0mm前後で揺動させればよい。バーナー11を揺動させることにより、全光ファイバに対する加熱の均一化を一層高め、また、光ファイバの軸方向に揺動させることで加熱領域を均一に拡大することができる。
【0042】
本発明によるTEC処理は、図12で示したようなモードフィールド径の異なるコア部3a,3bを有する異種光ファイバ1aと1bとの融着接続部5に対して行なうのが好ましい。この異種光ファイバの融着接続部5に、上述した加熱を行なうことにより、接続部のモードフィールド径の拡大を良好に行なうことができ、接続部の損失増加を抑制することができる。
【0043】
次に、図8,図9,図10により、本発明の具体的なモードフィールド径拡大装置の駆動機構と動作方法について説明する。図8は光ファイバの支持機構を示し、図中、1は光ファイバ、5は融着接続部、8はファイバフォルダ、8aはファイバフォルダ台、9はファイバクランプ、9aはファイバクランプ台、11はバーナー、13はベース台、14は摺動台、15は摺動溝、16は滑車、17は錘、18はエアボンベ、19はエアバルブ、20は配管、21はエア制御装置を示す。図9はバーナーの駆動機構を示し、図中、22はバーナー保持部、22aはバーナー保持部台、23は上下方向駆動台、23aは摺動溝、24は保持アーム、24aは保持アーム台、25は前後方向駆動台、25aは摺動溝、26はガイド部、27,28は駆動モータ、29はベース台、31はガスボンベ、32は酸素ボンベ、33は配管、34はガス流量制御弁、35はガス流量制御装置、36は制御装置を示す。図10はバーナーの動作フローを示す図である。
【0044】
図8において、光ファイバ1のTEC処理を必要とする融着接続部5を、バーナー11の下方に位置するように、光ファイバ1の両側をファイバクランプ9で把持固定する。ファイバクランプ9は、ファイバクランプ台9aに取付けられ、ベース台13に設けられた摺動台14の摺動溝15に沿って、ファイバクランプ台9aと共に摺動可能となっている。ファイバクランプ台9aは、滑車16と錘17により外方向に引張り力が付与されると共に、摺動台14上でエア圧力により移動制御されるようになっている。制御用のエアは、エアボンベ18からエアバルブ19、配管20を経て供給され、エア供給の制御は、エア制御装置21でエアバルブ19を制御して行なわれる。
【0045】
光ファイバ1の両側をファイバクランプ9で把持固定したのち、ファイバクランプ台9aの移動をフリー状態とすることにより、光ファイバ1には、錘17による引張り力が加えられる。この後、光ファイバ1に引張り力が加えられた状態で、ファイバフォルダ台8a上に設けられたファイバフォルダ8で、光ファイバ1のファイバ被覆端を把持固定する。ファイバフォルダ8で光ファイバ1を固定した後は、エア制御装置21により光ファイバ1への引張り力を解放する。
【0046】
光ファイバ1が上記の如くにセットされたら、バーナー11の位置調整と加熱が開始される。図9において、バーナー11は、バーナー保持部台22aに設けられたバーナー保持部22に取付け支持されている。バーナー保持部台22aは、駆動モータ27により上下方向駆動台23の摺動溝23aに沿って上下方向(矢印Yで示す)に移動可能とされている。上下方向駆動台23は、保持アーム台24aに設けられた保持アーム24により支持されている。保持アーム台24aは、駆動モータ28により摺動溝25aに沿って前後方向駆動台25上を前後方向(矢印Xで示す)に移動可能とされている。
【0047】
また、前後方向駆動台25は、ベース台29上にガイド部26により横方向(紙面と直交する方向で、便宜的に矢印Zで示す)に移動可能とされる。また、前後方向駆動台25は、ベース台29上を横方向に駆動するための駆動モータ(図示せず)によって駆動制御される。
【0048】
バーナー11には、バーナー保持部22を介して燃焼ガスが供給される。燃焼ガスには、プロパン、アセチレン、水素等のガスと酸素ガスの混合ガスが用いられ、ガスボンベ31および酸素ボンベ32から配管33を経て供給される。これらのガスは、ガス流量制御装置35によりガス流量調整弁34を調節して、所定量供給される。なお、ガス流量制御装置35および駆動モータ27,28等は、コンピュータを用いた制御装置36により制御される。
【0049】
次に、図10に示すバーナーの動作フローにより、前記機構の動作を説明する。先ず、スタートのステップS1で、制御装置36に設定条件を入力または読込ます。次いで、ステップS2でバーナーの点火位置への移動命令が発せられ、ステップS3で点火座標位置への移動が完了したら、バーナーを点火し加熱スタート命令が発せられる。
【0050】
バーナーが点火されたら、ステップS4で制御装置36に入力された設定条件に基づいてバーナーに供給されるガス流量が所定値に調節される。ガス流量の調節が終了すると、ステップS5でバーナーの加熱位置への移動命令が発せられ、バーナーの現在位置とバーナーの加熱座標位置までの移動量を算出し、駆動モータを駆動してバーナーを加熱座標位置に移動させる。
【0051】
ステップS6で点火座標位置への移動が完了したら、バーナーを揺動させるか否かを選択する。設定条件がNoに設定されていれば、設定に基づいて所定時間だけ光ファイバを加熱する。所定時間の加熱が終了すると、ステップS7でバーナーの退避座標位置への移動命令が発せられる。この移動命令により、バーナーの現在位置とバーナーの退避座標位置までの移動量を算出し、駆動モータを駆動してバーナーを退避座標位置に移動させる。
【0052】
バーナーの揺動がYesに設定されていれば、ステップS11とステップS12で揺動座標位置にバーナーを移動させ、次いで、ステップS13とステップS14で元の加熱座標位置にバーナーを移動させ、これを所定回数繰り返してバーナーが揺動される。この揺動所定回数が所定値に達したら、ステップS7に進む。ステップS7では、上述したようにバーナーを退避座標位置への移動命令が発せられ、同様にバーナーを退避座標位置に移動させる。
【0053】
ステップS8でバーナーが退避座標位置に移動が完了し、加熱回数が設定条件に達していれば、ステップS9でバーナーのガス流量がゼロにされ、次いで、ステップS10で装置が停止される。ステップS8でバーナーが退避座標位置に移動が完了し、加熱回数が設定条件に達していなければ、所定の時間経過後ステップS4に戻って、再度加熱が開始され、所定の加熱回数が行なわれるまで、このサイクルが繰り返される。
【0054】
図11は、8心のテープ心線を本発明の方法でTEC処理したときの、一例を示す接続損失測定したグラフである。光ファイバは、通常のシングルモード光ファイバ(モードフィールド径が10μm前後)とモードフィールド径が5μm前後の高機能光ファイバを多心一括融着接続したものである。バーナーには、ガス噴出口の数が5×6を有するものを用い、図7の下向きで光ファイバを加熱した。加熱は、初めは連続で所定時間加熱し、この後、短い時間で断続的に加熱した。接続損失は、波長1.55μmでパワーモニタで常時監視した。
【0055】
この結果、図に示すように、融着接続部の接続損失の初期値は、各光ファイバで0.65dB〜1.35dBと、かなりのバラツキがある。これは、多心一括融着接続時の、各光ファイバの接続端面の切断角の違い、端面間の距離の違い、外側ファイバと内側ファイバで加熱量の違い等、種々の要因がある。しかし、所定時間の加熱でTEC処理が進むと、各光ファイバの接続損失のバラツキは小さくなり、いずれもシングルモード光ファイバ同士の接続損失並の0.05dB近くまで低減させることができた。
【0056】
接続損失は、TEC処理の時間(加熱時間)が進むことにより、次第に減少していくが、ある程度の時間で徐々に飽和状態に近くなる。ある程度、接続損失が低減された後に、短い時間で間欠的に加熱してみたが、低減の度合いは小さいが最終的には、いずれも0.05dB以下の使用上問題のない値にすることができた。
【0057】
上述した実施に形態で説明したように、本発明では、光ファイバをバーナーで加熱する。バーナーは、ガス噴出口から噴出する可燃性ガスと酸素との混合気体が燃焼するから、その影響でバーナー自体も加熱される。特に、図13に示すように、バーナー11を下向きにして光ファイバ1を上方から加熱する場合は、火炎によって、バーナー11が加熱される影響が大きい。バーナー11が加熱されて高温になると、加熱面が変形し、ガス噴出口の大きさも変化し、加熱状態が変化してしまい、モードフィールド径の所望の拡大を行なうことができない。また、バーナー11が赤熱状態となるような高温に達することもあり、バーナー11とガス導入ポート11dとの接合部の蝋付け部分が外れてしまうこともある。外れないまでも、バーナー11の位置に変化が生じてしまう。
【0058】
図14は、バーナーが過熱状態とならないようにするために冷却手段を設けた実施の形態の一例の説明図である。図中、図1〜7,図9と同様の部分には同じ符号を付して説明を省略する。37は放熱体である。
【0059】
この実施の形態では、パッシブ(受動的)な冷却手段を用いた。すなわち、バーナー11の上面に放熱体37を取り付けて、自然冷却を行なった。放熱体37は、熱伝導率が大きい材料、例えば、金属材料を用い、バーナー11と熱抵抗が小さいように結合した。図14では、放熱体37をブロック状に図示した。もちろん、金属ブロックを用いてもよいが、放熱フィンを形成して、放熱面積を大きくなるようにしてもよい。バーナー11で光ファイバ1を加熱する際に、バーナー11の熱を放熱体37を通して放散させて、バーナー11の温度上昇を抑えることができる。なお、バーナー11を金属材料で形成した場合には、バーナー11と放熱体37とを一体形成してもよい。
【0060】
図15は、図14における放熱体37をバーナー保持部22に結合できるように延長した実施の形態の説明図である。この実施の形態も、パッシブ(受動的)な冷却手段を用いたものであり、放熱体37は、金属ブロックを用いてもよく、放熱フィンを形成して放熱面積が大きくなるようにしてもよい。図14で説明した実施の形態に比べて、ガス導入ポート11dと放熱体37の両方によってバーナー11の保持がされるので、より強固な保持が可能となる。この実施の形態において、バーナー保持部22(特に、ケース)を、熱伝導率の大きい材料、例えば、金属材料で形成して、放熱体37を熱的にも結合すると、バーナー保持部22も放熱体として用いられ、より良好な放熱が可能となる。
【0061】
図16は、アクティブ(能動的)な冷却手段を用いた実施の形態の一例の説明図である。図中、図14と同様な部分には同じ符号を付して説明を省略する。38は給水管、39は配水管である。放熱体37に冷却媒体、例えば、水を流すことによって、強制冷却を行なう冷却手段とした。以下の説明では、冷却媒体として水を用いた例で説明するが、本発明が水に限られるものでないことを述べておく。
【0062】
放熱体37には、冷却水が通る管路が形成されている。管路の形成は適宜でよく、ブロック状の放熱体37に、ドリルで管路を形成するように孔を開けてもよく、あるいは、全体を壁で形成して、内部を空洞とするなど、放熱体37のほぼ全体を水が通って、バーナー11から放熱体37に伝達された熱を水で冷却できれるようにすればよい。バーナー保持部22には、水冷装置が設けられ、吸水部で冷却水を吸水し、排水部で排水を受け取るようにされている。吸水量を制御する制御手段が設けられてもよい。放熱体37の冷却水の吸水口に、バーナー保持部22の吸水部に接続された給水管38が接続され、放熱体37の冷却水の排水口に、バーナー保持部22の排水部に接続された排水管39が接続されている。バーナー保持部22に設けられた吸水部は、水量が調節できるようにするのがよい。水道水を用いてもよく、その場合は、吸水部が水道管に接続される。排水部で受けた加熱された冷却水は、捨ててもよく、ラジエータ等を通して放熱させた後、吸水部に戻すようにした循環方式を採用してもよい。また、バーナー11の温度を検出できる温度検出手段を用いて、バーナー保持部22の水冷装置にフィードバックすることにより、効率的な冷却を行なうことができる。
【0063】
アクティブ(能動的)な冷却手段としては、冷却媒体を用いることに限られるものではなく、ペルチエ素子等を用いて、強制冷却を行なうようにすることができる。
【0064】
このように、冷却手段を設けることによって、バーナーの火力を上げることができ、冷却手段を設けない場合に比して、加熱時間を短くできるので、生産性を向上させることが可能となる。
【0065】
図17は、バーナー11と放熱体37との結合態様を説明するための斜視図である。図中、図14〜図16と同様の部分には同じ符号を付して説明を省略する。図17(A)は、バーナー11の上面のみに放熱体37が結合されたものである。図17(B)は、バーナー11の上面を側面の一部を覆うように放熱体37が結合されたものである。図17(C)は、バーナー11の上面を側面の全部を覆うように放熱体37が結合されたものである。バーナー11の前部は後部の適宜の部分も覆うようにしても放熱体37が結合されたものである。
【0066】
【発明の効果】
以上の説明から明らかなように、本発明によれば、光ファイバの所定領域を均一に加熱することができる。この結果、光ファイバのモードフィールド径の拡大変換をバラツキなく行なうことができ、個々の光ファイバの融着接続部においては、接続損失の波長特性の改善ができる
【図面の簡単な説明】
【図1】本発明の第1の実施の形態を説明する図である。
【図2】本発明の実施に用いるバーナーの一例を示す図である。
【図3】単心または2心の光ファイバを加熱する例を説明する図である。
【図4】単心または2心の光ファイバを加熱する場合のバーナーの例を示す図である。
【図5】3心以上の光ファイバを加熱する例を説明する図である。
【図6】3心以上の光ファイバを加熱する場合のバーナーの例を示す図である。
【図7】本発明の第2の実施の形態を説明する図である。
【図8】本発明における光ファイバの支持機構を説明する図である。
【図9】本発明におけるバーナーの駆動機構を説明する図である。
【図10】本発明におけるバーナーの動作フローを示す図である
【図11】本発明によるモードフィールド径の拡大方法で実施したときの光ファイバ接続損失改善のグラフである。
【図12】従来のモードフィールド径の拡大方法を説明する図である。
【図13】バーナーを下向きにして光ファイバを上方から加熱する場合の説明図である。
【図14】パッシブな冷却手段を用いた実施の形態の説明図である。
【図15】パッシブな冷却手段を用いた他の実施の形態の説明図である。
【図16】アクティブな冷却手段を用いた実施の形態の説明図である。
【図17】バーナーと放熱体との結合態様を説明するための斜視図である。
【符号の説明】
1…光ファイバ、2…ガラスファイバ部、4…ファイバ被覆部、5…融着接続部、8…ファイバフォルダ、9…ファイバクランプ、10…光ファイバの加熱領域(TEC領域)、11…バーナー、11a…加熱面、11b…バーナー本体、11c…ガス導入室、11d…ガス導入ポート、12,12a,12b…ガス噴出口、13…ベース台、14…摺動台、15…摺動溝、16…滑車、17…錘、18…エアボンベ、19…エアバルブ、20…配管、21…エア制御装置、22…バーナー保持部、23…上下方向駆動台、24…保持アーム、25…前後方向駆動台、26…ガイド部、27,28…駆動モータ、29…ベース台、31…ガスボンベ、32…酸素ボンベ、33…配管、34…ガス流量制御弁、35…ガス流量制御装置、36…制御装置、37…放熱体、38…給水管、39…配水管。

Claims (11)

  1. 平行に配列した3心以上の光ファイバを、複数個のガス噴出口を2次元的に配列したバーナーで、バーナー火炎が内側から外側に向けて回り込むように加熱することにより、コア部に添加されているドーパントを熱拡散させて、光ファイバのモードフィールド径を拡大する方法であって、前記複数個のガス噴出口を2次元的に配列した形状が、前記光ファイバの軸方向に複数個のガス噴出口を配列するとともに、前記光ファイバの軸方向と平行に複数列配列した形状であり、かつ、前記バーナーによる加熱で、前記光ファイバの所定範囲を均一に加熱することができるように、前記光ファイバの軸方向と平行するバーナー部側の加熱量をバーナー中央部側の加熱量より少なくすることを特徴とする光ファイバのモードフィールド径拡大方法。
  2. 前記バーナー中央部側のガス噴出口の開口断面積を、前記バーナー側部側のガス噴出口の開口断面積より大きくすることを特徴とする請求項に記載の光ファイバのモードフィールド径拡大方法。
  3. 前記バーナー中央部側のガス噴出口の配列密度を、前記バーナー部側のガス噴出口の配列密度より大きくすることを特徴とする請求項に記載の光ファイバのモードフィールド径拡大方法。
  4. 前記バーナー中央部側の加熱面と前記光ファイバとの距離を、前記バーナー側部側の加熱面と前記光ファイバとの距離より小さくすることを特徴とする請求項に記載の光ファイバのモードフィールド径拡大方法。
  5. 前記バーナーを光ファイバ加熱中に、前記光ファイバの軸方向または直交方向に揺動することを特徴とする請求項1ないしのいずれか1項に記載の光ファイバのモードフィールド径拡大方法。
  6. 前記光ファイバは、モードフィールド径が異なる異種光ファイバを融着接続されたものであることを特徴とする請求項1ないしのいずれか1項に記載の光ファイバのモードフィールド径拡大方法。
  7. 平行に配列した3心以上の光ファイバを、複数個のガス噴出口を2次元的に配列したバーナーで、バーナー火炎が内側から外側に向けて回り込むように加熱することにより、コア部に添加されているドーパントを熱拡散させて、光ファイバのモードフィールド径を拡大する装置であって、前記複数個のガス噴出口を2次元的に配列した形状が、前記光ファイバの軸方向に複数個のガス噴出口を配列するとともに、前記光ファイバの軸方向と平行に複数列配列した形状であり、かつ、前記バーナーは、前記光ファイバの所定範囲を均一に加熱することができるように、前記光ファイバの軸方向と平行するバーナー部側の加熱量をバーナー中央部側の加熱量より少なくされていることを特徴とする光ファイバのモードフィールド径拡大装置。
  8. 前記バーナー中央部側のガス噴出口の開口断面積が、前記バーナー側部側のガス噴出口の開口断面積より大きくされていることを特徴とする請求項7に記載の光ファイバのモードフィールド径拡大装置。
  9. 前記バーナー中央部側のガス噴出口の配列密度が、前記バーナー側部側のガス噴出口の配列密度より大きくされていることを特徴とする請求項7に記載の光ファイバのモードフィールド径拡大装置。
  10. 前記バーナー中央部側の加熱面と前記光ファイバとの距離が、前記バーナー側部側の加熱面と前記光ファイバとの距離より小さくされていることを特徴とする請求項1に記載の光ファイバのモードフィールド径拡大装置。
  11. 前記バーナーを光ファイバ加熱中に、前記光ファイバの軸方向または直交方向に揺動させるように構成したことを特徴とする請求項7ないし10のいずれか1項に記載の光ファイバのモードフィールド径拡大装置。
JP2002328144A 2002-03-12 2002-11-12 光ファイバのモードフィールド径拡大方法および拡大装置 Expired - Fee Related JP3763358B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2002328144A JP3763358B2 (ja) 2002-03-12 2002-11-12 光ファイバのモードフィールド径拡大方法および拡大装置
DE60322997T DE60322997D1 (de) 2002-03-12 2003-03-07 Verfahren zur Erweiterung des Modenfelddurchmessers einer optischen Faser
EP03005145A EP1347320B1 (en) 2002-03-12 2003-03-07 Method of expanding the mode field diameter of an optical fiber
CA2421350A CA2421350C (en) 2002-03-12 2003-03-07 Method of and apparatus for expanding mode field diameter of optical fiber
US10/383,751 US7142771B2 (en) 2002-03-12 2003-03-10 Method of and apparatus for expanding mode field diameter of optical fiber
CN03120086.9A CN1260588C (zh) 2002-03-12 2003-03-12 用于扩大光纤模场直径的方法及设备

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002-67686 2002-03-12
JP2002067686 2002-03-12
JP2002328144A JP3763358B2 (ja) 2002-03-12 2002-11-12 光ファイバのモードフィールド径拡大方法および拡大装置

Publications (2)

Publication Number Publication Date
JP2003337235A JP2003337235A (ja) 2003-11-28
JP3763358B2 true JP3763358B2 (ja) 2006-04-05

Family

ID=27791019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002328144A Expired - Fee Related JP3763358B2 (ja) 2002-03-12 2002-11-12 光ファイバのモードフィールド径拡大方法および拡大装置

Country Status (6)

Country Link
US (1) US7142771B2 (ja)
EP (1) EP1347320B1 (ja)
JP (1) JP3763358B2 (ja)
CN (1) CN1260588C (ja)
CA (1) CA2421350C (ja)
DE (1) DE60322997D1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005227721A (ja) * 2004-02-16 2005-08-25 Sumitomo Electric Ind Ltd 光接続器、光モジュール、および光接続器の製造方法
US20050201677A1 (en) * 2004-03-13 2005-09-15 Qinglin Wang Multimode optical fiber coupler and fabrication method
TWI764143B (zh) 2006-05-16 2022-05-11 日商半導體能源研究所股份有限公司 液晶顯示裝置
EP2663887B1 (en) * 2011-01-14 2018-10-10 3SAE Technologies, Inc. Thermal mechanical diffusion system and method
JP5295438B2 (ja) * 2011-01-24 2013-09-18 株式会社フジクラ 光ファイバ融着接続機
PL2867019T3 (pl) 2012-06-29 2023-04-24 Saint-Gobain Performance Plastics Pampus Gmbh Łożysko ślizgowe zawierające system podkładu jako promotor przyczepności
US10745804B2 (en) * 2017-01-31 2020-08-18 Ofs Fitel, Llc Parallel slit torch for making optical fiber preform
CN107976741A (zh) * 2017-11-27 2018-05-01 天津艾洛克通讯设备科技有限公司 一种新型光纤熔接机的凉纤盘
JP7093053B2 (ja) * 2018-03-02 2022-06-29 三菱自動車工業株式会社 車両のサイドステップの構造
CN110542949B (zh) * 2019-09-20 2020-11-06 光越科技(深圳)有限公司 一种用于硅光波导连接和耦合的光纤制作方法及加热装置
CN112748495B (zh) * 2021-02-03 2022-05-20 厦门大学 一种制备低损耗高强度锥形光纤的装置和方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117508A (ja) 1984-11-13 1986-06-04 Nippon Telegr & Teleph Corp <Ntt> 光フアイバの接続方法
JPH087295B2 (ja) 1988-07-13 1996-01-29 住友電気工業株式会社 光分岐結合器の製造方法
JP2618500B2 (ja) 1989-10-17 1997-06-11 日本電信電話株式会社 光ファイバ接続方法
JPH03203706A (ja) * 1989-12-29 1991-09-05 Sumitomo Electric Ind Ltd 光フアイバカプラの製造方法
JP2693649B2 (ja) * 1991-02-15 1997-12-24 日本電信電話株式会社 光ファイバのモードフィールド径拡大装置
JPH0875946A (ja) 1994-09-07 1996-03-22 Sumitomo Electric Ind Ltd 光ファイバカプラの製造方法
US6242049B1 (en) * 1994-09-08 2001-06-05 Sandia Corporation Sealable stagnation flow geometries for the uniform deposition of materials and heat
JP3333647B2 (ja) 1994-09-13 2002-10-15 東京特殊電線株式会社 多心光ファイバテープケーブルの融着接続部加熱装置
US6253580B1 (en) 1997-12-19 2001-07-03 Fibercore, Inc. Method of making a tubular member for optical fiber production using plasma outside vapor deposition
JP2001004865A (ja) 1999-06-23 2001-01-12 Sumitomo Electric Ind Ltd 光ファイバの融着接続方法
US6245282B1 (en) * 1999-08-05 2001-06-12 Johns Manville International, Inc. Apparatus and method for forming fibers from thermoplastic fiberizable materials
JP4395224B2 (ja) 1999-10-22 2010-01-06 信越化学工業株式会社 光ファイバ製造方法、プリフォーム製造方法、及びプリフォーム製造装置
US6391444B1 (en) * 2000-03-14 2002-05-21 Johns Manville International, Inc. Core-sheath glass fibers
JP2001343549A (ja) * 2000-05-31 2001-12-14 Totoku Electric Co Ltd マイクロトーチの先端形状
JP2002072006A (ja) * 2000-08-28 2002-03-12 Sumitomo Electric Ind Ltd 光ファイバの接続方法
JP3753040B2 (ja) * 2001-09-25 2006-03-08 住友電気工業株式会社 光ファイバ融着接続部の加熱方法および加熱装置

Also Published As

Publication number Publication date
CN1444063A (zh) 2003-09-24
EP1347320A2 (en) 2003-09-24
JP2003337235A (ja) 2003-11-28
CA2421350C (en) 2010-07-20
CN1260588C (zh) 2006-06-21
US7142771B2 (en) 2006-11-28
EP1347320A3 (en) 2005-03-16
DE60322997D1 (de) 2008-10-02
US20040017987A1 (en) 2004-01-29
EP1347320B1 (en) 2008-08-20
CA2421350A1 (en) 2003-09-12

Similar Documents

Publication Publication Date Title
JP3763358B2 (ja) 光ファイバのモードフィールド径拡大方法および拡大装置
US6939060B2 (en) Method and apparatus for heating fusion spliced portion of optical fibers and optical fiber array
EP1293812B1 (en) Apparatus and method for heating optical fiber using electric discharge
CN102436030A (zh) 光纤端部加工方法及光纤端部加工装置
EP1202090B1 (en) Dispersion-compensating fiber system having a bridge fiber and methods for making same
US6565269B2 (en) Systems and methods for low-loss splicing of optical fibers having a high concentration of fluorine to other types of optical fiber
US20040114886A1 (en) Systems and methods for reducing optical fiber splice loss
JP3948360B2 (ja) 多心光ファイバのモードフィールド径拡大方法および拡大装置
JP2004157355A (ja) 光ファイバのモードフィールド径拡大装置
US20230378710A1 (en) System And Method For Manufacturing All-Fiber Side-Pump Combiners With Plurality of Pumps
JPH02118606A (ja) ファイバ形カプラの製造方法
JPH0882721A (ja) 多心光ファイバテープケーブルの融着接続部加熱装置
JP3753993B2 (ja) 高濃度のフッ素を有する光ファイバを他のタイプの光ファイバに低損失接続するためのシステムおよび方法
JP3847271B2 (ja) 光ファイバカプラ製造装置及び製造方法
JP2001343549A (ja) マイクロトーチの先端形状
JP2931610B2 (ja) 光ファイバカプラの製造方法
JP2003315598A (ja) 放電による一括融着接続方法および一括融着接続装置
JP4177152B2 (ja) 光ファイバの接続方法
US20100086263A1 (en) Method of Splicing Microstructured Optical Fibers
JP2004239966A (ja) 光ファイバカプラ、その製造方法およびその製造装置
KR20030034574A (ko) 광섬유 모재 오버 클래딩용 버너
JPH0492830A (ja) 一部楕円コア光ファイバの作製方法
JP2004347946A (ja) 光ファイバカプラの製造装置及び製造方法
JPH03203705A (ja) 光フアイバカプラの製造装置
JPH0348204A (ja) ファイバ融着型光デバイス製造用バーナ及び該バーナを用いたファイバ融着型光デバイスの製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140127

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees