JP3761906B2 - 走査プローブ顕微鏡及びその制御誤差の補正方法 - Google Patents

走査プローブ顕微鏡及びその制御誤差の補正方法 Download PDF

Info

Publication number
JP3761906B2
JP3761906B2 JP27665893A JP27665893A JP3761906B2 JP 3761906 B2 JP3761906 B2 JP 3761906B2 JP 27665893 A JP27665893 A JP 27665893A JP 27665893 A JP27665893 A JP 27665893A JP 3761906 B2 JP3761906 B2 JP 3761906B2
Authority
JP
Japan
Prior art keywords
probe
sample
cantilever
correction
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27665893A
Other languages
English (en)
Other versions
JPH06281444A (ja
Inventor
純男 保坂
敦 菊川
肇 小柳
幸雄 本多
潔 長澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP27665893A priority Critical patent/JP3761906B2/ja
Publication of JPH06281444A publication Critical patent/JPH06281444A/ja
Application granted granted Critical
Publication of JP3761906B2 publication Critical patent/JP3761906B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、探針により試料表面の構造や状態を観察する走査プローブ顕微鏡に係り、特に探針を保持するカンチレバーの撓みを制御しながら試料を走査する顕微鏡に関する。代表的には原子間力顕微鏡であるが、試料表面の形態観察のみでなく種々の物理的性質の分布を計測する顕微鏡、さらには情報を媒体表面に記録するための微細加工の機能をも備えた装置にも関係する。
【0002】
【従来の技術】
走査プローブ顕微鏡と呼べるものの最初の例は1983年に開発された走査トンネル顕微鏡(STM)である。これはトンネル電流を利用したものである。その後、固体プローブを使用し、これを試料表面にnmのオーダで近接させ、種々の物理現象を利用して使用表面の構造や物性を原子オーダの解像度で観察あるいは計測する装置が次々と提案された。この中で、原子間力顕微鏡(AFM)はトンネル電流の代りに原子間力、磁気力、光、音等を利用した顕微鏡である。カンチレバーの先端に有する探針と試料とに働く微小力(斥力あるいは引力)を一定に保ち、即ち、カンチレバーの撓みを検出し、サーボにより撓みを一定に保ちつつ、試料を走査して探針の動きにより表面を観察するAFMについては特開昭62−130302号に論じられている。
【0003】
さらに、ジャーナル・オブ・バキューム・サイエンス・アンド・テクノロジー(J. Vac. Sci. Technol.)、A8巻(1990年)、第369〜373頁には光てこ方式でカンチレバーの撓みを拡大して検出する機構を備えた原子間力顕微鏡が記載されている。
【0004】
また、アプライド・フィジックス・レターズ(Applied Physics Letters)第61巻(1992年)、第8号、第1003〜1005頁には、原子間力顕微鏡の原理を用い、さらに赤外レーザ光によりプローブ尖端を加熱して試料表面に情報を示すピットを形成する情報書き込み機能を付加した装置、つまり原子間力顕微鏡の原理を応用した情報ストレージ装置が示される。
【0005】
【発明が解決しようとする課題】
光てこによりカンチレバーの撓みを拡大して検出する機構を備えた走査プローブ顕微鏡、あるいはその原理を用いた関連する装置では、カンチレバーの撓みによるプローブ尖端の変位を約1000倍にも拡大して検出することができる。その反面、この鋭敏なカンチレバーを使用しているので、これを安定に動作させるには種々の難かしさがある。例えば、カンチレバーにはその撓みを検出するためにレーザ光が照射されているが、レーザ光照射には加熱効果があり、それだけでカンチレバーに反りが生じる。カンチレバーの先端に力が加わって生じる撓みと区別するため、これを自由状態での反りと呼ぶ。この反りの量は個々のカンチレバでバラツキがある。また周囲温度などの環境の変化により変動する。特に、真空中で試料表面を観察するようにした走査プローブ顕微鏡では、真空排気に伴う断熱膨張で温度が変化したり、また真空排気が進むにしたがいカンチレバからの熱放散の度合いが変化し、カンチレバの反りが大きく変化する。また、エージングによっても反りの量が変化する。
【0006】
カンチレバの自由状態での反りが変化したままで走査プローブ顕微鏡を駆動すると、探針と試料との間の力を制御するサーボ制御に誤差が生じる。誤差が著しい場合は、探針に試料からの力が加わらない状態でプローブの走査が成されたり、もしくは逆に予定以上の力が加わって、試料もしくはプローブを破損することもある。
【0007】
従って本発明の一つの目的は、プローブ先端の探針と試料との間に働く力を常に精度良く制御でき、もって再現性のある試料の観察結果が得られる走査プローブ顕微鏡を提供することにある。
【0008】
本発明の別の目的は、真空中の試料の表面を観察できる走査プローブ顕微鏡を提供するにある。
【0009】
本発明の更に別の目的は、試料の観察のための準備動作を容易に迅速に行える走査プローブ顕微鏡を提供するにある。
【0010】
【課題を解決するための手段】
本発明の特徴は、カンチレバの撓みを検出する変位検出器の出力信号のレベルに補正を加える補正手段を設け、補正された変位検出信号が所定の目標値に一致するよう試料とプローブとの相対距離をサーボ制御する点にある。より詳しくは、上記補正手段は探針と試料表面を十分に離してカンチレバを自由状態としたときの上記変位検出器の出力信号のレベルを保存する手段と、保存されたレベルに応じて上記変位検出器の出力信号をレベルシフトする手段を有する。
【0011】
本発明の別の特徴によれば、補正手段としてカンチレバを自由状態としたときの上記変位検出器の出力信号のレベルを取り込み、このレベルを新たな基準値としてサーボ制御の目標値を算出する手段を設ける。
【0012】
本発明の更に別の特徴は、上記カンチレバの取付け位置もしくは上記変位検出器の取付け位置の少なくとも一方を微小調整し、上記カンチレバを自由状態としたときの上記変位検出器の出力信号のレベルを所定の基準値に向けて調整可能する機構、つまり機械的補正手段を設けた点にある。変位検出器として、光てこ式変位検出器を用いる装置の場合は、この機械的補正手段としてカンチレバで反射したレーザ光の位置を検出する光位置検出器の取付け位置を微小調整する手段を採用できる。一方カンチレバ取付け位置を微小調整する機械的補正手段としては、圧電素子を介してカンチレバをベースに取付け、圧電素子への印加電圧によりカンチレバ取付け位置を調整する手段が採用できる。
【0013】
試料を新たにセットした際の観察準備の手順は以下の通りとなる。まずプローブと試料の相対距離(繰り出し距離)を設定する位置設定手段を起動して探針を試料表面に接近させる。探針が試料表面を検知したところで位置設定手段の動作を反転して繰り出し距離を所定量減少させ、カンチレバを自由状態とする。この状態で上述の補正手段により変位検出器の出力信号の補正を行う。しかる後に、探針を再び試料表面に接近させ、探針が再び試料表面を検知してから一定量だけ繰り出し距離の増加を継続する。この状態で位置設定手段を固定し、観察準備を完了する。
【0014】
【作用】
カンチレバを自由状態としたときの上記変位検出器の出力信号のレベルを保存し、これに応じて検出器の出力信号を補正する手段を備える、もしくはこれに応じてサーボ制御の目標値を算出する手段を備えるいずれの構成でも、カンチレバ自身の反りにより生じるサーボ制御の誤差が精度良く、迅速に補正される。また、補正動作は余り人手を掛けずに容易に行える。よって、探針に加わる力を所望の値に保持して探針の動きによる試料表面の観察ができ、再現性のある観察結果が得られる。
【0015】
カンチレバもしくは位置検出器の取付け位置を調整する機械的補正手段では、上述の電気的補正手段に比べると補正精度、及び迅速性でやや劣るものの、同様の結果が得られる。特に、カンチレバに大きな反りが生じればこの機械的補正が必要となることがある。つまり、まず機械的補正により変位検出器の出力信号に含まれる誤差を電気的補正手段の補正範囲内に納め、最終的には電気的補正も加えて精密な補正を行なう。特に、真空中で動作させる走査プローブ顕微鏡では、真空排気前に機械的補正あるいは電気的補正を行ない、真空排気後に電気的補正のみを行なうのが便利である。
【0016】
探針が試料表面を検知するまで探針(または試料)を繰り出し、次に繰り出し距離を減少させてカンチレバを自由状態とし、位置検出出力の補を行った後、再度探針(または試料)を繰り出し、探針が試料表面を検知してからなお一定量だけ繰り出しを継続して停止する試料観察の準備手順によれば、、カンチレバ自身の変形によるサーボ制御の誤差が除去されるとともに、サーボ制御のアクチュエータの適正な制御範囲内で力一定制御を行なう準備がなされるので、再現性の良い試料の観察結果が得られる。また、この観察準備をシーケンス制御により自動的に行なう構成とすることもできる。
【0017】
【実施例】
図1は、本発明の実施例の原子間力顕微鏡の構成を示した図である。本装置は基本的には真空中の試料を観察するよう構成されている。
【0018】
先端に探針17を備えたカンチレバ1がプローブベース23に取付けられプローブを形成する。またプローブベース23には光てこ方式変位検出器30が搭載される。観察対象である試料2はXYZスキャナ14に搭載され、観察対象面が探針17に近接するよう配置される。プローブベース23は尺取虫機構31を介してテーブル29に支持されており、尺取虫機構31の駆動によりプローブのZ軸方向のポジシニングができるようになっている。Z軸は観察対象面と垂直である。なお、XYZスキャナ14は粗動機構を介して上記テーブルに支持されている。またテーブルは除振機構を介して装置ベースに取り付けられる。この装置ベース、除振機構、粗動機構などは図から省略されている。これらの機構系は真空容器24の中に設置される。すなわち、試料2をXYZスキャナ14に搭載した後、真空排気系27を動作させ、真空中で試料2の表面を観測するようになっている。制御ユニット45からは、装置各部を制御する制御信号が発せられる。
【0019】
光てこ方式微小力検出器30は、カンチレバ1の先の探針17に力が加わった時に生じるカンチレバの撓みを拡大して検出する。すなわち半導体レーザ素子3から発せられたレーザビーム18は集光用レンズ20でカンチレバ1の背面に集光される。カンチレバ1の背面からの反射ビーム19はミラー21aおよび21bで反射して光位置検出器4に入射する。光位置検出器4は2個の電流出力を有し、それら電流出力の比は光位置検出器4に入射する光の位置に依存する。変位検出回路5は上記2個の電流出力を受け、これを反射ビーム19の基準位置からの偏向に比例した電圧をもつ変位検出信号に変換する。この光てこ方式光学系の拡大率は約1000倍であり、1Åの探針17の位置変化が光位置検出器の受光面4上で約0.1μmとなり、Åオーダ以下の探針の位置変化も検出できる。なお、光位置検出器4は移動機構22を介して検出器ベース23に取り付けられており、移動機構22により光位置検出器4そのものの位置を調節できる。
【0020】
XYZスキャナ14として、例えばトライポッド型圧電素子スキャナが用いられる。つまりXYZスキャナ14はX軸圧電素子、Y軸圧電素子及びZ軸圧電素子を含み、これらの圧電素子により駆動される可動端に試料2が搭載される。X軸圧電素子及びY軸圧電素子はXY走査回路13で制御され、もって探針17が試料の観察対象領域を走査するように試料2の位置が2次元走査される。一方、Z軸圧電素子はカンチレバ1の先の探針17と試料表面との間に生じる斥力を一定に保つサーボ制御のために用いられる。すなわち、上記変位検出回路5で得た変位検出信号は、信号補正回路25で電圧値が補正されてサーボ回路9に導かれる。サーボ回路9は、補正された変位信号のレベルが設定された目標値になるようにZ制御信号を発生してZ軸圧電素子を駆動する。これにより光位置検出器4で検出される反射ビームの偏向量が一定に保たれるように、ひいてはカンチレバ1の撓みが一定に保たれるように試料2のZ軸方向の位置が微細に制御され、もって探針17と試料表面との間に生じる斥力を一定に保つソフトコンタクトドライブが実行される。ただし、このようなソフトコンタクトドライブを可能にするためには、サーボ回路9に入力する変位検出信号が探針17と試料表面との間に生じる斥力を正しく反映していること、およびZ軸圧電素子は、その伸縮の制御範囲内で駆動されることの二つの条件を満足しなければならない。この2条件を達成するために信号補正回路25及び尺取虫機構31が使用される。以下これらの部分の機能について詳述する。
【0021】
光てこ方式変位検出器30に取り付けられるカンチレバ1の自由状態での反りは、個々にバラツキがある。また、カンチレバ1の取付けの際の誤差によっても、カンチレバ1が自由状態であるときの変位検出回路5の出力電圧にバラツキが生じる。さらに、真空容器24の内部を真空排気すると、カンチレバ1の自由状態での反りは例えば図2のように変化する。図2(a)では、大気中でのカンチレバ1の姿勢を実線で、真空排気後の撓みの形を破線で示してある。これはレーザ光18で照射されたカンチレバ1の熱放散が大気中と真空中とで大きく変わり、カンチレバ1の温度が変化したためである。その結果、反射されたレーザ光19はP1点からP2点にシフトする。図2(b)は、この時間変化を変位検出回路5の出力電圧で表わしたものである。このように変位検出回路5の出力電圧は排気の始めには急激な変化を示し、その後、元に戻ろうとするが、大気中とは異なったレベルに収斂する。この変化の様子はカンチレバ1の種類によって異なる。いずれの場合でも、カンチレバが自由状態のときの変位検出信号のレベルに対応して変位検出回路5の出力電圧を補正する必要がある。本実施例では信号補正回路25により、この補正を電気的に行う。
【0022】
信号補正回路25は変位検出回路5の出力電圧を入力するサンプルホールド回路51と、変位検出回路5の出力電圧をサンプルホールド回路の出力電圧だけレベルシフトして出力するレベルシフト回路52を含んでいる。まず検出器ベ−ス23の位置が試料12から遠ざかるように尺取虫機構31を動作させて探針17と試料表面との間に斥力が加わらないようにする。つまり、カンチレバ1を自由状態にする。この状態で信号補正回路25のサンプルホールド回路をサンプル動作させる。これにより、信号補正回路25の出力はレベルシフトされ、探針17に実際かかる斥力がゼロのときサーボ回路9の入力が基準値(本実施例ではゼロボルト)となるように補正される。以上のようにして信号補正回路25による補正(較正)が完了する。つぎに、尺取虫機構31により検出器ベ−ス23を一定距離だけ前方に繰りだす。サーボ回路9は、信号補正回路25からの補正された変位検出信号のレベルが設定された目標値となるようZ制御信号を発生してXYZスキャナ14のZ軸圧電素子を駆動するので、探針17と試料表面との間に生じる斥力を一定に保つソフトコンタクトドライブが正しく実行される。この状態でXY走査回路13を駆動して、試料2を二次元走査すると、試料2の表面の凹凸に倣うようにXYZスキャナ14のZ軸圧電素子が制御され、この制御電圧から試料2の高さ方向の情報を得ることができる。さらに、これらのX、Y、Zの値を計算機システム12に入力することにより、試料2の表面の三次元像が得られる。尚、サンプルホールド回路には、ホールド出力を長時間一定に保持できないものが多い。ホールド期間中にホールド出力が変化すると、これに起因して探針17に加わる力に誤差が生じるので、これを防ぐため信号補正回路25のサンプルホールド回路51の部分をデジタル計算機システムで構成するのがより好ましい。すなわち、カンチレバ1を自由状態にしたときの変位検出回路5の出力電圧をAD変換してデジタル計算機のメモリに取り込む。メモリに保存された値をメモリから読みだしてDA変換し、レベルシフト回路52に与える。信号補正回路25の全体をデジタル計算機システムで構成する、もしくはアナログ動作のサンプルホールド回路のホールド出力をAD変換してデジタル計算機のメモリに取り込む構成とする等の変形も可能である。
【0023】
次に、上述した補正の時期について述べる。本実施例では、試料をセットし、真空容器内を真空排気するたびに上述した補正をおこなう。この場合の具体的動作は後で更に詳しく述べる。一方、一旦真空容器内を真空排気した後に、観察領域を変える、もしくは探針17と試料表面との間の斥力の設定値などの条件を変えて観察を複数回繰り返すのが一般的である。真空容器内を真空排気した時にはカンチレバ1の環境が激変するので、その自由状態での反りが収斂するのにある時間を要することを考慮すると、真空容器内を真空排気した際には複数回上記の補正を実行し、補正の合間に試料の観察を行うのが好ましい。真空排気した後に一定時間が経過すれば、その後は補正動作を入れずに観察を繰り返してかまわない。
【0024】
一方、真空排気を行わずに試料を観察する場合がある。また、図1の構成から真空排気系27及び真空容器24を除いた走査プローブ顕微鏡も存在する。このような装置でも、観察する試料を交換したとき、もしくは外気温度が変化したとき、カンチレバ自身の反りが変化する可能性もある。したがって、新たな試料をセットする毎に、観察に先立ち上記の補正を行うのも効果がある。
【0025】
また、装置各部の経年変化に対処するためには、装置の動作時間、もしくは絶対時間を積算するタイマを設け、時間の積算値が一定値に達する毎に上記の補正を行うのがよい。
【0026】
カンチレバの変形に起因す変位検出信号の誤差の補正方法として、電気的な方法だけではなく、機械的な方法もある。これは図1の移動機構22を用いて変位検出回路5の出力が基準レベルになるように光位置検出器4の位置をY方向に移動する方法である。ただし、上述の信号補正回路25による電気的補正はこの機械的補正より簡便であり、かつ自動的に行える利点を有する。また、機械的に1μm以下の位置精度を出すことは極めて困難なため、移動機構22を用いた補正を行っても、最終的には上述した電気的補正を更に加えることが必要な場合が多い。真空排気したことによるカンチレバの環境変化に対応して力一定サーボ回路の入力信号を補正するのに移動機構22を用いるには、真空容器24の外部から移動機構22が操作可能でなければならない。これに対し、上記実施例のように信号補正回路25を設けた装置構成では、移動機構22は、真空容器24を取りはずして初めて操作可能になるものでも良い。但し、真空排気に先立ち、移動機構22の操作による較正を予め行い、真空排気後に信号補正回路25による電気的補正を行うのが好ましい。いずれの装置構成でも、短期間ごとの補正は変位信号補正回路25のみにより行い、より長期間ごとの補正の際には移動機構22の操作をも行うのが実際的である。
【0027】
次に、試料2を交換した際に変位検出信号のレベルを補正する具体的な手順を図3を参照して説明する。図3にて、(a)はXYZスキャナ14のZ軸圧電素子の伸び量の時間変化、(b)は尺取虫機構31による検出器ベース23の繰り出し距離の時間変化、(c)はサーボ回路9への入力信号の時間変化を示す。較正動作は以下の▲1▼〜▲8▼の手順で行われるが、これは図3中の時間区分▲1▼〜▲8▼に対応している。
【0028】
▲1▼ まず、尺取虫機構31によりプローブベース23を連続的に前方に繰り出す。つまりプローブベース23をZ方向に移動させる。当初、探針17は試料2の表面から十分に離れているので、サーボ回路9への入力信号は探針17と試料表面との間に加わる力がゼロであることを示す基準値(図3の例ではゼロボルト)に本来なるべきだが、カンチレバ1自身の変形により、Voffになっている。探針17が試料2の表面に到達すると、力一定サーボ制御により、サーボ回路9への入力信号は図のように目標値Vfにほぼ等しくなる。
【0029】
▲2▼ 尺取虫機構31を更に一定時間動作させ、検出器ベース23をさらに前方に繰り出す。検出器ベース23が前方に移動するに従い、XYZスキャナ14のZ軸圧電素子の伸び量は力一定サーボ制御により伸びきった状態から徐々に小さくなる。
【0030】
▲3▼ 次に、尺取虫機構31の駆動方向を反転し、プローブベース23を後退させる。XYZスキャナ14のZ軸圧電素子の伸び量は逆に増加し、伸びきった状態に戻る。なお、尺取虫機構31の駆動方向の反転は、例えばサーボ回路9の入力信号レベルのモニタにより自動的に行うことができる。つまり、サーボ回路9の入力信号がVfの近傍に到達してからの経過時間を監視するタイマを制御ユニット45に設け、経過時間が一定値に達したら自動的に尺取虫機構31の駆動方向を反転すれば良い。力一定サーボ制御が有効に機能し、探針17が試料2の表面に押圧されている期間(図3の▲2▼,▲3▼)では電圧Vfを目標値としてフィードバック制御がおこなわれるものの、探針17に実際に加わる力はVoffとVfとのレベル差Vf′に対応する力となる。
【0031】
▲4▼ Z軸圧電素子が伸びきった状態となった後も尺取虫機構31による後退の動作を継続し、探針17が試料2から離れた地点からdだけ、さらに遠ざける。dは表面からの力の影響が無視できる距離で、具体的には2μm以上である。
【0032】
▲5▼ この位置で探針17を固定し、力一定サーボ回路9の入力信号を補正する。具体的には、入力信号をVoffだけレベルシフトして基準値(図3ではゼロボルト)になるように補正する。前述したように、信号補正回路25のサンプルホールド回路をサンプル動作させることにより補正を自動的に、かつ迅速に行うことができる。また移動機構22が操作可能ならこれの手動操作で補正を行っても良い。
【0033】
▲6▼ 補正の完了後、再び尺取虫機構31による繰り出し動作を開始する。探針17が試料2の表面に再び到達すると、サーボ回路9が有効に機能しはじめ、サーボ回路9への入力信号は再び目標値Vfとなる。探針17に加わる力は、設定された目標値Vfに相当する力になる。
【0034】
▲7▼ 探針17が試料2の表面に到達した後も引き続き尺取虫機構31により繰り出し動作を継続し、XYZスキャナ14のZ軸圧電素子の伸び量を減少させる。
【0035】
▲8▼ Z軸圧電素子の伸び量が適正になったところで尺取虫機構31による繰り出し動作を停止して検出器ベース23の位置を固定する。これにより、試料2をXY平面内で2次元走査して試料表面を観察するための準備動作が完了する。通常はZ軸圧電素子の伸び量が伸び量の制御範囲の中央値付近になったとき繰り出し動作を停止するのが最も好ましい。なお、上述の適正な位置でのプローブベース23の固定は、力一定サーボ回路9の出力であるZ制御信号と設定伸び量を示す参照信号との比較により自動的に行うことができる。
【0036】
以上により、カンチレバ自身の反りに起因する力一定制御の誤差の補正と、プローブベースの適正位置まで繰り出しとを含む試料観察の準備動作が迅速にできる。とくに、制御ユニット45による自動的なシーケンス制御で図3に示した準備動作を実行すると、サーボ回路9の入力信号を補正した時点から試料の観察開始までの時間を著しく短くできる。したがって、真空排気時など変化の激しい環境においても、信頼性の高い試料の3次元データを得ることができる。尚、光位置検出器4はポシションセンサ−ダイオ−ドあるいは分割型ホトダイオ−ドが適当である。ポジションセンサ−ダイオ−ドは2出力型のものと4出力型のもの、分割型では2分割のものと4分割のものがあり、4出力型あるいは4分割を使用した場合、原子間力及び摩擦力が検出できるので好都合である。
【0037】
図4は、走査型電子顕微鏡(SEM)の試料台に原子間力顕微鏡ユニット(AFMユニット)を組込んだ別の実施例の主要部を示す。SEM用ベース37の上に、SEM用XY移動機構32、その上に金属板34とゴムのように軟らかいダンパ材35を積層した除振機構33、さらにその上にAFMユニットを固定したAFM用ベース42、を順次、積み上げ、それらを真空フランジ39に取り付けた構造になっている。AFMユニットは探針を含む光てこ式変位検出器30、この検出器30を試料2に向けて繰り出す、もしくは後退させるための尺取虫機構31、試料2を支持、走査するXYZスキャナ14、さらにこのスキャナ14をXYに動かしAFMでの視野選択するためのXY移動機構38から構成されている。ここでAFM用ベース42の底面はSEM用ベース37と平行で、SEMの対物レンズ40を出た電子ビーム41の軸と直交している。また、探針17と試料2とは同時にSEMで観察できるようになっている。
【0038】
この実施例で、原子間力顕微鏡(AFM)を駆動する電子回路部分、及びデータ処理のための構成は図1に示した実施例と全く同様であり、また真空排気に伴うカンチレバ自身の撓みによる誤差の較正の動作も全く同様である。このSEMとAFMの結合システムを用いると、探針でAFM観察する領域の選定精度が光学顕微鏡に比べて遥かに向上し、サブミクロンオーダでの視野選択が可能になる。また、SEMにより探針17の先端の評価を行うこともできる。さらにこのシステムでは、SEM像とAFM像とを同時に観察することができる。
【0039】
本実施例で原子間力顕微鏡と走査型電子顕微鏡との複合を示したが、その他に、透過型電子顕微鏡、2次イオン質量分析計、オージェ電子分析計、電子線プローブマイクロアナライザなどの真空を利用した理化学機器、あるいは分子線エピタキシー装置、電子線描画装置、イオン打込み装置、電子線測長装置などの半導体プロセス用装置との組合せもあり得る。
【0040】
図5はさらに別の実施例を示す。この実施例の原子間力顕微鏡が図1の実施例と異なるのは、変位信号補正回路25が省略され、変位検出回路5からの検出信号がサーボ回路9に直接入力される点である。また、カンチレバ1自身の変形による力一定サーボ制御の誤差を解消するために、カンチレバ1は圧電素子47を介してプローブベース23に取り付けられている。さらに圧電素子47を駆動する駆動回路48、および変位検出回路5の出力信号レベルを表示する表示器49が付加されている。その他は図1の実施例と全く同様であり、図1と共通する部分には同一符号を付している。
【0041】
図5の実施例における変位検出信号の補正は以下のように実行される。前述の実施例と同様に、まず尺取虫機構31による繰り出し距離を減少させ、カンチレバ1を自由状態にする。次に駆動回路48の出力電圧を調整し、カンチレバ1の姿勢を微小調整する。このとき表示器49に表示される変位検出回路5の出力信号レベルを参照しながら調整を行い、出力信号レベルが基準値となったら駆動回路48の出力電圧を固定し、補正を完了する。真空排気後の補正をこの方法で行う場合、真空排気に先立って移動機構22による補正を予め実行した方が良いのは本実施例でも同様である。
【0042】
図6はさらに別の実施例を示す。これまで示した種々の実施例では、カンチレバ1の変形に起因する力一定サーボ制御の誤差を解消するために、変位検出信号のレベルが補正されるのに対し、図6の実施例では力一定サーボ制御の目標値
Vfが補正される。このために、サーボ回路9による力一定サーボ制御の目標値Vfは計算機システム12で算出され、サーボ回路9に与えられる。また変位検出回路5から出力する変位検出信号を計算機システム12に取り込むための入力装置50が付加されている。その他は図5の実施例と同様であり、図5と共通する部分には同一符号が付してある。
【0043】
これまでの実施例と同様に、まず尺取虫機構31による繰り出し距離を減少させ、カンチレバ1を自由状態にする。この状態で、入力装置50を起動し、変位検出回路5の出力している変位検出信号を計算機システム12に取り込む。カンチレバ1が自由状態であるので変位検出信号のレベルは基準値(例えばゼロボルト)であるべきだが、カンチレバ1が変形していれば取り込まれる変位検出信号のレベルはVoff となる。計算機システム12には力一定サーボ制御の基準値を格納するためのレジスタが設定されており、このレジスタの内容を取り込まれたVoff の値に書き替える。つまり新たな基準値が設定される。また計算機システム12には変位検出信号に誤差が無いときの力一定サーボ制御の目標値Vft が格納された別のレジスタがある。新たな基準値への書替えの後、計算機システム12はVft とVoff との和を算出し、この和の値を新たな目標値Vfとしてサーボ回路9に出力する。
【0044】
以上により変位検出信号のレベルを補正したのと等価な補正が行われるので、補正動作のあと尺取虫機構31によりプローブを前方に繰り出すと、サーボ回路9による力一定サーボ制御が正確に機能し、探針17に加わる力は目標値 Vft に正確に対応した値となる。なお、実施例では計算機システムによりサーボ回路の目標値を補正する構成としたが、アナログ回路で同等な補正を実現することもできる。つまり、図1の信号補正回路25と同様なサンプルホールド回路、レベルシフト回路により目標値を補正することもできる。
【0045】
図5の実施例で説明した圧電素子47による調整で変位検出回路5の出力信号レベルを完全に基準値に一致させるには、極めて微妙な調整が必要である。これに対し、図6の実施例で述べた補正は、自動的に正確に行われる。ただし、
off の値が本来の基準値(ゼロボルト)から大きくずれている場合には、図5の実施例で説明した圧電素子47による調整を予め行い、Voff を許容範囲内にしてから計算機システム12へのVoff の取り込みを開始しなければならない。
【0046】
図7は更に別の実施例を示す。本実施例は、カンチレバに作用する力を所定値(目標値)に制御するために光干渉方式の変位検出器103を用いた原子間力顕微鏡である。探針109を備えたカンチレバ104とXYZスキャナ100とを接続するプローブベース102の内部にはレーザ投光器105とハーフミラー112と反射ミラー111とホトダイオード106が設けられる。レーザ投光器105から照射されたレーザ光の一部は、ハーフミラー112によりホトダイオード106へ導かれる。ハーフミラー112を通過したレーザ光は反射ミラー111で反射してハーフミラー112に再び到達し、カンチレバ104に導かれる。カンチレバ104で反射したレーザ光はハーフミラー112を通過してホトダイオード106へ到達する。その際、最初にハーフミラー112によりホトダイオード106へ導かれたレーザ光(参照光)と、カンチレバ104で反射されたレーザ光とが干渉しあう。ホトダイオード106は変位検出回路55により駆動されており、変位検出回路55の出力信号はホトダイオード106の受光強度を反映している。この出力信号は変位検出信号としてサーボ回路9に与えられる。サーボ回路9はXYZスキャナ100のZ軸圧電素子を駆動してカンチレバ104の撓みが一定になるようにプローブベース102の位置をサーボ制御する。図7では省略しているが試料とプローブとの相対距離を微小調節するポジショナが設けられる。本実施例では、探針109に加わる力を一定に制御し、さらにまた探針と試料の相対位置をXY平面内で二次元走査するためのXYZスキャナ100をプローブ側に配置し、Z方向距離(繰り出し距離)を調節するポジショナを試料側に配置している。これらは、プローブ側、試料側のいずれに配置しても良いことは明らかである。
【0047】
サーボ回路9の動作を停止し、試料2を探針109に向かって徐々に繰り出した場合のホトダイオード106の受光強度の変化を図8で説明する。試料2と探針109が離れており、カンチレバ104が自由状態である範囲では受光強度は一定の値である。繰り出し距離が増加し、探針109に加わる斥力によりカンチレバ104が撓むと、カンチレバ104で反射したレーザ光と参照光との位相差が変化し、受光強度が変化する。その変化は、繰り出し距離の増加に対し、より正確にはカンチレバのレーザ照射面の変位に対し正弦波を描き、その正弦波の周期はレーザ光の波長の2分の1と等しくなる。そこで、図8に実線で示すように、カンチレバ104が自由状態であるときの受光強度が最大強度と最小強度の中間値になるようにし、試料の繰り出しにより一旦受光強度が変化してから再びこの中間値近傍になったとき試料を固定し、中間値を目標値としてサーボ回路9とZ軸圧電素子によるサーボ制御を行えば、カンチレバ104の撓みをレーザ光の4分の1波長に対応するDbに制御することができる。このように探針109に加わる斥力を一定に制御できるが、温度変化などでカンチレバ自身が変形し、自由状態でのホトダイオード106の受光強度が図8の破線のように変化すると、上記中間値を目標値とするサーボ制御の結果、探針109に加わる斥力は、図中にDaと示した撓みに対応した値となる。
【0048】
そこで、図7の実施例では、カンチレバ104は圧電素子113を介してブロック102に取り付けられている。駆動回路48の出力により圧電素子113を制御してカンチレバ1の位置を調整できる。また、変位検出回路55の出力する変位検出信号のレベルを表示する表示器49を備える。試料2の観察に先だち、試料2を後退させてカンチレバ104を自由状態にする。次に駆動回路48の出力電圧を調整し、カンチレバ1の位置を微小調整する。このとき表示器49に表示される変位検出回路55の出力信号レベルを参照しながら調整を行い、出力信号レベルが所定値(本実施例の場合、最大値と最小値の中間値で、サーボ回路9に設定する目標値と等しい)となったら駆動回路48の出力電圧を固定する。このような補正を行った後、ポジショナにより試料を所定距離だけ繰り出し、サーボ回路9によるサーボ制御を開始すると、探針109に加わる斥力をDbに正しく制御できる。
【0049】
以上表面顕微鏡、特に原子間力顕微鏡に本発明を適用した種々の実施例を示した。本発明にかかる技術はカンチレバの撓みを利用して探針と試料との間に生じる微小力を検知することにより観察画像を得る走査プローブ顕微鏡に広く適用できる事は明らかであろう。即ち、試料表面と探針尖端の間に働く原子間斥力ではなく原子間吸着力(引力)を検知してこれを制御する構成でも良い。さらに試料表面からの漏れ磁界による磁気力を検知する、試料と探針の間の静電力を検知するなど、種々の構成をもつ走査プローブ顕微鏡に本発明の技術を適用できる。また、情報を読みだす動作は走査プローブ型顕微鏡そのものであり、更に媒体表面に情報書き込みを行う手段を設けた装置に本発明に係る技術を適用することも可能である。この場合、情報書き込みには、探針による試料表面の電界蒸発作用、熱化学作用、熱による相変化作用、熱機械作用、機械加工、電荷注入、垂直磁気反転などの作用により実現できる。これにより、超高密度のファイルシステムが実現でき、本発明をこれらのシステムに適用することにより、高精度な情報処理が実現できる。
【0050】
【発明の効果】
以上説明したように、本発明に係る走査プローブ顕微鏡では、探針を先端に有するカンチレバの反りのバラツキを補正することができ、探針と試料表面との間で極めて正確な力一定サーボが実現できる。これにより高精度な観察や情報処理が可能となる。さらに、真空排気する際に生じるカンチレバの反りの変化も補正でき、電子顕微鏡をはじめとする種々の超高真空排気システムと走査プローブ顕微鏡の複合化が可能になる。
【図面の簡単な説明】
【図1】本発明一実施例である原子間力顕微鏡のブロック図である。
【図2】実施例の真空排気時に生じるカンチレバの反りの様子を及びその時間経過を示す概念図及び特性図である。
【図3】実施例の自動補正動作を説明するタイムチャートである。
【図4】原子間力顕微鏡を走査型電子顕微鏡の試料台に組込んだ別の実施例の主要部を示す部分断面図である。
【図5】更に別の実施例のブロック図である。
【図6】更に別の実施例のブロック図である。
【図7】更に別の実施例のブロック図である。
【図8】図7の実施例の制御特性を示す概念図である。
【符号の説明】
1、104…カンチレバ、2…試料、4…光位置検出器、5…変位検出回路、9…サーボ回路、12…計算機システム、13…XY走査回路、14、100…XYZスキャナ、17、109…探針、23…プローブベース、24…真空容器、25…信号補正回路、27…真空排気系、30…光てこ式変位検出器、47、113…圧電素子、48…駆動回路、49…表示器、50…入力装置、51…サンプルホールド回路、52…レベルシフト回路、55…変位検出回路、105…レーザ投光器、106…ホトダイオード。

Claims (12)

  1. 一端に探針を備えるカンチレバと、該カンチレバを保持するプローブベースとを有するプローブ、
    上記プローブベースと、上記探針に近接して配置される試料との少なくとも一方を駆動して上記プローブと上記試料との相対位置を上記試料の観察対象表面を含む平面内で移動する走査手段、
    上記プローブベースと上記試料との、上記試料の観察対象表面を含む平面と垂直方向の相対距離を調節する位置設定手段、
    上記カンチレバの撓みを検出する変位検出手段、
    上記カンチレバが自由状態であるときのカンチレバの反りのバラツキや変化に対応する上記変位検出手段の検出出力を補正することにより上記カンチレバの自由状態での上記反りを補正する補正手段、
    補正された上記変位検出手段の検出出力を入力して上記プローブと上記試料との相対距離を制御し、もって上記試料と上記探針の間に働く力を制御するサーボ制御手段、及び、 上記探針が上記試料に接触するまで上記位置設定手段による繰り出し距離を増加させ、次に繰り出し距離を所定量減少させることにより上記カンチレバを自由状態とし、次に上記補正手段を起動し、次に上記繰り出し距離を再び増加させる補正シーケンス制御手段、 を含むことを特徴とする走査プローブ顕微鏡。
  2. 上記補正シーケンス制御手段は、上記試料が交換されるごとに上記補正手段を起動することを特徴とする請求項1に記載の走査プローブ顕微鏡。
  3. 上記補正シーケンス制御手段は、所定時間が経過するごとに上記補正手段を起動することを特徴とする請求項1に記載の走査プローブ顕微鏡。
  4. 上記補正シーケンス制御手段は、上記カンチレバの周囲を真空排気した後に上記補正手段を起動することを特徴とする請求項1に記載の走査プローブ顕微鏡。
  5. 上記補正シーケンス制御手段は、上記カンチレバの周囲を真空排気した後に上記補正手段を複数回起動することを特徴とする請求項1に記載の走査プローブ顕微鏡。
  6. 記探針と上記試料の間には、原子間斥力、原子間引力、磁気力もしくは静電力のいずれかが作用することを特徴とする請求項1に記載の走査プローブ顕微鏡。
  7. らに上記試料の表面に電子ビームを照射し、該電子ビームと上記試料との相対走査により上記試料の電子顕微鏡像を得る手段を含むことを特徴とする請求項1に記載の走査プローブ顕微鏡。
  8. 子顕微鏡像を得る手段を兼ね備え、走査プローブ顕微鏡の探針と試料とを同時に観察できる構造としたことを特徴とする請求項7に記載の走査プローブ顕微鏡。
  9. 上記補正手段は、上記カンチレバが自由状態であるときの上記変位検出手段の検出出力をサンプリングしてその値をホールドするサンプルホールド手段、該サンプルホールド手段ホールド出力に応じて上記変位検出手段の検出出力をレベルシフトするレベルシフト回路を含むことを特徴とする請求項1に記載の走査プローブ顕微鏡。
  10. 上記補正手段は、上記カンチレバが自由状態であるときの上記変位検出手段の検出出力をサンプリングしてその値をホールドするサンプルホールド手段、該サンプルホールド手段のホールド出力を記憶する記憶手段、該記憶手段から読みだす上記ホールド出力に応じて上記変位検出手段の検出出力をレベルシフトするレベルシフト回路を含むことを特徴とする請求項1に記載の走査プローブ顕微鏡。
  11. 一端に探針を備えるカンチレバを含むプローブと、上記プローブと上記探針に近接して配置される試料との少なくとも一方を駆動して上記プローブと上記試料との相対位置を移動する走査手段と、上記カンチレバの撓みを検出する変位検出手段と、上記プローブと上記試料の少なくとも一方を繰り出して両者の相対距離を設定するポジショニング手段と、上記変位検出手段の検出出力を入力して上記プローブと上記試料との相対距離を制御し、もって上記試料と上記探針の間に働く力を制御するサーボ制御手段とを含む走査プローブ顕微鏡の動作補正方法において、
    上記探針が上記試料に接するまで上記ポジショニング手段による繰り出し距離を増加し、次に上記探針と上記試料の間に働く力が実質的に無くなるまで上記ポジショニング手段による繰り出し距離を減少し、次に上記カンチレバが自由状態であるときのカンチレバの反りのバラツキや変化に対応する上記変位検出手段の検出出力が上記カンチレバの自由状態での前記反りを補正するべく基準値となるよう上記変位検出手段の検出出力をレベルシフトし、次に上記ポジショニング手段による繰り出し距離を再び増加し、上記探針が上記試料に接してからなお所定距離だけ上記繰り出し距離を増加してから上記ポジショニング手段による繰り出しを停止することを特徴とする走査プローブ顕微鏡の制御誤差の補正方法。
  12. 一端に探針を備えるカンチレバを含むプローブと、上記プローブと上記探針に近接して配置される試料との少なくとも一方を駆動して上記プローブと上記試料との相対位置を移動する走査手段と、上記カンチレバの撓みを検出する変位検出手段と、上記変位検出手段の検出出力を入力して上記プローブと上記試料との相対距離を制御し、もって上記試料と上記探針の間に働く力を制御するサーボ制御手段と、上記カンチレバ及び上記試料を含む環境を真空排気する真空排気手段を含む走査プローブ顕微鏡の動作補正方法において、
    上記真空排気手段による真空排気に先立ち上記カンチレバを自由状態とし、上記変位検出手段の検出出力が基準値となるように上記変位検出手段の取付け位置及び上記カンチレバの取付け位置の少なくとも一方を補正すること、上記真空排気手段による真空排気後に上記カンチレバを自由状態とし、上記変位検出手段の検出出力が基準値となるよう上記変位検出手段の検出出力をレベルシフトすることを特徴とする走査プローブ顕微鏡の制御誤差の補正方法。
JP27665893A 1992-11-06 1993-11-05 走査プローブ顕微鏡及びその制御誤差の補正方法 Expired - Fee Related JP3761906B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27665893A JP3761906B2 (ja) 1992-11-06 1993-11-05 走査プローブ顕微鏡及びその制御誤差の補正方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP29672892 1992-11-06
JP4-296728 1992-11-06
JP27665893A JP3761906B2 (ja) 1992-11-06 1993-11-05 走査プローブ顕微鏡及びその制御誤差の補正方法

Publications (2)

Publication Number Publication Date
JPH06281444A JPH06281444A (ja) 1994-10-07
JP3761906B2 true JP3761906B2 (ja) 2006-03-29

Family

ID=26552041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27665893A Expired - Fee Related JP3761906B2 (ja) 1992-11-06 1993-11-05 走査プローブ顕微鏡及びその制御誤差の補正方法

Country Status (1)

Country Link
JP (1) JP3761906B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0000555D0 (sv) * 2000-02-22 2000-02-22 Nanofactory Instruments Ab Mätanordning för transmissions-elektron-mikroskop
JP4576775B2 (ja) * 2001-08-29 2010-11-10 株式会社島津製作所 飛行時間型質量分析装置
JP4898097B2 (ja) * 2003-10-31 2012-03-14 セイコーインスツル株式会社 メカニカルセンサーおよびそれを用いた分析システム

Also Published As

Publication number Publication date
JPH06281444A (ja) 1994-10-07

Similar Documents

Publication Publication Date Title
US5467642A (en) Scanning probe microscope and method of control error correction
EP0847590B1 (en) A scanning probe microscope having automatic probe exchange and alignment
EP0441311B1 (en) Surface microscope apparatus
JP4174357B2 (ja) 走査型プローブ顕微鏡
US5448399A (en) Optical system for scanning microscope
US5496999A (en) Scanning probe microscope
US5440920A (en) Scanning force microscope with beam tracking lens
US20100186132A1 (en) Probe assembly for a scanning probe microscope
US7498589B2 (en) Scanning probe microscope
JPH06105680B2 (ja) リソグラフィ装置
US6021665A (en) Cantilever tracking type scanning probe microscope
JP3761906B2 (ja) 走査プローブ顕微鏡及びその制御誤差の補正方法
Olsson et al. Ultrahigh vacuum scanning force/scanning tunneling microscope: Application to high‐resolution imaging of Si (111) 7× 7
CN113759149A (zh) 显微镜系统、试样的观察方法、试样的膜厚的校正方法、试样的复折射率的计算方法
JPH11271631A (ja) 光学顕微鏡を組み込んだ走査型電子顕微鏡
JP3892184B2 (ja) 走査型プローブ顕微鏡
JPH08285865A (ja) 走査型プローブ顕微鏡
JPH09304408A (ja) 走査型プローブ顕微鏡の測定方法
JPH09133690A (ja) 走査型プローブ顕微鏡のz変位検出機構
KR20240004958A (ko) 크립 보정을 하는 afm 이미징
JP3023689B2 (ja) 原子間力顕微鏡
JP2008218167A (ja) 荷電粒子線装置
JP2002350319A (ja) 走査型プローブ顕微鏡
JPH07181150A (ja) 表面凹凸像同時計測型光電子検出装置及び検出方法
JPH03231110A (ja) 表面顕微鏡および表面顕微法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees