JP3754602B2 - 斜面崩壊予測装置および斜面崩壊予測方法 - Google Patents

斜面崩壊予測装置および斜面崩壊予測方法 Download PDF

Info

Publication number
JP3754602B2
JP3754602B2 JP2000189195A JP2000189195A JP3754602B2 JP 3754602 B2 JP3754602 B2 JP 3754602B2 JP 2000189195 A JP2000189195 A JP 2000189195A JP 2000189195 A JP2000189195 A JP 2000189195A JP 3754602 B2 JP3754602 B2 JP 3754602B2
Authority
JP
Japan
Prior art keywords
sound
slope failure
underground
failure prediction
slope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000189195A
Other languages
English (en)
Other versions
JP2002004294A (ja
Inventor
與喜夫 酒井
邦夫 鳥居
Original Assignee
與喜夫 酒井
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 與喜夫 酒井 filed Critical 與喜夫 酒井
Priority to JP2000189195A priority Critical patent/JP3754602B2/ja
Publication of JP2002004294A publication Critical patent/JP2002004294A/ja
Application granted granted Critical
Publication of JP3754602B2 publication Critical patent/JP3754602B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、地中音等に基づいて、地滑り、土石流、なだれ等の斜面の崩壊を監視し、かつ斜面崩壊を予測することを可能とする斜面崩壊予測装置および斜面崩壊予測方法に関する。
【0002】
【従来の技術】
従来から地滑り等、斜面の崩壊を原因とする人的、物的被害が地域経済に深刻な影響を与えている。
【0003】
したがって、斜面の崩壊を予測できれば、そのような人的、物的被害を最小限に抑制することが可能となり、経済的な波及効果が大きい。
【0004】
そのため、地滑り等の斜面の崩壊を予知して速やかな避難等を行えるようにすることが常に求められている。
【0005】
従来、地滑りの監視に関し、次の2つの技術が知られている。
【0006】
第1の技術は、2点間にインバー線を張り渡し、インバー線の延びから距離の変化を測定するものである。
【0007】
第2の技術は、地表面から地中に対してボーリングを行い、掘削穴内に水圧計を設置し、土壌または岩塊の間隙にある流体を通して伝達される圧力、いわゆる間隙水圧の変化を測定するものである。
【0008】
【発明が解決しようとする課題】
しかしながら、インバー線を使用する上記第1の技術では、2点から外れた位置で崩壊が起きた場合には、これを感知することが不可能であるという致命的な欠陥を内在している。この欠陥を補うためには、インバー線を多数張り渡す必要があるが、たとえば、農作等の作業用等に使用されている土地では、その作業性を損なうことになり、インバー線を設置できる場所が制限されるという問題がある。また、インバー線を多数張り巡らしてその距離の変化を測定するシステムのコストも相当にかかるという問題もある。
【0009】
その一方、ボーリングを行う第2の技術では、その費用が莫大となり、危険と想定される箇所の全てにボーリングを施すことはほとんど不可能である。しかも、間隙水圧の変化と斜面崩壊の直接的な因果関係は、データが決定的に不足しているという問題もある。しかも、ボーリングには、通常、数日間を必要とするため、緊急を要する場合には対応できないという問題もある。
【0010】
すなわち、従来、斜面の崩壊を局地的かつ正確に予測することが可能な手法は確立されていない。
【0011】
この発明は、このような課題を考慮してなされたものであって、地滑り等の斜面崩壊の正確な監視および予測を簡単な構成で行うことを可能する斜面崩壊予測装置および斜面崩壊予測方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
この発明に係る斜面崩壊予測装置は、地中音を測定する地中音測定手段と、前記地中音測定手段で測定された音の変化に基づいて斜面崩壊を予測する斜面崩壊予測手段とを有することを特徴とする。
【0013】
この発明によれば、地中音の音の変化に基づいて斜面の崩壊を予測することができる。
【0014】
ここで、地中音は、樹木を通じて測定することができる。このため、簡単な構成で地中音を予測することができる。地中音の測定は、樹木に限らず、杭等を地中に打ち込んで測定することもできる。
【0015】
特に、周波数が30〜200Hz内の音を測定した場合に、斜面崩壊を予測することができる。
【0016】
また、測定された音の周波数が、100〜160Hzである場合、樹木の根切れ音であると推定し、30〜50Hzである場合には、土が動く音であると推定することができる。
【0017】
さらに、周波数が30〜200Hz内の音が略連続的に観測されたときには、地下水が流れる音であると推定することができる。
【0018】
さらに、地中音測定手段により、少なくとも4カ所で同時に地中音を測定した場合、地中音発生位置計算手段により、地中音の発生位置を計算することができる。
【0023】
この発明に係る斜面崩壊予測方法は、樹木に地中音測定手段を取り付け、この樹木を通じて前記地中音測定手段により地中音を測定するステップと、前記地中音測定手段で測定された地中音の変化に基づいて、斜面崩壊予測手段により斜面の崩壊を予測するステップとを有することを特徴とする。
【0024】
このため、簡易な手順で斜面崩壊を予測することができる。
【0028】
【発明の実施の形態】
以下、この発明の一実施の形態について図面を参照して説明する。
【0029】
[第1実施例:斜面崩壊予測装置]
図1は、この発明の第1の実施の形態に係る斜面崩壊予測装置10の構成を示している。
【0030】
この斜面崩壊予測装置10は、地滑り、土石流、雪崩等の斜面崩壊を予測するための装置であり、地中音測定手段としての振動センサ12と、地中音観測装置14と、データ処理装置16とを備えている。
【0031】
図2は、振動センサ12の縦断面図であり、図3は、振動センサ12のA−A線に沿った断面図である。この振動センサ12は、可動コイル型のマイクロホンの構成を採用している。
【0032】
図2、図3に示すように、振動センサ12は、円筒状の密閉された筐体20を有している。この筐体20の内部には、断面略凹状の磁性体22が取り付けられ、この磁性体22の凹部に柱体状の永久磁石23と磁性体24とが積層固定されている。
【0033】
磁性体24の上面と磁性体22の上面とは、ほぼ同一平面上にあるように構成されている。
【0034】
この磁性体22の上面の外周面側であって、筐体20の内部側面に端部が固定され、中央部に孔25Aが明けられ、周囲に円弧状の4カ所の切り欠き25Bが設けられたダンパーとしての樹脂製の振動板25が配置されている。
【0035】
また、振動板25に形成された孔25Aの開口内部側周囲には、コイル(可動コイル)26が取り付けられている。
【0036】
コイル26は、磁性体22と磁性体24により形成された円筒状溝27内を、換言すれば、磁性体24の外周を前後方向(図1中では上下方向)に移動可能である。
【0037】
このように構成される振動センサ12は、固体振動音を集音するものであり、筐体20を集音対象として振動する固体、図1例では樹木τの幹に接触させることによってその樹木τからの振動で筐体20が振動する。筐体20が振動すると、永久磁石23が振動して磁界が振動する。振動板25とコイル26は慣性により静止しようとするため、永久磁石23とコイル26は相対的に振動することになり鎖交磁束が変化する。その結果、コイル26に信号電圧Vが発生する。
【0038】
このように構成された振動センサ12によれば、周波数帯25Hz〜600Hz程度の振動を音圧として検出することができる。なお、切り欠き25Bの面積や、コイル26の大きさ、あるいは振動センサ12自体の大きさを変えることにより検出周波数帯を変化させることができる。
【0039】
コイル26に発生した信号電圧Vは、コイル26に接続されたリード線29を介して地中音観測装置14内の信号増幅部40(図1参照)に供給される。
【0040】
図4は、振動センサ12が樹木τの幹(枝でもよい)に取り付けられた状態を示している。この場合、振動センサ12は、上面12A(図2参照)が樹木τの表面に密接するように、ベルト30を介して該樹木τに装着されている。側面12B(図2参照)が樹木τの表面に密接するように装着してもよい。
【0041】
なお、樹木τにおける振動センサ12を取り付けるべき高さ位置は、たとえば、樹木τの幹上を振動センサ12を上下方向に移動させたときに、地中音Pの音圧を相対的に高い位置に選択することが好ましい。
【0042】
主に根を介して樹木τを伝わる地中からの音(地中音)Pは、振動センサ12によって検出され、この地中音Pに応じた信号電圧Vが出力される。そして、この信号電圧Vは、図1に示す地中音観測装置14に対して出力される。なお、後述するように、実際上、地中音Pとして観測される音には、地中内の音の他、風の音、石等の固体が地表面を転がる音も含まれる。
【0043】
図1に示すように、地中音観測装置14は、信号増幅部40と、雑音除去部42と、レベルメータ44と、信号出力部46を有している。信号増幅部40としては、差動増幅器を用いることにより、雑音の影響を軽減することができる。
【0044】
この信号増幅部40は、振動センサ12から信号電圧Vが供給されると、この信号電圧Vを、例えば、104倍に増幅して、雑音除去部42に対して出力する。
【0045】
雑音除去部42は、信号増幅部40からの信号電圧Vから雑音を除去した後、これを信号出力部46に供給する。なお、地中音Pは、主に、1kHz以下の周波数帯に含まれているため、雑音除去部42は、この周波数帯の成分を通過させるローパスフィルタ(LPF)、バンドパスフィルタ(BPF)等(好ましくは、振動センサ12の周波数帯域25Hz〜600Hzをカバーする20Hz〜650Hzの通過帯域幅を有するBPF)によって構成される。
【0046】
また、雑音除去部42によって雑音が除去された信号電圧Vは、レベルメータ44にも供給される。そして、レベルメータ44には、この信号電圧Vの値が表示される。すなわち、ユーザは、レベルメータ44の表示によって、地中音Pの大きさを確認することができる。この場合、レベルメータ44で得られた地中音Pの大きさに基づいて、樹木τにおける振動センサ12を取り付けるべき高さ位置(地中音Pの音圧が相対的に高い位置)を決定するようにしてもよい。
【0047】
信号出力部46は、雑音除去部42からの信号電圧Vを、データ処理装置16に対して出力する。
【0048】
データ処理装置16は、信号入力部50と、予測判定処理部(斜面崩壊予測手段)52と、表示部54と、音声出力部56と、印刷部58とを有している。なお、このデータ処理装置16は、実際には、キーボード、本体、表示装置、音声出力装置およびハードディスク等の外部記憶装置等から構成される汎用コンピュータ(パーソナルコンピュータを含む。)等によって構成されており、予測判定処理部52は、実質的に、本体部のCPU(Central Processing Unit)(周辺装置を含む。)によって構成されている。
【0049】
また、データ処理装置16には、システムプログラムやアプリケーションプログラム等が記憶されるROM(Read Only Memory)、作業用等として使用されるRAM(Random Access Memory)、計時用のタイマ、A/D変換器、D/A変換器等の入出力インタフェース、表示部54に時間を横軸とし音圧を縦軸として表示するための波形観測信号取込・送出部としての波形観測用基板、および表示部54に周波数を横軸とし音圧を縦軸として表示するための周波数分析・送出部としての周波数分析用基板(FFT基板)等が設けられている。
【0050】
信号入力部50は、地中音観測装置14の信号出力部46からの信号電圧Vを所定時間毎(例えば、1分、10分等の時間毎)に取り込む。そして、この信号電圧Vをデジタル変換(A/D変換)して、地中音Pの音圧の大きさに対応する音圧レベルVdとして予測判定処理部52に供給する。なお、信号入力部50においては、予測判定処理部52からの指示に基づいて、信号電圧Vを取り込む処理を行うようにしてもよい。
【0051】
予測判定処理部52は、信号入力部50からの音圧レベルVdに基づいて、斜面崩壊を予測する処理を行う。
【0052】
予測判定処理部52による処理結果は、CRTや液晶表示装置等の表示部54に供給されるとともに、プリンタ等の印刷部58に供給される。また、スピーカ等の音声出力部56にも供給される。
【0053】
図5は、データ処理装置16内の上記波形観測用基板を利用して得られた雑音であると思われる音(以下、雑音推定音)P1の表示部54上での波形表示を示している。なお、図5において、横軸は[ms単位の時間T、縦軸は[V]単位の電圧値Vを表している。なお、電圧値Vは、相対値である。
【0054】
雑音推定音P1等の波形は、プログラムに基づき処理時間間隔で、あるいは図示していないキーボード等を利用して任意のときにデータ処理装置16内のハードディスク等の記憶部に記憶することが可能である。
【0055】
図6は、データ処理装置16内の上記周波数分析用基板を利用して得られた、表示部54に表示される雑音推定音P1の周波数スペクトラム(周波数分布)表示を示している。横軸は、[Hz]単位の周波数Fを表し、縦軸は、[V]単位の電圧値Vを表している。
【0056】
音声出力部56から「サー」という音で聞こえる雑音推定音P1は、連続的に観測される音であって、波形では0.2[V]以下の値である。周波数スペクトラム上での30Hz〜70Hzの多少の偏りは、振動センサ12等を含む測定系の特徴であると推定される。
【0057】
図7は、樹木τ(現に振動センサ12が接続されている樹木τに限らない。)の根の切れる音である思われる音(以下、根切れ推定音という。)P2の波形を示している。
【0058】
図8は、根切れ推定音P2の周波数スペクトラムを示している。
【0059】
音声出力部56から「プツン」という音で聞こえる根切れ推定音P2は、波形の振幅値は、±2[V]以下であるが、約0.2秒間発生するパルス性の振幅が観測される。もちろん、パルス発生期間は、根の太さ等により変化するものと推定される。
【0060】
図8に示す周波数分布では、100〜160Hz帯に偏りがあり、根切れ推定音P2は、この周波数帯で確認することができる。なお、30〜60Hz帯では、雑音推定音P1を除去しても0.1〜0.2[V]程度の突出が認められる。
【0061】
また、波形表示の電圧Vの振幅値に比較して周波数分布の電圧Vの値が低下しているのは、FFT解析時の処理時間による積分効果によるものである。以下に説明する波形表示と周波数分布表示の関係も同様である。
【0062】
図9は、土が動いているであろうと思われる音(土移動推定音)P3の波形を示している。
【0063】
図10は、土移動推定音P3の周波数スペクトラムを示している。
【0064】
音声出力部56から「ズッズー」という音で聞こえる土移動推定音P3は、波形の振幅値は、±2[V]以下であるが、根切れ推定音P2とは異なり、音が長引いて(尾を引いて)発生することに特徴がある。
【0065】
周波数分布では、30〜60Hz帯に突出する偏りがあり、雑音推定音P1を除いた場合でも0.3〜0.5[V]程度の突出が認められる。
【0066】
図11は、地下水が流れていると思われる音(地下水推定音)P4n波形を示している。
【0067】
図12は、地下水推定音P4の周波数スペクトラムを示している。
【0068】
音声出力部56から「チョロチョロ」というほぼ連続的な音で聞こえる地下水推定音P4は、波形の振幅値は、±0.3[V]以下の小さい音であるが、雑音推定音P1とは異なり、0.1秒間隔程度で数回繰り返されることに特徴がある。
【0069】
周波数分布では、30〜60Hz帯に突出する偏りがあるが、雑音推定音P1との区別は困難である。
【0070】
図13は、風が吹いているときに現れる音(風音)P5の波形を示している。この風音P5は、樹木τの葉がそよぐときあるいは人が感じたときに現れる音であり、推定音ではなく、風音P5と確信することができる。
【0071】
図14は、風音P5の周波数スペクトラムを示している。
【0072】
音声出力部56から「ゴー」という音で聞こえる風音P5は、波形の振幅値は、±1[V]以下で、ほぼ同じ振幅が繰り返し観測される。
【0073】
周波数分布では、30〜180Hz帯と幅広い周波数範囲で突出が認められる。雑音推定音P1を除去した場合、振幅は0.3V程度である。
【0074】
図15は、風が吹いているときに現れた土の塊または石が地表面上を転がると思われる音(石等固体転がり推定音)P6の波形を示している。この石等固体転がり推定音P6は、波形上では風音P5と区別することが困難である。
【0075】
図16は、石等固体転がり推定音P6の周波数スペクトラムを示している。
【0076】
音声出力部56から「ゴー」という風音P5と同時に聞こえる「コッコッコ」という音の石等固体転がり推定音P6は、波形の振幅値は、±1[V]以下で、ほぼ同じ振幅が繰り返し観測される。
【0077】
周波数分布では、30〜180Hz帯と幅広い周波数範囲で突出が認められるが、風音P5と同時に観測されるので、波形、周波数分布上では音の区別が困難であるが、耳では判別することができる。
【0078】
次に、予測判定処理部52における斜面崩壊の予測処理について、図17のフローチャートを参照しながら説明する。
【0079】
予測判定処理部52は、まず、ステップS1において、信号入力部50からの音圧レベルVdを取り込む。
【0080】
次いで、ステップS2において、雑音に対応する音圧レベルVdに基づく雑音推定音P1(波形と周波数分布)を記憶部としてのメモリに記憶する。なお、雑音推定音P1は、図5の波形図、図6の周波数分布図並びに音声出力部56からの「サー」という音により確認することができる。このステップS2では、予め上述した音P2〜P6の波形および周波数分布も記憶部に取り込んでおく。
【0081】
次に、ステップS3において、所定時間毎に音圧レベルVdを取り込む。
【0082】
次いで、ステップS4において、ステップS3で取り込んだ音圧レベルVdの波形と雑音推定音P1の波形あるいは両者の周波数分布を比較し、たとえば両者の波形差、分布差を取ることで音の変化があるかどうかを判定する。
【0083】
一定レベル以上の音の変化がなかった場合には、ステップS3にもどる。
【0084】
一定レベル以上の音の変化があった場合には、ステップS5において、その音Pを、それぞれ記憶部に記憶してある音P2〜P6と比較部により比較して分析する。
【0085】
ステップS5の分析結果において、波形および周波数分布がそれぞれ根切れ推定音P2、土移動推定音P3あるいは地下水推定音P4であった場合には、さらに音声出力部56からの音と、記憶してある音「プツン」、「ズッズー」、「チョロチョロ」と耳で比較する。これらの音P2、P3、P4であった場合には、ステップS6で斜面の崩壊を予測する。ステップS6の処理後には、ステップS3以降の処理を継続する。
【0086】
一方、ステップS5の分析結果において、風音P5であった場合には、ステップS3以降の処理を継続する。
【0087】
さらに、ステップS5の分析結果において、石等固体転がり推定音P6であった場合にも斜面の崩壊を予測する。ステップS6の処理後には、ステップS3以降の処理を継続する。
【0088】
なお、ステップS6の崩壊予測処理では、音Pの種類を特定して、警報を発生する、あるいは表示部54の画面上に、音Pの種類の特定と警報表示を行う等の処理を行う。
【0089】
以上説明したように、上述の第1の実施の形態に係る斜面崩壊予測装置10は、地中音測定手段としての振動センサ12により樹木τを通じて地中音P(風音P5、地表面を転がる石等固体転がり推定音P6)を測定し、該振動センサ12で測定された地中音Pの変化に基づいて斜面崩壊を予測することができる。
【0090】
具体的には、雑音推定音P1および風音P5以外の根切れ推定音(100〜160Hz)P2、土移動推定音(30〜50Hz、60Hz)P3、地下水推定音P4、石等固体転がり推定音P6のそれぞれの発生が観測されたときには、斜面崩壊が予測される。
【0091】
全体として考えれば、観測当初に雑音推定音P1のみが発生している状態において、特に、周波数が30〜200Hz内の音Pの発生を観測したとき、斜面崩壊を予測することができるといえる。
【0092】
なお、この第1の実施の形態によれば、地滑り等、土の移動による斜面崩壊ばかりでなく、当業者であれば、同様の構成で、土石流あるいは雪崩の予測に適用できることはいうまでもない。
【0093】
このように、この実施の形態に係る斜面崩壊予測装置10においては、従来は得ることが困難であった局地的な斜面崩壊の予測を高精度に行うことができる。
【0094】
しかも、斜面崩壊予測装置10は、振動センサ12と、地中音観測装置14と、データ処理装置16とから構成されており、構成が簡素である。
【0095】
また、振動センサ12を、樹木τに対してベルト30によって装着した場合には、斜面崩壊予測装置10の設置作業を容易に行うことができる。なお、地中音Aは、樹木τに限らず、杭等の固体を通じても検出することができる。
【0096】
図18は、変形例の斜面崩壊予測装置10Aの模式的構成を示している。
【0097】
この斜面崩壊予測装置10Aでは、峰60の斜面62に、地中音測定手段としての振動センサ12を少なくとも4カ所の位置Q1、Q2、Q3、Q4に設け、4個の地中音観測装置14からの出力信号電圧Vをデータ処理装置16Aに取り込んでいる。なお、4カ所の地中音観測装置14からデータ処理装置16Aへのデータの伝送は、ワイヤレス通信でも行うことができることはいうまでもない。
【0098】
データ処理装置16Aでは、出力信号電圧Vを、連続してメモリに記憶する。なお、この記憶は、たとえば先入れ先出し方式、いわゆるFIFO(first-in first-out)方式で行う。このようにすれば、現時点のデータと過去の一定期間のデータを保存することができる。
【0099】
データ処理装置16Aで、遅延時間は異なるが、ほぼ同時に、たとえば図9に示した土移動推定音P3等であって波形が相似する地中音P(Pa〜Pd)を観測したとき、既知の4カ所の位置Q1〜Q4から、その地中音の発生位置を特定することができる。
【0100】
すなわち、データ処理装置16Aの表示部54の画面上で、位置Q1〜Q4でそれぞれ、図19に示すような地中音Pa〜Pdを観測したとき、たとえば最も早い時刻t0にデータ処理装置16Aに到達した地中音Paと、地中音Paの発生位置(地中音発生源)P0と位置Q1間の直線距離L1を基準として、より遅延して時点t2〜t4にそれぞれ位置Q2〜Q4に到達した地中音Pb〜Pdまでの距離L2〜L4を、それぞれ「遅延時間×地中音の伝わる速さ」として求める。なお、地中音Pの伝わる速さは、予め測定しておく。
【0101】
地中音発生位置P0から位置Q1への音波到達所要時間をtとし、地中音Pの伝わる速さをSとすれば、距離L1〜L4は、それぞれ、下記の(1)式〜(4)式で求めることができる。
【0102】
L1=t×S …(1)
L2=(t+t2−t1)×S …(2)
L3=(t+t3−t1)×S …(3)
L4=(t+t4−t1)×S …(4)
【0103】
このとき、図20に示すように、地中音P(図19も参照)の3次元座標上の位置をP0(x,y,z)とすれば、次の(5)式〜(8)式が成立する。
【0104】
L1=((x−x1)2+(y−y1)2+(z−z1)21/2 …(5)
L2=((x−x2)2+(y−y2)2+(z−z2)21/2 …(6)
L3=((x−x3)2+(y−y3)2+(z−z3)21/2 …(7)
L4=((x−x4)2+(y−y4)2+(z−z4)21/2 …(8)
ここで、(1)式〜(4)式の左辺にそれぞれ(5)式〜(8)式の右辺を代入すれば、未知数は、地中音発生位置P0から位置Q1への音波到達所要時間tと、地中音発生位置P0(x,y,z)の4個であるので、代入式から地中音発生位置P0(x,y,z)を求めることができる。なお、(5)式〜(8)式は、図20から理解されるように、頂点をP0、底辺をQ2,Q3,Q4とする三角錐の稜線の長さを求める式である。
【0105】
[第2実施例:斜面崩壊予測システム]
図21は、この発明の第2の実施の形態に係る斜面崩壊予測システム100の構成を示している。
【0106】
図22は、斜面崩壊予測システム100の配置例を示している。なお、この斜面崩壊予測システム100は、斜面崩壊を予測すると同時に斜面崩壊を監視する機能を有するので、斜面崩壊監視システムとしての機能を含むものである。
【0107】
図21、図22において、図1、図18に示したものと対応するものには、同一の符号を付けて、その詳細な説明は省略する。
【0108】
この斜面崩壊予測システム100は、基本的には、地中音測定手段としての複数の振動センサ12(なお、地中音発生位置P0の特定が必要ではない場合、振動センサ12は1個でもよい。)と、地表面である斜面62を画像として取り込む地表面画像撮影手段としてのデジタルビデオカメラ102とを有している。
【0109】
また、この斜面崩壊予測システム100は、データ処理装置16Bに内蔵され地中音の変化から斜面崩壊を予測する予測判定処理部52Aの出力と、デジタルビデオカメラ102により取り込まれた地表面画像の変化とに基づいて、斜面の崩壊を予測する斜面崩壊予測手段あるいは斜面崩壊を監視する斜面崩壊監視手段として機能する予測判定処理部152を有するデータ処理装置116とを備えている。
【0110】
データ処理装置116は、パーソナルコンピュータ等により構成され、該データ処理装置116は、予測判定処理部152以外に、デジタルビデオカメラ102を制御するカメラ制御部108、プリンタ等により構成される印刷部158、複数のCRT等の表示装置から構成される表示部154、スピーカー等の音声出力部156、外部との通信処理を行う通信処理部180、印刷部158と表示部154と音声出力部156を制御処理する表示処理部118とを有している。
【0111】
表示処理部118と通信処理部180とは予測判定処理部152により制御される。また、カメラ制御部108、予測判定処理部52A、152、表示処理部118および通信処理部180は、それぞれバス120で相互に接続されている。
【0112】
デジタルビデオカメラ102の視野角内には、斜面62が含まれ、また、樹木τ(図22例では樹木τ4)や斜面62の適当な位置に配置されてデジタルビデオカメラ102の位置合わせ用等の被写体として用いられるターゲットTAが含まれる。
【0113】
なお、デジタルビデオカメラ102は、斜面62から離れた位置であって、設置位置が不動と想定される位置122に配置される。
【0114】
次に、このように構成される斜面崩壊予測システム100の動作について、図23に示したフローチャートに基づき説明する。
【0115】
ステップS11〜S15の処理は、図17に示した地中音観測装置14に係わる斜面崩壊予測装置10におけるステップS1〜S5の処理に対応する処理であるので、その詳細な説明は省略する。
【0116】
雑音推定音P1以外の地中音Pが確認されたステップS15の処理後に、カメラ制御部108を通じて、ステップS16においてデジタルビデオカメラ102でターゲットTAを含む斜面の映像の一定時間毎の取り込みを開始する。なお、実際上は、たとえば、ステップS15の判定が成立する前には、1日に数回程度撮影を行い、ステップS15の判定が成立したときには、より頻繁に、音の種類や振幅等にもよるが、所定時間毎(例えば、5分毎、10分毎、30分毎、1時間毎)に画像データを取り込む。なお、画像データの取り込みと、地中音観測装置14による音声データの取り込みとが、同期して同一の時刻に行われることが好ましい。
【0117】
次に、ステップS17では、音確認結果と撮影結果に基づき斜面崩壊予測・監視処理を行う。
【0118】
すなわち、予測判定処理部152では、デジタルビデオカメラ102を通じて時系列的に取り込んである画像の中、たとえば前後に撮影した画像の画素毎の差をとること等により地表面画像の変化を検出する。
【0119】
画素毎の差が雑音レベルとは考えられない一定値以上である地表面画像の変化を検出した場合には、すでにステップS15において、音の変化が発生していることを確認しているので斜面崩壊の可能性がより高いと予測することができる。
【0120】
また、ステップS17では、地中音Pの発生位置P0(x,y,z)を上述した(1)式〜(4)式に基づいて計算する。もちろん、地中音発生位置P0の時系列上の変化も斜面崩壊の予測に使用することができる。
【0121】
次に、ステップS18では、表示部154に地表面画像の変化の大きい部分を特定して(マーク等を付けて)斜面62の映像を表示するとともに、ステップS15で確認された音が、根切れ推定音P2であるのか土移動推定音P3であるのか等の音の種類を表示する。もちろん、地中音Pの波形および周波数分布を同時に表示させることもできる。これらに加えて、音声出力部156から地中音Pや、警告等を出力させることができる。もちろん、模式的に地中音発生位置P0(の変化も含めて)を3次元表示させることも可能である。
【0122】
印刷部158からは、表示部154に表示された画像や上記した地中音Pの波形および周波数分布あるいは地中音発生位置P0の変化等のハードコピーを出力させることができる。
【0123】
なお、斜面崩壊予測システム100により取得した地中音P等の音声データおよび、地表面の画像データは、通信処理部180を通じ、有線あるいは無線の回線網を介して図示していない外部のデータ集約装置に送信することができる(ステップS19)。
【0124】
以上説明したように、図21、図22に示した斜面崩壊予測システム100によれば、地中音Pの変化と地表面画像の変化に基づいて斜面崩壊を予測するようにしているので、より一層正確に予測することが可能となる。
【0125】
【発明の効果】
この発明によれば、地滑り等の斜面崩壊の正確な監視ができる。
【0126】
また、この発明によれば、地滑り等の斜面崩壊の予測ができる。
【0127】
しかも、この発明によれば、地滑り等の斜面崩壊の監視および予測を簡単な構成で行うことができる。したがって、監視および予測にかかるコストを低減することが可能である。
【図面の簡単な説明】
【図1】この発明の一実施の形態に係る斜面崩壊予測装置の構成を示すブロック図である。
【図2】図1の斜面崩壊予測装置を構成する振動センサの一部省略縦断面図である。
【図3】図2の振動センサのA−A線に沿った横断面図である。
【図4】図2および図3の振動センサが樹木に取り付けられた状態を示す図である。
【図5】雑音推定音の波形図である。
【図6】雑音推定音の周波数分布図である。
【図7】根切れ推定音の波形図である。
【図8】根切れ推定音の周波数分布図である。
【図9】土移動推定音の波形図である。
【図10】土移動推定音の周波数分布図である。
【図11】地下水推定音の波形図である。
【図12】地下水推定音の周波数分布図である。
【図13】風音の波形図である。
【図14】風音の周波数分布図である。
【図15】石等固体転がり推定音の波形図である。
【図16】石等固体転がり推定音の波形図である。
【図17】図1の斜面崩壊予測装置の予測動作処理を示すフローチャートである。
【図18】変形例の斜面崩壊予測装置の構成を示す模式図である。
【図19】地中音発生位置の計算に参照される波形説明図である。
【図20】地中音発生位置の計算に参照される説明図である。
【図21】この発明の一実施の形態に係る斜面崩壊予測システムの構成を示すブロック図である。
【図22】図21の斜面崩壊予測システムの設置例を示す図である。
【図23】図21、図22の斜面崩壊予測システムの予測動作処理を示すフローチャートである。
【符号の説明】
10、10A…斜面崩壊予測装置 12…振動センサ
14…地中音観測装置
16、16A、16B、116…データ処理装置
52、52A、152…予測判定処理部
54、154…表示部 56、156…音声出力部
58、158…印刷部 60…峰
62…斜面 100…斜面崩壊予測システム
102…デジタルビデオカメラ P0…地中音発生位置
τ…樹木

Claims (6)

  1. 樹木に取り付けられ、この樹木を通じて地中音を測定する地中音測定手段と、
    前記地中音測定手段で測定された音の変化に基づいて斜面崩壊を予測する斜面崩壊予測手段と
    を有することを特徴とする斜面崩壊予測装置。
  2. 請求項1記載の斜面崩壊予測装置において、
    前記斜面崩壊予測手段は、前記地中音測定手段により周波数が30〜200Hz内の音を測定したときに斜面崩壊を予測する
    ことを特徴とする斜面崩壊予測装置。
  3. 請求項記載の斜面崩壊予測装置において、
    前記測定された音の周波数が、100〜160Hzである場合、前記樹木の根切れ音であると推定し、30〜50Hzである場合には、土が動く音であると推定する
    ことを特徴とする斜面崩壊予測装置。
  4. 請求項記載の斜面崩壊予測装置において、
    前記音が、略連続的に測定されたとき、地下水が流れる音であると推定する
    ことを特徴とする斜面崩壊予測装置。
  5. 請求項1〜のいずれか1項に記載の斜面崩壊予測装置において、
    さらに、地中音発生位置計算手段を備え、
    前記地中音測定手段により、少なくとも4カ所で同時に地中音を測定したとき、
    前記地中音発生位置計算手段は、前記少なくとも4カ所での地中音の同時観測に基づき、地中音の発生位置を計算する
    ことを特徴とする斜面崩壊予測装置。
  6. 樹木に地中音測定手段を取り付け、この樹木を通じて前記地中音測定手段により地中音を測定するステップと、
    前記地中音測定手段で測定された地中音の変化に基づいて、斜面崩壊予測手段により斜面崩壊を予測するステップと
    を有することを特徴とする斜面崩壊予測方法。
JP2000189195A 2000-06-23 2000-06-23 斜面崩壊予測装置および斜面崩壊予測方法 Expired - Fee Related JP3754602B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000189195A JP3754602B2 (ja) 2000-06-23 2000-06-23 斜面崩壊予測装置および斜面崩壊予測方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000189195A JP3754602B2 (ja) 2000-06-23 2000-06-23 斜面崩壊予測装置および斜面崩壊予測方法

Publications (2)

Publication Number Publication Date
JP2002004294A JP2002004294A (ja) 2002-01-09
JP3754602B2 true JP3754602B2 (ja) 2006-03-15

Family

ID=18688855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000189195A Expired - Fee Related JP3754602B2 (ja) 2000-06-23 2000-06-23 斜面崩壊予測装置および斜面崩壊予測方法

Country Status (1)

Country Link
JP (1) JP3754602B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108154067A (zh) * 2016-12-02 2018-06-12 航天星图科技(北京)有限公司 一种泥石流区域监测方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102122423B (zh) * 2011-01-18 2012-09-05 中国地质调查局水文地质环境地质调查中心 一种泥石流监测分析预警装置
CN102331489B (zh) * 2011-07-19 2014-04-02 中国科学院力学研究所 多因素作用下的大型滑坡物理模型实验系统
CN102982656B (zh) * 2011-09-06 2016-01-06 北京中民防险科技发展有限公司 基于智能视频监控的泥石流预警方法及系统
CN103353516B (zh) * 2013-05-27 2015-07-15 中国地质大学(武汉) 大型可活动的侧向抬升复合加载滑坡物理模型试验装置
JP6517636B2 (ja) * 2015-08-31 2019-05-22 株式会社雪研スノーイーターズ 雪崩探知システム
CN113029250A (zh) * 2021-04-08 2021-06-25 武汉科技大学 一种爆破振动和边坡位移监测装置
CN115596978A (zh) * 2022-12-15 2023-01-13 青岛地质工程勘察院(青岛地质勘查开发局)(Cn) 地质灾害监测装置
CN117110991B (zh) * 2023-10-25 2024-01-05 山西阳光三极科技股份有限公司 一种露天矿边坡安全监测方法、装置、电子设备以及介质

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108154067A (zh) * 2016-12-02 2018-06-12 航天星图科技(北京)有限公司 一种泥石流区域监测方法

Also Published As

Publication number Publication date
JP2002004294A (ja) 2002-01-09

Similar Documents

Publication Publication Date Title
US7096735B2 (en) System for forecasting slope failure based on sounds from the earth
JP4722347B2 (ja) 音源探査システム
CA2393094C (en) Sound source locating system
JP3754602B2 (ja) 斜面崩壊予測装置および斜面崩壊予測方法
AU2020261087A1 (en) Method and system for detecting a structural anomaly in a pipeline network
US20160187454A1 (en) System and method for separating sound and condition monitoring system and mobile phone using the same
CN106124040B (zh) 噪声源可视化数据累积显示方法、数据处理装置及声学照相机系统
CA2430927A1 (en) Slope monitoring system
JP6019344B2 (ja) 計測震度概算システム及び計測震度概算方法
JP6617613B2 (ja) 騒音源探索システム
JP2004085201A (ja) 振動源探査システム
JP3032185B2 (ja) 配管の漏洩検知システム
KR101962198B1 (ko) 소음원 가시화 데이터 누적 표시방법 및 음향 카메라 시스템
JPH09274023A (ja) 土砂崩れ予知システム
JP2006112999A (ja) 地震警報装置
CN105807273B (zh) 声源跟踪方法和装置
KR102196534B1 (ko) Mems 네트워크를 이용한 실시간 지진동 감시 및 분포 지도 작성을 위한 장치 및 방법
JP5562200B2 (ja) 防災管理システム
JP3134823U (ja) 粉塵自動監視・測定並びに警報装置
JP2008292338A (ja) 漏れ検出装置
Nishimura et al. Portable infrasound monitoring device with multiple MEMS pressure sensors
JP4141228B2 (ja) 斜面監視システム
JPH08166315A (ja) 漏水検出装置
US20030198131A1 (en) Method and apparatus for locating underground water pipes
JP2005227005A (ja) リアルタイム地震情報利用による地震情報表示装置および方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3754602

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees