JP3747208B2 - Building - Google Patents

Building Download PDF

Info

Publication number
JP3747208B2
JP3747208B2 JP2003276882A JP2003276882A JP3747208B2 JP 3747208 B2 JP3747208 B2 JP 3747208B2 JP 2003276882 A JP2003276882 A JP 2003276882A JP 2003276882 A JP2003276882 A JP 2003276882A JP 3747208 B2 JP3747208 B2 JP 3747208B2
Authority
JP
Japan
Prior art keywords
wall
building
vertical
space
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003276882A
Other languages
Japanese (ja)
Other versions
JP2005036596A (en
Inventor
幸雄 石川
徹 稲岡
弘樹 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP2003276882A priority Critical patent/JP3747208B2/en
Publication of JP2005036596A publication Critical patent/JP2005036596A/en
Application granted granted Critical
Publication of JP3747208B2 publication Critical patent/JP3747208B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Building Environments (AREA)

Description

本発明は、内部温度低減構造を備えた建造物に関する。   The present invention relates to a building having an internal temperature reduction structure.

近年、容積率の緩和や敷地の有効利用などから高層化に伴う縦型建造物が増加しつつある。
縦型建造物では、内部吹き抜けのオープン空間を有する場合が多い。このようなオープン空間では、自然換気などにより環境調整する場合、空気の対流効果で上部ほど温度が高くなり、垂直温度分布が生じ、内部温度の均一化が困難であった。また、夏期には温度が全般的に高くなる。
In recent years, vertical buildings have been increasing due to higher floors due to the relaxation of floor area ratio and effective use of the site.
Vertical buildings often have open spaces with internal atriums. In such an open space, when the environment is adjusted by natural ventilation or the like, the temperature becomes higher in the upper part due to the convection effect of air, a vertical temperature distribution is generated, and it is difficult to make the internal temperature uniform. In summer, the temperature generally increases.

例えば、縦型の貯蔵庫などにおいては、内部貯蔵物(特に食品:チョコレートなど)に対する温度管理が非常に難しく、内部貯蔵品の品質に悪影響を与えており、また、自動倉庫などにおいては、その制御・駆動機器などに悪影響を与えていた。
このため、空調装置を用いて高さ方向に何段かの吹出口を設け、各空間部分で冷風を吹いて、内部温度の上昇防止と均一化を図ることが行われていた。
特公昭63−45021号公報 特公平5−31617号公報 特開2002−285646号公報
For example, in vertical storage, etc., it is very difficult to control the temperature of internal storage (especially food: chocolate, etc.), which adversely affects the quality of the internal storage.・ It had an adverse effect on driving equipment.
For this reason, several stages of air outlets are provided in the height direction using an air conditioner, and cold air is blown in each space portion to prevent the internal temperature from rising and equalize.
Japanese Patent Publication No. 63-45021 Japanese Patent Publication No. 5-31617 JP 2002-285646 A

しかし、上述する従来の縦型建造物における内部温度の上昇防止と均一化を図る方法では、上部を空調装置により冷風を吹いて設定温度を保とうとすると、ダウンドラフトにより最下部分の温度が著しく低下してしまうという問題点があった。
また、この場合、空調に係るエネルギー消費量の増大やコストアップなどの問題点もあった。
However, in the conventional method for preventing the internal temperature from rising and equalizing in the conventional vertical building, if the upper part is blown by the air conditioner to keep the set temperature, the temperature of the lowermost part is significantly reduced by the downdraft. There was a problem of being lowered.
In this case, there are also problems such as an increase in energy consumption and cost increase related to air conditioning.

また、自然換気時の換気風量も少なく、内部の臭気などの外部への排出にも効果が少なかった。これを機械換気により行うと動力費が増加するという問題点があった。
なお、特許文献1には、二重外皮構造(ダブルスキン)外壁の空間と設備機器を併設した空調装置が開示されている。
しかし、特許文献1では、空調装置を併用しており、上述する従来の縦型建造物と同様の不具合がある。
In addition, the amount of ventilation air during natural ventilation was small, and it was less effective in discharging internal odors to the outside. If this was done by mechanical ventilation, there was a problem that the power cost increased.
Patent Document 1 discloses an air conditioner in which a double skin structure (double skin) outer wall space and equipment are provided.
However, in patent document 1, the air conditioner is used together and there exists a fault similar to the conventional vertical building mentioned above.

特許文献2には、室外の空気を入れるための導入部を設けた側壁の外側に外壁を設け、導入部に沿った風洞を形成して自然換気を促進する自然換気装置を備えた建築物が開示されている。
しかし、特許文献2では、上昇気流を利用するため、上述する従来の縦型建造物と同様に十分な換気風量を得ることができない。
Patent Document 2 discloses a building provided with a natural ventilation device that promotes natural ventilation by providing an outer wall on the outside of a side wall provided with an introduction portion for introducing outdoor air and forming a wind tunnel along the introduction portion. It is disclosed.
However, in patent document 2, since a rising airflow is utilized, sufficient ventilation airflow cannot be obtained like the conventional vertical building mentioned above.

特許文献3には、自然換気作用を利用した通気層を壁内および屋根裏に設け、居室部のみならず、床下空間部を通して換気するようにした自然通気層とシステム換気装置を有する木造建て住宅などの建築物が開示されている。
しかし、特許文献3は、木造建て住宅などの建築物に関する発明であるため、これを縦型建造物に適用することには無理があるが、仮に通気層を縦型建造物に適用しても、特許文献2と同様に十分な換気風量を得ることができない。
Patent Document 3 discloses a wooden house having a natural ventilation layer and a system ventilator that are provided with ventilation layers in the walls and attics using natural ventilation to ventilate not only the living room but also the space under the floor. The building is disclosed.
However, since Patent Document 3 is an invention relating to a building such as a wooden house, it is impossible to apply this to a vertical building, but even if a ventilation layer is applied to a vertical building, it is impossible. As in Patent Document 2, a sufficient ventilation air volume cannot be obtained.

本発明は斯かる従来の問題点を解決するために為されたもので、その目的は、空調を前提とせず、省エネルギーにより建造物の空間全体の温度を下げることを可能とした建造物を提供することにある。   The present invention was made in order to solve such a conventional problem, and the object thereof is to provide a building that can reduce the temperature of the entire space of the building by energy saving without assuming air conditioning. There is to do.

請求項1に係る発明は、外気空気の流出入が可能な開口を設けた外壁と、この外壁に隣接配置するとともに最下部に開口を設けた内壁と、前記外壁と前記内壁とで形成した周囲空間と、前記外壁の上部に位置するとともに換気開口を有する屋根とを備えたことを特徴とする。
請求項2に係る発明は、外気空気の流出入が可能な開口を設けた外壁と、この外壁に隣接配置するとともに最下部に開口を設けた内壁と、前記外壁と前記内壁とで形成するとともに、前記内壁の頂部と前記外壁との間を閉じて成る周囲空間と、前記外壁の上部に位置するとともに換気開口を有する屋根とを備えたことを特徴とする。
The invention according to claim 1 includes an outer wall provided with an opening through which outside air can flow in and out, an inner wall disposed adjacent to the outer wall and provided with an opening at the bottom, and a periphery formed by the outer wall and the inner wall. A space and a roof located above the outer wall and having a ventilation opening are provided.
The invention according to claim 2 is formed of an outer wall provided with an opening through which outside air can flow in and out, an inner wall disposed adjacent to the outer wall and provided with an opening at the lowermost portion, and the outer wall and the inner wall. A surrounding space formed by closing a space between a top portion of the inner wall and the outer wall, and a roof having a ventilation opening and located at an upper portion of the outer wall.

請求項3に係る発明は、外気空気の流出入が可能な開口を設けた外壁と、この外壁に隣接配置するとともに最下部に開口を設けた内壁と、前記外壁と前記内壁とで形成するとともに、前記内壁の頂部と前記外壁との間を開閉自在として成る周囲空間と、前記外壁の上部に位置するとともに換気開口を有する屋根とを備えたことを特徴とする。
請求項4に係る発明は、請求項1ないし請求項3の何れか1項記載の建造物において、前記外壁の開口は、前記建造物の全ての面に設けられていることを特徴とする。
The invention according to claim 3 is formed by an outer wall provided with an opening through which outside air can flow in and out, an inner wall disposed adjacent to the outer wall and provided with an opening at the bottom, and the outer wall and the inner wall. And a surrounding space that can be freely opened and closed between the top of the inner wall and the outer wall, and a roof that is located at the upper part of the outer wall and has a ventilation opening.
The invention according to claim 4 is the building according to any one of claims 1 to 3, wherein the openings of the outer wall are provided on all surfaces of the building.

請求項5に係る発明は、請求項1ないし請求項3の何れか1項記載の建造物において、前記外壁の開口は、前記建造物に対して日射の少ない面には設けられていないことを特徴とする。
請求項6に係る発明は、請求項1ないし請求項3の何れか1項記載の建造物において、前記外壁の開口は、前記建造物の風上側と風下側の面に設けられていることを特徴とする。
According to a fifth aspect of the present invention, in the building according to any one of the first to third aspects, the opening of the outer wall is not provided on a surface with less solar radiation with respect to the building. Features.
The invention according to claim 6 is the building according to any one of claims 1 to 3, wherein the openings of the outer wall are provided on the windward side and the leeward side of the building. Features.

請求項7に係る発明は、請求項1ないし請求項4の何れか1項記載の建造物において、前記内壁は、前記建造物の全ての面に設けられていることを特徴とする。
請求項8に係る発明は、請求項1、請求項2、請求項3または請求項5の何れか1項記載の建造物において、前記内壁は、前記建造物に対して日射の少ない面には設けられていないことを特徴とする。
The invention according to claim 7 is the building according to any one of claims 1 to 4, wherein the inner wall is provided on all surfaces of the building.
The invention according to claim 8 is the building according to any one of claims 1, 2, 3, or 5, wherein the inner wall has a surface with less solar radiation with respect to the building. It is not provided.

請求項9に係る発明は、請求項1、請求項2、請求項3または請求項6の何れか1項記載の建造物において、前記内壁は、前記建造物の風上側と風下側の面に設けられていることを特徴とする。
請求項10に係る発明は、請求項1、請求項2、請求項3、請求項4または請求項7の何れか1項記載の建造物において、前記周囲空間は、隣り合う前記内壁の端部同士を接合して連続していることを特徴とする。
The invention according to claim 9 is the building according to any one of claims 1, 2, 3, or 6, wherein the inner wall is formed on the windward side and the leeward side of the building. It is provided.
The invention according to claim 10 is the building according to any one of claim 1, claim 2, claim 3, claim 4 or claim 7, wherein the surrounding space is an end of the adjacent inner wall. It is characterized by being joined together and continuous.

請求項11に係る発明は、請求項5、請求項6、請求項8または請求項9の何れか1項記載の建造物において、前記周囲空間は、隣り合う前記内壁側の端部を封鎖していることを特徴とする。
請求項12に係る発明は、請求項5、請求項6、請求項8または請求項9の何れか1項記載の建造物において、前記周囲空間は、前記内壁と隣り合う前記外壁側の端部を封鎖していることを特徴とする。
According to an eleventh aspect of the present invention, in the building according to any one of the fifth, sixth, eighth, and ninth aspects, the surrounding space blocks an end portion of the adjacent inner wall side. It is characterized by.
The invention according to claim 12 is the building according to any one of claims 5, 6, 8, or 9, wherein the surrounding space is an end on the outer wall side adjacent to the inner wall. It is characterized by blocking.

請求項13に係る発明は、請求項1ないし請求項9の何れか1項記載の建造物において、前記周囲空間は、隣り合う前記内壁の端部と対向する前記外壁との間に間仕切りを設けていることを特徴とする。
請求項14に係る発明は、請求項13項記載の建造物において、前記間仕切りは、開閉自在になっていることを特徴とする。
The invention according to claim 13 is the building according to any one of claims 1 to 9, wherein the surrounding space is provided with a partition between the end portion of the adjacent inner wall and the outer wall facing the adjacent space. It is characterized by.
The invention according to claim 14 is the building according to claim 13, wherein the partition is openable and closable.

請求項15に係る発明は、請求項1ないし請求項14の何れか1項記載の建造物において、前記屋根および前記外壁に散水する散水機構をさらに備えたことを特徴とする。   The invention according to claim 15 is the building according to any one of claims 1 to 14, further comprising a watering mechanism for watering the roof and the outer wall.

本発明によれば、空調を用いずに、省エネルギーにより建造物の空間全体の温度を下げることができる。特に、縦型建造物内部の上部の温度を上昇させずに均一化を図ることができる。
また、本発明によれば、従来の縦型のオープンな空間に比べ換気量が増加し、臭気の拡散(外部への排出)などにも効果的である。
ADVANTAGE OF THE INVENTION According to this invention, the temperature of the whole space of a building can be lowered | hung by energy saving, without using air conditioning. In particular, it is possible to achieve uniformity without increasing the temperature of the upper part inside the vertical building.
In addition, according to the present invention, the ventilation amount is increased as compared with the conventional vertical open space, which is effective for odor diffusion (external discharge) and the like.

以下、本発明を図面に示す実施形態に基づいて説明する。
(第一実施形態)
図1ないし図4は、本発明の建造物を自動倉庫などの縦型建造物に適用した第一実施形態に係る縦型建造物1を示す(請求項1、請求項4、請求項7、請求項10、請求項15に対応)。
Hereinafter, the present invention will be described based on embodiments shown in the drawings.
(First embodiment)
1 to 4 show a vertical building 1 according to a first embodiment in which the building of the present invention is applied to a vertical building such as an automatic warehouse (Claim 1, Claim 4, Claim 7, (Corresponding to claims 10 and 15).

本実施形態に係る縦型建造物1は、外気空気の流出入が可能な複数の開口4aを設けた外壁4と、この外壁4に隣接配置するとともに最下部に開口7を設けた内壁5とで壁面3を形成している。
ここで、壁面3は、例えば、断熱材を貼り付けた厚さ0.1mのコンクリートから成る外壁4と、厚さ0.1mのコンクリートから成る内壁5とを、4面に立設することにより構成されている。
The vertical building 1 according to the present embodiment includes an outer wall 4 provided with a plurality of openings 4a through which outside air can flow in and out, and an inner wall 5 provided adjacent to the outer wall 4 and provided with an opening 7 at the bottom. The wall surface 3 is formed.
Here, the wall surface 3 is formed by erecting, for example, an outer wall 4 made of concrete having a thickness of 0.1 m with a heat insulating material and an inner wall 5 made of concrete having a thickness of 0.1 m on four sides. It is configured.

外壁4には、各面にほぼ均等に横長の矩形状の開口4aが形成してある。
内壁5は、外壁4の内側に、例えば0.3mの間隔をおいて配置されている。
外壁4と内壁5とで縦長の周囲空間8を構成する。周囲空間8は、内壁5の最下部に設けた開口7および内壁5の最上部に形成される開口10によって内部空間2と連通している。
The outer wall 4 is formed with a horizontally elongated rectangular opening 4a substantially uniformly on each surface.
The inner wall 5 is disposed inside the outer wall 4 with an interval of 0.3 m, for example.
The outer wall 4 and the inner wall 5 constitute a vertically long surrounding space 8. The surrounding space 8 communicates with the internal space 2 through an opening 7 provided at the lowermost portion of the inner wall 5 and an opening 10 formed at the uppermost portion of the inner wall 5.

本実施形態では、周囲空間8は、縦型建造物1の外壁4の全周に形成されている。
外壁4の上部には、換気開口6aを有する屋根6が設けてある。
屋根6には、外壁4および屋根6に散水する散水機構9が備えてある。
屋根6は、例えば、断熱材を貼り付けた厚さ0.1mのコンクリートから成る。そして、最頂部に換気開口6aが設けてある。
In the present embodiment, the surrounding space 8 is formed on the entire circumference of the outer wall 4 of the vertical building 1.
A roof 6 having a ventilation opening 6 a is provided on the upper part of the outer wall 4.
The roof 6 is provided with a watering mechanism 9 for watering the outer wall 4 and the roof 6.
The roof 6 is made of, for example, concrete having a thickness of 0.1 m to which a heat insulating material is attached. And the ventilation opening 6a is provided in the top part.

散水機構9は、例えば、雨水を溜める容器を設け、任意の散水機により屋根6の上から縦型建造物1に対して均一に散水できるようになっている。
次に、斯くして構成された本実施形態に係る縦型建造物1の作用を説明する。
なお、ここでは、分かりやすくするために、外部風速がない場合について説明する。
また、内部空間2における作用を説明する都合上、内部空間2を上部から下部に向かって上部空間2A、中部空間2B、下部空間2Cに仮想線で区分して説明する。
The watering mechanism 9 is provided with a container for storing rainwater, for example, so that water can be uniformly sprayed from the top of the roof 6 to the vertical building 1 by an arbitrary watering machine.
Next, the operation of the vertical building 1 according to this embodiment configured as described above will be described.
Here, for the sake of clarity, a case where there is no external wind speed will be described.
Further, for the purpose of explaining the operation in the internal space 2, the internal space 2 will be described by dividing it into an upper space 2A, a middle space 2B, and a lower space 2C from the upper part to the lower part by virtual lines.

図4に示すように、散水機構9を駆動して、屋根6から外壁4に向かって散水する。
屋根6や外壁4での水分蒸発冷却と夜間放射冷却と夜間における内壁5への躯体冷熱蓄熱効果により室内温度が低下し(外気温度以下)、空気の密度(ρ)が大となり下降流(ダウンドラフト)が生ずる。すなわち、屋根6の換気開口6aにおける内外の圧力差ΔP(外部−内部)が正となり屋根6の換気開口6aから外気が流入する。なお、図中の太線矢印は空気流の向きを表す(以下、同様)。
As shown in FIG. 4, the watering mechanism 9 is driven to spray water from the roof 6 toward the outer wall 4.
The interior temperature of the roof 6 and the outer wall 4 is reduced by evaporative cooling of water, radiant cooling at night, and the cool heat storage effect on the inner wall 5 at night (below the outside air temperature). (Draft) occurs. That is, the pressure difference ΔP (external-internal) inside and outside the ventilation opening 6 a of the roof 6 becomes positive, and the outside air flows from the ventilation opening 6 a of the roof 6. In addition, the thick line arrow in a figure represents the direction of an air flow (hereinafter the same).

また、上部空間2Aに対応する縦型建造物1の周囲空間領域では、ΔP>0となり、外壁4の開口4aから外気が周囲空間8内へ流入する。
また、中部空間2Bおよび下部空間2Cに対応する縦型建造物の周囲空間領域では、ΔP<0となり、外壁4の開口4aから周囲空間8内の空気が外壁4の外へ流出する。
周囲空間8の上部の方が上部空間2Aより温度が高くなるため、周囲空間8上部の開口10から上向きの空気流が生ずる。このため、この流入気流により、上部空間2Aの温度はやや上昇するものの、屋根6や外壁4の水分蒸発冷却効果や夜間放射冷却効果、さらに夜間における内壁5への躯体冷熱蓄熱効果により、依然として内部空間2の空気温度は外気温度より低く保たれ、上部空間2Aから中部空間2Bへ下降流(ダウンドラフト)が生ずる。
Further, in the surrounding space region of the vertical building 1 corresponding to the upper space 2 </ b> A, ΔP> 0 and outside air flows into the surrounding space 8 from the opening 4 a of the outer wall 4.
Further, in the surrounding space region of the vertical building corresponding to the middle space 2B and the lower space 2C, ΔP <0, and the air in the surrounding space 8 flows out of the outer wall 4 from the opening 4a of the outer wall 4.
Since the temperature in the upper part of the surrounding space 8 is higher than that in the upper space 2A, an upward air flow is generated from the opening 10 in the upper part of the surrounding space 8. For this reason, although the temperature of the upper space 2A slightly rises due to this inflow airflow, it still remains inside due to the moisture evaporation cooling effect of the roof 6 and the outer wall 4 and the nighttime radiative cooling effect, and further the body cold heat storage effect on the inner wall 5 at nighttime. The air temperature in the space 2 is kept lower than the outside air temperature, and a downward flow (down draft) is generated from the upper space 2A to the middle space 2B.

一方、中部空間2Bおよび下部空間2Cにおいても、外壁4での水分蒸発冷却と夜間放射冷却と夜間における内壁5への躯体冷熱蓄熱効果により室内温度が低下し(外気温度以下)、空気の密度(ρ)が大となり中部空間2Bから下部空間2Cへ下降流(ダウンドラフト)が生ずる。
内壁5の下部の開口7においては、方位により生ずる内部空間2と周囲空間8との温度差により、流入出の向きが変わる。方位による周囲空間8の温度の相違は、時刻別の太陽位置の変化による受熱日射量や風向・風速の違いに起因して生じる。
On the other hand, also in the middle space 2B and the lower space 2C, the indoor temperature is lowered (below the outside air temperature) due to the water evaporation cooling at the outer wall 4, the night radiant cooling, and the body cold heat storage effect on the inner wall 5 at night. ρ) becomes large, and a downward flow (downdraft) occurs from the middle space 2B to the lower space 2C.
In the opening 7 at the lower part of the inner wall 5, the direction of inflow and outflow changes due to the temperature difference between the internal space 2 and the surrounding space 8 caused by the orientation. The difference in the temperature of the surrounding space 8 due to the azimuth is caused by the difference in the amount of solar radiation received, the wind direction and the wind speed due to the change in the solar position according to the time.

以上のように、本実施形態によれば、内部にオープンな内部空間2を持つ縦型建造物1の内側に内壁5を設け、幅の狭い縦長の周囲空間8を設け、外壁4近傍の気道を確保し、内壁5の最下部には、周囲空間8と内部空間2との間の開口7を設け、外壁4は全表面のどこからも換気できる、すなわち、空気の流出入が可能である開口4aを設け、屋根6の頂部に換気開口6aを一つ以上設け、さらに散水機構9により、屋根6、外壁4面には散水を施し、蒸発冷却を可能とする構成としたので、内部空間2において発生する下降流(ダウンドラフト)により、従来のように空調装置を用いずに内部空間2の温度上昇を防止することができる。   As described above, according to the present embodiment, the inner wall 5 is provided on the inner side of the vertical building 1 having the open internal space 2 inside, the narrow vertically long surrounding space 8 is provided, and the airway near the outer wall 4 is provided. And an opening 7 between the surrounding space 8 and the inner space 2 is provided at the lowermost part of the inner wall 5, and the outer wall 4 can be ventilated from anywhere on the entire surface, that is, an opening through which air can flow in and out. 4a, one or more ventilation openings 6a are provided on the top of the roof 6, and the water spray mechanism 9 sprays water on the surface of the roof 6 and the outer wall 4 so that evaporative cooling is possible. Due to the downward flow (downdraft) generated at, it is possible to prevent the temperature of the internal space 2 from rising without using an air conditioner as in the prior art.

なお、散水機構9による散水は、外気温に応じて日中に限らず、夜間に行っても良い。
(第二実施形態)
図5は、本発明の建造物を自動倉庫などの縦型建造物に適用した第二実施形態に係る縦型建造物1Aを示す(請求項2、請求項4、請求項7、請求項10、請求項15に対応)。
In addition, the watering by the watering mechanism 9 may be performed not only during the day but also at night according to the outside air temperature.
(Second embodiment)
FIG. 5 shows a vertical building 1A according to a second embodiment in which the building of the present invention is applied to a vertical building such as an automatic warehouse (claims 2, 4, 7, and 10). , Corresponding to claim 15).

本実施形態に係る縦型建造物1Aは、周囲空間8の上部の開口10を閉じる蓋体11を設けた点で、第一実施形態に係る縦型建造物1とは相違する。
本実施形態においては、周囲空間8は、外壁4での水分蒸発冷却と夜間放射冷却と夜間における内壁5への躯体冷熱蓄熱効果により室内温度が低下し(外気温度以下)、空気の密度(ρ)が大となり下降流(ダウンドラフト)が生ずる。
The vertical building 1 </ b> A according to this embodiment is different from the vertical building 1 according to the first embodiment in that a lid 11 that closes the opening 10 at the top of the surrounding space 8 is provided.
In this embodiment, the ambient space 8 has a lower indoor temperature (below the outside air temperature) due to water evaporation cooling at the outer wall 4, nighttime radiative cooling, and the body cold heat storage effect on the inner wall 5 at night, and the air density (ρ ) Becomes large and a downward flow (downdraft) occurs.

従って、本実施形態では、周囲空間8の最上部から内部空間2に向かって上昇気流が流入することがないので、上部空間2A、中部空間2Bの温度をより低下させることができる。
本実施形態においても、第一実施形態と同様の作用効果を奏することが可能となる。
なお、第一実施形態および第二実施形態において、外壁4には横長の開口4aを壁面3の高さ方向に設けたが、縦スリットや各種の穴あき形状としても良い。
Therefore, in this embodiment, since the rising airflow does not flow from the uppermost part of the surrounding space 8 toward the internal space 2, the temperature of the upper space 2A and the middle space 2B can be further reduced.
Also in the present embodiment, it is possible to achieve the same effects as the first embodiment.
In the first embodiment and the second embodiment, the outer wall 4 is provided with the horizontally long opening 4a in the height direction of the wall surface 3, but it may be formed in a vertical slit or various perforated shapes.

また、散水の効果を高めるため、例えば、コンクリート、モルタル他などのような保水性のある材料によって屋根6、外壁4を構成することが望ましいが、鉄板材などでも、散水パイプの孔をきめ細かく取り水分流下(自然流下)を短いピッチで行うことや、スプリンクラーのピッチを細かく取ることにより表面を均一に濡らすことが可能である。あるいは、鉄板表面を凹凸加工して蓄水させたり、面全体を水下方向にぬう凹面の水道(みずみち)をつけることにより、一気に水分が流れず濡れを均一化することができる。   In order to enhance the effect of water spraying, it is desirable that the roof 6 and the outer wall 4 be made of water-retaining material such as concrete, mortar, etc. It is possible to wet the surface uniformly by performing a water flow (natural flow) at a short pitch or by taking a fine sprinkler pitch. Alternatively, the surface of the iron plate can be processed to have unevenness and water can be stored, or by adding a concave water supply (Michimichi) that wipes the entire surface downward, moisture can be made uniform without wetting.

また、散水機構9は、制御機構を分離し、屋根上の散水器を地上から制御する構成としても良い。
(第三実施形態)
図6は、本発明の建造物を自動倉庫などの縦型建造物に適用した第三実施形態に係る縦型建造物1Bを示す(請求項3、請求項4、請求項7、請求項10、請求項15に対応)。
Moreover, the watering mechanism 9 is good also as a structure which isolate | separates a control mechanism and controls the watering device on a roof from the ground.
(Third embodiment)
FIG. 6 shows a vertical building 1B according to a third embodiment in which the building of the present invention is applied to a vertical building such as an automatic warehouse (Claims 3, 4, 7, and 10). , Corresponding to claim 15).

本実施形態に係る縦型建造物1Bは、周囲空間8の上部の開口10を閉じる蓋体11を開閉自在とした点で、第二実施形態に係る縦型建造物1Aとは相違する。
本実施形態においては、蓋体11がヒンジ12によって外壁4に回動自在に設けてある。
本実施形態によれば、縦型建造物1Bの用途に応じて、第一実施形態の使用形態にするか第二実施形態の使用形態にするかを選択することが可能となる。
The vertical building 1B according to the present embodiment is different from the vertical building 1A according to the second embodiment in that the lid 11 that closes the opening 10 at the top of the surrounding space 8 can be freely opened and closed.
In the present embodiment, the lid body 11 is rotatably provided on the outer wall 4 by the hinge 12.
According to the present embodiment, it is possible to select whether to use the first embodiment or the second embodiment according to the usage of the vertical building 1B.

なお、ヒンジ12は、内壁5に設けても良い。また、蓋体11は、例えば、開口10を覆う蓋体で構成し、着脱自在にしても良い。
また、第一実施形態ないし第三実施形態において、全ての外壁4に開口4aを設けた場合について説明したが、例えば、縦型建造物1,1A,1Bに対して日射の少ない面には設けない(請求項5)、あるいは、縦型建造物1の風上側と風下側の面に設ける(請求項6)などのように、一部にのみ設けても良い。
(第四実施形態)
図7は、本発明の建造物を自動倉庫などの縦型建造物に適用した第四実施形態に係る縦型建造物1Cを示す(請求項11、請求項12、請求項15に対応)。
The hinge 12 may be provided on the inner wall 5. Further, the lid body 11 may be constituted by a lid body that covers the opening 10 and may be detachable.
Further, in the first embodiment to the third embodiment, the case where the openings 4a are provided in all the outer walls 4 has been described. For example, the openings 4a are provided on a surface with less solar radiation with respect to the vertical buildings 1, 1A, 1B. (Claim 5) or may be provided only in part, as provided on the windward and leeward surfaces of the vertical building 1 (Claim 6).
(Fourth embodiment)
FIG. 7 shows a vertical building 1C according to the fourth embodiment in which the building of the present invention is applied to a vertical building such as an automatic warehouse (corresponding to claims 11, 12, and 15).

本実施形態に係る縦型建造物1Cは、日射受熱量が大きく、従って蒸発冷却効果の大きい東面、西面、南面に、周囲空間8を備えた第一壁部30を設け、日射の少ない北面に外気空気の流出入ができない外壁40のみから成る第二壁面31を設けた点で、第一実施形態ないし第三実施形態に係る縦型建造物1,1A,1Bとは相違する。
ここで、第一壁部30は、外気空気の流出入が可能な開口4aを設けた外壁4と、この外壁4に隣接配置するとともに最下部に開口7を設けた内壁5とから成る。
The vertical building 1 </ b> C according to the present embodiment has a large amount of solar radiation, and thus the first wall portion 30 having the surrounding space 8 is provided on the east, west, and south surfaces having a large evaporative cooling effect, and the solar radiation is low. It differs from the vertical buildings 1, 1A, 1B according to the first embodiment to the third embodiment in that the second wall surface 31 composed only of the outer wall 40 that cannot allow the outside air to flow in and out is provided on the north surface.
Here, the first wall portion 30 includes an outer wall 4 provided with an opening 4a through which outside air can flow in and out, and an inner wall 5 provided adjacent to the outer wall 4 and provided with an opening 7 at the bottom.

そして、各内壁5の端部は、それぞれ隙間がないように接合してあり、ここに形成される周囲空間8は断面コ字型に繋がっている。
また、東面と西面に位置する内壁5の端部は、北面の外壁40の内側との間に隙間がなうように接合されている。
本実施形態においても、第一実施形態と同様の作用効果を奏することが可能となる。
And the edge part of each inner wall 5 is joined so that there may be no space | gap, respectively, and the surrounding space 8 formed here is connected in cross-sectional U shape.
Moreover, the edge part of the inner wall 5 located in an east surface and a west surface is joined so that there may be a clearance gap between the inner side of the outer wall 40 of a north surface.
Also in the present embodiment, it is possible to achieve the same effects as the first embodiment.

なお、本実施形態においては、日射の多い東面、西面、南面に、周囲空間8を備えた場合について説明したが、その土地の常風向側の外壁と風下側の外壁部分に設けても良い(請求項6、請求項8、請求項9)。
また、周囲空間8を形成しない位置の外壁4は、開口4aを設けても良い。
また、東面と西面に位置する内壁5の端部は、北面の外壁40の内側に当接せず、封鎖部材によって閉鎖しても良い(請求項12)。
(第五実施形態)
図8は、本発明の建造物を自動倉庫などの縦型建造物に適用した第五実施形態に係る縦型建造物1Dを示す(請求項1ないし請求項14に対応)。
In addition, in this embodiment, although the case where the surrounding space 8 was provided in the east surface, west surface, and south surface with much solar radiation was demonstrated, even if it provides in the outer wall of the normal wind direction side and the leeward side outer wall part of the land Good (claim 6, claim 8, claim 9).
The outer wall 4 at a position where the surrounding space 8 is not formed may be provided with an opening 4a.
Further, the end portions of the inner wall 5 located on the east surface and the west surface may not be brought into contact with the inner side of the outer wall 40 on the north surface, and may be closed by a blocking member.
(Fifth embodiment)
FIG. 8 shows a vertical building 1D according to the fifth embodiment in which the building of the present invention is applied to a vertical building such as an automatic warehouse (corresponding to claims 1 to 14).

本実施形態に係る縦型建造物1Dは、散水機構9を外した点で、第一実施形態ないし第四実施形態に係る縦型建造物1,1A,1B,1Cとは相違する。
本実施形態によれば、散水機構9による蒸発冷却が奏されないが、周囲空間8による自然換気と躯体蓄熱効果などにより、内部空間2の温度上昇を防止することが可能である。
従って、周囲空間8のない従来の縦型建造物に比し、内部空間2の上部空間2Aおよび中部空間2Bの温度を上昇させないという効果が奏されることとなる。
(第六実施形態)
図9は、本発明の建造物を自動倉庫などの縦型建造物に適用した第六実施形態に係る縦型建造物1Eを示す(請求項13、請求項15に対応)。
The vertical building 1D according to the present embodiment is different from the vertical buildings 1, 1A, 1B, and 1C according to the first to fourth embodiments in that the watering mechanism 9 is removed.
According to the present embodiment, evaporative cooling by the water spray mechanism 9 is not achieved, but it is possible to prevent an increase in the temperature of the internal space 2 due to natural ventilation by the surrounding space 8 and a housing heat storage effect.
Therefore, compared with the conventional vertical building without the surrounding space 8, the effect of not raising the temperature of the upper space 2A and the middle space 2B of the internal space 2 is produced.
(Sixth embodiment)
FIG. 9 shows a vertical building 1E according to the sixth embodiment in which the building of the present invention is applied to a vertical building such as an automatic warehouse (corresponding to claims 13 and 15).

本実施形態に係る縦型建造物1Eは、周囲空間8を構成する内壁5の各端部と外壁4との間に上部から下部に達する間仕切り50を設けた点で、第一実施形態ないし第三実施形態に係る縦型建造物1,1A,1Bとは相違する。
本実施形態に係る縦型建造物1Eによれば、上述の第一実施形態ないし第三実施形態に係る縦型建造物1,1A,1Bと同様の作用効果を奏することができる上に、各方位の効果を方位毎に保持できる。
The vertical building 1E according to the present embodiment is the first embodiment to the first embodiment in that a partition 50 reaching from the upper part to the lower part is provided between each end of the inner wall 5 constituting the surrounding space 8 and the outer wall 4. This is different from the vertical buildings 1, 1A, 1B according to the third embodiment.
According to the vertical building 1E according to the present embodiment, the same functions and effects as those of the vertical buildings 1, 1A, 1B according to the first to third embodiments described above can be obtained. The effect of orientation can be maintained for each orientation.

なお、本実施形態においては、全ての面に周囲空間8を設けた縦型建造物に対して、周囲空間8を構成する内壁5の各端部と外壁4との間に上部から下部に達する間仕切り50を設けた場合について説明したが、例えば、第四実施形態に係る縦型建造物1Cに示すように、全ての面に周囲空間8を設けていない縦型建造物に対して、周囲空間8を構成する内壁5の各端部と外壁4との間に上部から下部に達する間仕切り50を設けても、同様の効果を奏する。
(第七実施形態)
図10は、本発明の建造物を自動倉庫などの縦型建造物に適用した第七実施形態に係る縦型建造物1Fを示す(請求項14、請求項15に対応)。
In the present embodiment, with respect to a vertical building in which the surrounding space 8 is provided on all surfaces, it reaches from the upper part to the lower part between each end of the inner wall 5 and the outer wall 4 constituting the surrounding space 8. Although the case where the partition 50 was provided was demonstrated, for example, as shown to the vertical building 1C which concerns on 4th embodiment, with respect to the vertical building which does not provide the surrounding space 8 on all surfaces, surrounding space Even if a partition 50 is provided between each end of the inner wall 5 constituting the outer wall 8 and the outer wall 4 so as to reach the lower part from the upper part, the same effect can be obtained.
(Seventh embodiment)
FIG. 10 shows a vertical building 1F according to the seventh embodiment in which the building of the present invention is applied to a vertical building such as an automatic warehouse (corresponding to claims 14 and 15).

本実施形態に係る縦型建造物1Fは、周囲空間8を構成する内壁5の各端部と外壁4との間に上部から下部に達する間仕切り50が開閉自在となっている点で、第六実施形態に係る縦型建造物1Eとは相違する。
本実施形態においては、間仕切り51がヒンジ52によって外壁4に回動自在に設けてある。
The vertical building 1 </ b> F according to the present embodiment is the sixth in that a partition 50 reaching from the upper part to the lower part can be opened and closed between each end of the inner wall 5 constituting the surrounding space 8 and the outer wall 4. It is different from the vertical building 1E according to the embodiment.
In the present embodiment, the partition 51 is rotatably provided on the outer wall 4 by a hinge 52.

本実施形態に係る縦型建造物1Fによれば、上述の第六実施形態に係る縦型建造物1Eと同様の作用効果を奏することができる上に、間仕切り51を閉じると、各方位の効果を方位毎に保持でき、間仕切り51を開放すると、各方位を合成した平均的な冷却効果を奏することができる。
なお、本実施形態においては、全ての面に周囲空間8を設けた縦型建造物に対して、周囲空間8を構成する内壁5の各端部と外壁4との間に上部から下部に達する開閉自在な間仕切り51を設けた場合について説明したが、例えば、第四実施形態に係る縦型建造物1Cに示すように、全ての面に周囲空間8を設けていない縦型建造物に対して、周囲空間8を構成する内壁5の各端部と外壁4との間に上部から下部に達する開閉自在な間仕切り51を設けても、同様の効果を奏する。
According to the vertical building 1F according to the present embodiment, the same effects as the vertical building 1E according to the sixth embodiment described above can be obtained, and further, the effect of each direction can be obtained by closing the partition 51. Can be held for each orientation, and when the partition 51 is opened, an average cooling effect obtained by combining the orientations can be achieved.
In the present embodiment, with respect to a vertical building in which the surrounding space 8 is provided on all surfaces, it reaches from the upper part to the lower part between each end of the inner wall 5 and the outer wall 4 constituting the surrounding space 8. Although the case where the partition 51 that can be freely opened and closed has been described, for example, as shown in the vertical building 1C according to the fourth embodiment, for a vertical building in which the surrounding space 8 is not provided on all surfaces. Even if an openable / closable partition 51 that extends from the upper part to the lower part is provided between each end of the inner wall 5 constituting the surrounding space 8 and the outer wall 4, the same effect can be obtained.

また、第六実施形態および第七実施形態に係る縦型建造物1E,1Fでは、散水機構9を設けた場合について説明したが、第五実施形態に係る縦型建造物1Dのように散水機構9を設けない場合にも、同様の作用効果を奏することができる。   In addition, in the vertical buildings 1E and 1F according to the sixth embodiment and the seventh embodiment, the case where the water sprinkling mechanism 9 is provided has been described. However, the water sprinkling mechanism as in the vertical building 1D according to the fifth embodiment. Even when 9 is not provided, the same effect can be obtained.

本実施例では、縦型自動倉庫を想定し、新東京平均年気象データにおける夏期のある時刻(7月1日正午)の内部温度、換気量の値(計算値)を、下記の解析法に基づいてシミュレーションにより解析した。なお、日射量0.91kW/m2、温度30.6℃、湿度48%、夜間放射量73W/m2、風向東、風速2.7m/sであった。
ここで用いた解析法は、下記の通りである。
In this example, assuming a vertical automatic warehouse, internal temperature and ventilation values (calculated values) at a certain time in summer (noon on July 1) in the New Tokyo average year weather data are calculated using the following analysis method. Based on the analysis by simulation. Note that solar radiation amount 0.91kW / m 2, temperature 30.6 ° C., a humidity of 48%, nocturnal radiometric 73W / m 2, wind direction East was wind speed 2.7 m / s.
The analysis method used here is as follows.

熱と換気を連成した多数室マクロモデル解析に基づく。j室における室温tj、室内圧Pjおよびm蒸発面の表面温度tm、jを未知数とし、これを、下記に示すj室熱平衡式(1)、j室風量平衡式(2)、j室m蒸発面表面熱平衡式(3)により解く。なお、壁体の熱伝導はインプリシット差分による。   Based on multi-chamber macromodel analysis coupled with heat and ventilation. The room temperature tj in the j chamber, the room pressure Pj, and the surface temperature tm, j of the m evaporation surface are set as unknowns, which are expressed as follows: j chamber thermal balance equation (1), j chamber air volume balance equation (2) Solved by the surface surface thermal equilibrium formula (3). Note that the heat conduction of the wall body depends on the implicit difference.

Figure 0003747208
Figure 0003747208

Figure 0003747208
Figure 0003747208

Figure 0003747208
Figure 0003747208

図13および図14は、本実施例における4種類の縦型建造物を示す。(a)は第一実施形態に係る縦型建造物1、(b)は第二実施形態に係る縦型建造物1A、(c)は図11に示す縦型オープン建築1X、(d)は図12に示す縦型オープン建築1Yをそれぞれ表す。
縦型オープン建築1Xは、図11に示すように、縦型建造物1,1Aおよび1Bから周囲空間8を取り除いてある。
13 and 14 show four types of vertical buildings in the present embodiment. (A) is a vertical building 1 according to the first embodiment, (b) is a vertical building 1A according to the second embodiment, (c) is a vertical open building 1X shown in FIG. 11, and (d) is Each of the vertical open buildings 1Y shown in FIG.
As shown in FIG. 11, the vertical open building 1 </ b> X has the surrounding space 8 removed from the vertical buildings 1, 1 </ b> A and 1 </ b> B.

縦型オープン建築1Yは、図12に示すように、縦型オープン建築1Xにおける散水機構9を取り除いてある。
本実施例において、縦型建造物の基本条件は同じとした。すなわち、平面(正方形、上方が北)10m×10m、高さ25m、開口率〔=開口総面積/(開口総面積+壁総面積)〕4%、内部発熱および建物条件は以下の通りとした。
As shown in FIG. 12, the vertical open building 1 </ b> Y has the watering mechanism 9 in the vertical open building 1 </ b> X removed.
In this example, the basic conditions of the vertical building were the same. That is, the plane (square, north is 10 m) × 10 m, height 25 m, opening ratio [= total opening area / (total opening area + total wall area)] 4%, internal heat generation and building conditions are as follows: .

屋根6および外壁4を、コンクリート厚0.1m+断熱材厚(フォームポリスチレン)0.012mとした。
内壁5を、コンクリート厚0.1mとした。
外壁4の開口4aを、東西南北ともに、0.1m(H)×10m(W)×高さ方向8ケ所(GL+0.0m、GL+2.5m、GL+5.0m、GL+7.5m、GL+10.0m、GL+12.5m、GL+15.0m、GL+17.5m)、流量係数(α)=0.6とした。
The roof 6 and the outer wall 4 were made to have a concrete thickness of 0.1 m + a heat insulating material thickness (foam polystyrene) of 0.012 m.
The inner wall 5 was made to have a concrete thickness of 0.1 m.
Opening 4a of the outer wall 4 is 0.1 m (H) × 10 m (W) × 8 height directions (GL + 0.0 m, GL + 2.5 m, GL + 5.0 m, GL + 7.5 m, GL + 10.0 m, GL + 12) 0.5 m, GL + 15.0 m, GL + 17.5 m), and the flow coefficient (α) = 0.6.

屋根6のトップの換気開口6aを、0.5m(D)×0.5m(W)、(GL+25.0m)、α=0.6とした。
内部発熱は、顕熱=〔人体(0.25人/m2⇒14.5W/m2)+照明他(25W/m2)〕、潜熱=〔人体(0.25人/m2⇒14.5W/m2)〕とした。
図13および図14において、左右に示した空気の流入を流出を表す矢印と並記した数値は、換気風量を示す。
The ventilation opening 6a at the top of the roof 6 was set to 0.5 m (D) × 0.5 m (W), (GL + 25.0 m), and α = 0.6.
Internal heat generation is sensible heat = [human body (0.25 person / m 2 ⇒14.5 W / m 2 ) + lighting etc. (25 W / m 2 )], latent heat = [human body (0.25 person / m 2 ⇒14) .5 W / m 2 )].
In FIG. 13 and FIG. 14, the numerical value in which the inflow of air shown on the left and right is shown in parallel with the arrow indicating the outflow indicates the ventilation air volume.

図13(a)に示した縦型建造物1では、内部空間2の上部空間2A、中部空間2B、下部空間2Cの各温度は各々28.5℃、27.5℃、29.3℃であった。
一方、図13(d)に示した従来の縦型オープン建築(外壁、屋根の仕様、開口条件、発熱条件等は全て同じ)1Yでは、内部空間2に対し、上部空間2A、中部空間2B、下部空間2Cの各温度は各々31.2℃、30.8℃、30.5℃であった。
In the vertical building 1 shown in FIG. 13A, the temperatures of the upper space 2A, the middle space 2B, and the lower space 2C of the internal space 2 are 28.5 ° C., 27.5 ° C., and 29.3 ° C., respectively. there were.
On the other hand, in the conventional vertical open architecture shown in FIG. 13D (the outer wall, roof specifications, opening conditions, heat generation conditions, etc. are all the same) 1Y, the upper space 2A, middle space 2B, Each temperature of lower space 2C was 31.2 ° C, 30.8 ° C, and 30.5 ° C, respectively.

両者を比較すると、本実施例に係る縦型建造物1での温度低下量は、上部空間2A=2.7℃、中部空間2B=3.3℃、下部空間2C=1.2℃であり、特に上部空間2A、中部空間2Bで大きいことが分かる。
図13(c)に示す縦型オープン建築(縦型オープン建築1Yに対し、屋根、壁に同量の散水を施し蒸発冷却を行った場合)1Xの内部温度の結果(上部空間2A=30.3℃、中部空間2B=30.3℃、下部空間2C=30.1℃)に比べても本実施例に係る縦型建造物1の内部温度の低下量はかなり大きい。
When both are compared, the amount of temperature decrease in the vertical building 1 according to the present embodiment is the upper space 2A = 2.7 ° C., the middle space 2B = 3.3 ° C., and the lower space 2C = 1.2 ° C. In particular, it can be seen that the upper space 2A and the middle space 2B are large.
The result of the internal temperature of 1X (upper space 2A = 30 ..) when the vertical open architecture shown in FIG. 13 (c) (evaporation cooling is performed by applying the same amount of water to the roof and walls of the vertical open architecture 1Y). Compared with 3 ° C., middle space 2B = 30.3 ° C., lower space 2C = 30.1 ° C., the amount of decrease in the internal temperature of the vertical building 1 according to the present embodiment is considerably large.

図15は、図13における縦型建造物1,1Aおよび縦型オープン建築1X,1Yに対し、以上の結果を含む三日分(7月1日から7月3日)の変化を上部空間2A、中部空間2B、下部空間2Cについて示したものであり、同様の効果がみられる。
図16は、縦型オープン建築1Yに対する本実施例における縦型建造物1,1Aの同時刻の内部温度を比較したものである。ここで、図16(a)(b)(c)は、夏期期間(7月〜9月)の全時間、図16(d)(e)(f)は夏期期間(7月〜9月)の日中(7時から18時)の効果を示している。
FIG. 15 shows the change in the upper space 2A for three days (from July 1 to July 3) including the above results for the vertical buildings 1 and 1A and the vertical open buildings 1X and 1Y in FIG. The middle space 2B and the lower space 2C are shown, and the same effect can be seen.
FIG. 16 compares the internal temperatures at the same time of the vertical buildings 1 and 1A in this example with respect to the vertical open building 1Y. Here, FIGS. 16 (a), (b), and (c) are the total time of the summer period (July to September), and FIGS. 16 (d), (e), and (f) are the summer period (July to September). The effect of the daytime (from 7 o'clock to 18 o'clock) is shown.

図17(a)(b)(c)は、本実施例に係る縦型建造物1と縦型オープン建築1Yとの同時刻の内部温度差(1Y−1)(東京、夏期(7月〜9月))の相対度数と最大値、最小値、平均値を示し、図17(d)(e)(f)は、本実施例に係る縦型建造物1Aと縦型オープン建築1Yとの同時刻の内部温度差(1Y−1A)(東京、夏期(7月〜9月))の相対度数と最大値、最小値、平均値を示す。   17 (a), (b), and (c) show the same internal temperature difference (1Y-1) between the vertical building 1 and the vertical open building 1Y according to this example (Tokyo, summer (July- (September)) shows the relative frequency, maximum value, minimum value, and average value, and FIGS. 17D, 17E, and 17F show the vertical building 1A and the vertical open building 1Y according to this example. The relative frequency, maximum value, minimum value, and average value of the internal temperature difference (1Y-1A) at the same time (Tokyo, summer (July to September)) are shown.

図18(a)(b)(c)は、本実施例に係る縦型建造物1と縦型オープン建築1Yとの同時刻の内部温度差(1Y−1)(東京 夏期(7月〜9月)(7時〜18時))の相対度数と最大値、最小値、平均値を示し、図18(d)(e)(f)は、本実施例に係る縦型建造物1Aと縦型オープン建築1Yとの同時刻の内部温度差(1Y−1A)(東京 夏期(7月〜9月)(7時〜18時))の相対度数と最大値、最小値、平均値を示す。   18 (a), (b), and (c) show the internal temperature difference (1Y-1) at the same time between the vertical building 1 and the vertical open building 1Y according to this example (Tokyo summer (July to 9th). Month) (7 o'clock to 18 o'clock)) and relative values, maximum values, minimum values, and average values are shown, and FIGS. 18 (d), (e), and (f) show the vertical building 1A according to this example and the vertical structure The relative frequency, maximum value, minimum value, and average value of the internal temperature difference (1Y-1A) (Tokyo summer (July-September) (7 o'clock to 18 o'clock)) at the same time with the type open architecture 1Y are shown.

図17および図18から本実施例における縦型建造物1と縦型オープン建築1Yとの内部温度を比較すると、夏期期間で上部空間2Aでは最大4.0℃(日中平均1.0℃)、中部空間2Bで4.3℃(1.2℃)、下部空間2Cでは3.3℃(0.3℃)低下していることが分かる。
また、周囲空間8の上部開口を閉じた場合(縦型建造物1A)の内部温度を縦型オープン建築1Yと比較すると、夏期期間で上部空間2Aでは最大5.7℃(日中平均1.5℃)、中部空間2Bでは6.0℃(1.2℃)、下部空間2Cでは3.1℃(0.3℃)低下しており、その効果が大きいことが分かる。
17 and 18, when comparing the internal temperatures of the vertical building 1 and the vertical open building 1Y in this example, the maximum temperature in the upper space 2A is 4.0 ° C. during the summer period (average 1.0 ° C. during the day). It can be seen that the central space 2B decreases by 4.3 ° C. (1.2 ° C.) and the lower space 2C decreases by 3.3 ° C. (0.3 ° C.).
Moreover, when the upper temperature of the surrounding space 8 is closed (vertical building 1A) compared with the vertical open building 1Y, the upper space 2A has a maximum temperature of 5.7 ° C. (average 1. 5 ° C.), the middle space 2B is reduced by 6.0 ° C. (1.2 ° C.), and the lower space 2C is reduced by 3.1 ° C. (0.3 ° C.), showing that the effect is great.

以上から本実施例の縦型建造物1,1Aにおいて、上部空間2A、中部空間2Bの温度をより低下させたい場合は、縦型建造物1Aのように、周囲空間8の上部の開口10を閉じた方がよいことが分かる。
ただし、この場合、下部空間2Cの温度は、縦型建造物1のように、周囲空間8の上部の開口10を閉じない場合に比べて若干上昇する場合がある。
From the above, in the vertical buildings 1 and 1A of the present embodiment, when it is desired to lower the temperature of the upper space 2A and the middle space 2B, the upper opening 10 of the surrounding space 8 is opened as in the vertical building 1A. It turns out that it is better to close it.
However, in this case, the temperature of the lower space 2 </ b> C may slightly increase as compared to the case where the upper opening 10 of the surrounding space 8 is not closed as in the vertical building 1.

また、図13より換気風量をみると、図13(d)に示したオープン建築1Yに比べて本実施例による縦型建造物1,1Aでは、周囲空間8の換気量は増加しており(特に周囲空間8の上部開口10を開とした縦型建造物1)、本方式は内部の排気(臭気排出など)にも効果的である。
図19および図20は、外部風速0/mの場合の本実施例における各建物内部の温度、換気性状を示す。(a)本実施例による縦型建造物(周囲空間上部開)1、(b)本実施例による縦型建造物(周囲空間上部閉)1A、(c)縦型オープン建築(蒸発冷却あり)1X、(d)縦型オープン建築(蒸発冷却なし)1Yをそれぞれ示す。
Moreover, when the ventilation air volume is seen from FIG. 13, compared with the open building 1Y shown in FIG.13 (d), the ventilation volume of the surrounding space 8 is increasing in the vertical buildings 1 and 1A by a present Example ( In particular, the vertical building 1) with the upper opening 10 in the surrounding space 8 opened, and this method is also effective for internal exhaust (odor discharge etc.).
FIG. 19 and FIG. 20 show the temperature and ventilation characteristics inside each building in the present example when the external wind speed is 0 / m. (A) Vertical building (upper surrounding space open) 1 according to this embodiment, (b) Vertical building (upper surrounding space closed) 1A according to this embodiment, (c) Vertical opening building (with evaporative cooling) 1X, (d) vertical open architecture (no evaporative cooling) 1Y, respectively.

図21は、図19および図20に示した結果を含む各建築内部の三日間(7月1日から7月3日)の温度変化を示す。(a)上部空間の温度変化、(b)中部空間の温度変化、(c)下部空間の温度変化をそれぞれ示す。
本実施例においては、外部風速が0/mであっても同様の作用効果を奏することが確認できた。
FIG. 21 shows the temperature change for three days (from July 1 to July 3) inside each building including the results shown in FIGS. 19 and 20. (A) Temperature change in the upper space, (b) Temperature change in the middle space, (c) Temperature change in the lower space.
In this example, it was confirmed that the same effect was obtained even when the external wind speed was 0 / m.

次に、本実施例による縦型建造物1,1Aの開口率と内部温度低下効果の関係を把握するため、図13の例で示した縦型オープン建築(蒸発冷却なし、開口率4%)1Yに対する本実施例による縦型建造物1,1Aでの内部温度の低下量を開口率を変えて検討した。
その結果を表1に示す。
縦型オープン建築1Yに対して、上部空間2A、中部空間2Bの空間の温度を夏期期間で効果的に低下させる(すなわち、両者の差の平均値が+になる)ためには、本実施例による縦型建造物1,1Aでは、開口率を30〜40%程度以下とすることが望ましい。
Next, in order to grasp the relationship between the opening ratio of the vertical buildings 1 and 1A according to this embodiment and the effect of lowering the internal temperature, the vertical open building shown in the example of FIG. 13 (no evaporative cooling, opening ratio of 4%) The amount of decrease in the internal temperature in the vertical buildings 1 and 1A according to this example with respect to 1Y was examined by changing the aperture ratio.
The results are shown in Table 1.
In order to effectively reduce the temperature of the space of the upper space 2A and the middle space 2B in the summer period (that is, the average value of the difference between them becomes +) with respect to the vertical open building 1Y, this embodiment In the vertical building 1, 1A, the opening ratio is desirably about 30 to 40% or less.

また、オープン建築1Yに対して、下部空間2Cの温度を効果的に低下させるためには(すなわち、両者の差の平均値が+になる)、本実施例による縦型建造物1,1Aにおいて、開口率を5%程度以下とすることが望ましい。
なお、開口率が90%程度に増大しても、本実施例による縦型建造物1,1Aでは、上部空間2A、中部空間2B、下部空間2Cの各空間共に温度低下効果は見られ、特に上部空間2A、中部空間2Bではその低下量は大きい。
Further, in order to effectively lower the temperature of the lower space 2C with respect to the open building 1Y (that is, the average value of the difference between the two becomes +), in the vertical building 1, 1A according to the present embodiment. The aperture ratio is preferably about 5% or less.
Even if the aperture ratio increases to about 90%, in the vertical buildings 1 and 1A according to the present embodiment, the temperature lowering effect is observed in each of the upper space 2A, the middle space 2B, and the lower space 2C. The amount of decrease is large in the upper space 2A and the middle space 2B.

また、いずれの場合も、本実施例による縦型建造物1,1Aでは、周囲空間8の上部開(本実施例による縦型建造物1)より閉(本実施例による縦型建造物1A)の方が上部空間2A、中部空間2Bの温度低下効果は大きくなる。   In any case, in the vertical buildings 1 and 1A according to the present embodiment, the upper part of the surrounding space 8 (the vertical building 1 according to the present embodiment) is closed (the vertical building 1A according to the present embodiment). This increases the temperature lowering effect of the upper space 2A and the middle space 2B.

Figure 0003747208
Figure 0003747208

なお、縦型オープン建築1Yでは、頂部開口部では常に上昇流(空気流出)であるが、本実施例による縦型建造物1,1Aにおいては、周囲空間8の上部開の場合(縦型建造物1)は、開口率が概ね35%以下で頂部開口では下降流(空気流入)とすることができ、また、周囲空間8の上部閉(縦型建造物1A)では、開口率にかかわらず、常に頂部開口では下降流(空気流入)とすることができており、この結果、以上のような内部温度低下効果が発現している。   In the vertical open architecture 1Y, the top opening always has an upward flow (air outflow). However, in the vertical buildings 1 and 1A according to the present embodiment, the upper part of the surrounding space 8 is open (vertical construction). The object 1) has an opening ratio of approximately 35% or less and can be a downward flow (air inflow) at the top opening, and the upper part of the surrounding space 8 (vertical building 1A) is independent of the opening ratio. However, it is always possible to make a downward flow (air inflow) at the top opening, and as a result, the internal temperature lowering effect as described above is exhibited.

図22および図23、図25および図26に東京 夏期(7月1日、正午の例)において、周囲空間8があり蒸発冷却がない場合の内部温度を示す。
図22および図23は、実際の外部風速を考慮した場合、図25および図26は外部風速を全て0m/sとした場合の結果を示す。
図22(a)に示す周囲空間8の上部開の場合(縦型建造物1)の内部空間2の内部温度を図13(d)の縦型オープン建築1Yの内部温度と比較すると、上部空間2Aで2.0℃、中部空間2Bで2.8℃、下部空間2Cで1.0℃低下している。同様に外部風速0m/sの場合、図25(a)と図19(d)とを比較すると、各々、2.6℃、2.4℃、2.2℃低下している。
22, FIG. 23, FIG. 25, and FIG. 26 show the internal temperature when the surrounding space 8 is present and there is no evaporative cooling in the Tokyo summer season (example on July 1, noon).
22 and 23 show the results when the actual external wind speed is considered, and FIGS. 25 and 26 show the results when all the external wind speeds are 0 m / s.
When the internal temperature of the internal space 2 in the case of the upper opening of the surrounding space 8 shown in FIG. 22A (vertical building 1) is compared with the internal temperature of the vertical open building 1Y of FIG. It decreases by 2.0 ° C. at 2A, 2.8 ° C. by the middle space 2B, and 1.0 ° C. by the lower space 2C. Similarly, when the external wind speed is 0 m / s, comparing FIG. 25 (a) with FIG. 19 (d), the temperatures decrease by 2.6 ° C., 2.4 ° C., and 2.2 ° C., respectively.

また、図22(b)に示す周囲空間8の上部閉の場合(縦型建造物1A)の内部空間2の内部温度を図13(d)の縦型オープン建築1Yの内部温度と比較すると、上部空間2Aで3.4℃、中部空間2Bで4.1℃、下部空間2Cで0.7℃低下している。同様に、外部風速0m/sの場合、図25(b)と図19(d)とを比較すると、各々、3.8℃、4.3℃、2.4℃となる。   Further, when the internal temperature of the internal space 2 in the case of closing the upper portion of the surrounding space 8 shown in FIG. 22B (vertical building 1A) is compared with the internal temperature of the vertical open building 1Y of FIG. The temperature is lowered by 3.4 ° C. in the upper space 2A, 4.1 ° C. in the middle space 2B, and 0.7 ° C. in the lower space 2C. Similarly, when the external wind speed is 0 m / s, when comparing FIG. 25B and FIG. 19D, they are 3.8 ° C., 4.3 ° C., and 2.4 ° C., respectively.

一方、図13(c)と図13(d)との比較から、縦型オープン建築で蒸発冷却を行うと、蒸発冷却なしの場合(縦型オープン建築1Y)に比べて、内部温度は上部空間2Aで0.9℃、中部空間2Bで0.5℃、下部空間2Cで0.4℃低下する。また同様に、外部風速0m/sの場合を図19(c)と図19(d)で比較すると、各々、1.6℃、0.8℃、0.8℃低下する。   On the other hand, from the comparison between FIG. 13 (c) and FIG. 13 (d), when evaporative cooling is performed in a vertical open architecture, the internal temperature is higher than that in the case without evaporative cooling (vertical open architecture 1Y). The temperature decreases by 0.9 ° C. at 2A, 0.5 ° C. at the middle space 2B, and 0.4 ° C. at the lower space 2C. Similarly, when the external wind speed of 0 m / s is compared between FIG. 19C and FIG. 19D, the temperatures decrease by 1.6 ° C., 0.8 ° C., and 0.8 ° C., respectively.

さらに、周囲空間8のある場合に蒸発冷却を行った場合、図13と図22を比較することにより、(a)周囲空間8の上部開の場合(縦型建造物1)、蒸発冷却により上部空間2Aで0.7℃、中部空間2Bで0.5℃、下部空間2Cで0.2℃低下する。また、(b)周囲空間8の上部閉の場合(縦型建造物1A)では、各々、1.1℃、0.4℃、0.3℃低下する。さらに、外部風速0m/sの場合、図19と図25を比較することにより、(a)周囲空間8の上部開の場合(縦型建造物1)は、各々、0.6℃、0.5℃、0.4℃低下する。(b)周囲空間8の上部閉の場合(縦型建造物1A)は、各々、1.0℃、0.5℃、0.5℃低下する。   Further, when evaporative cooling is performed in the presence of the surrounding space 8, by comparing FIG. 13 and FIG. 22, (a) when the upper portion of the surrounding space 8 is open (vertical building 1), The temperature decreases by 0.7 ° C. in the space 2A, 0.5 ° C. in the middle space 2B, and 0.2 ° C. in the lower space 2C. Moreover, (b) When the upper part of the surrounding space 8 is closed (vertical building 1A), the temperature drops by 1.1 ° C., 0.4 ° C., and 0.3 ° C., respectively. Further, in the case of the external wind speed of 0 m / s, by comparing FIG. 19 and FIG. 25, (a) in the case of the upper opening of the surrounding space 8 (vertical building 1), It decreases by 5 ° C and 0.4 ° C. (B) When the upper part of the surrounding space 8 is closed (vertical building 1A), the temperature drops by 1.0 ° C, 0.5 ° C, and 0.5 ° C, respectively.

以上により、縦型オープン建築1Yに対し、周囲空間8を設けることで自然換気や躯体蓄熱効果などにより、内部空間2の温度が低下する。また、縦型オープン建築1Yの屋根や外壁に散水し蒸発冷却を行うことで内部のオープン空間の温度が低下する。縦型オープン建築1Yに対し、周囲空間8を設置し、さらに蒸発冷却を行うことで、内部空間2の温度をより低下させることができる。特に、縦型オープン建築1Yに比べて、上部空間2A、中部空間2Bの温度を低下させることが可能となる。   As described above, the temperature of the internal space 2 is lowered by providing the surrounding space 8 with respect to the vertical open building 1Y due to natural ventilation, a frame heat storage effect, and the like. Moreover, the temperature of internal open space falls by sprinkling water on the roof and outer wall of the vertical open building 1Y and performing evaporative cooling. The temperature of the internal space 2 can be further reduced by installing the surrounding space 8 and performing evaporative cooling on the vertical open building 1Y. In particular, the temperature of the upper space 2A and the middle space 2B can be reduced as compared with the vertical open building 1Y.

本発明の建造物を自動倉庫などの縦型建造物に適用した第一実施形態に係る縦型建造物1を示す側面図である。It is a side view which shows the vertical building 1 which concerns on 1st embodiment which applied the building of this invention to vertical buildings, such as an automatic warehouse. 図1の縦断面図である。It is a longitudinal cross-sectional view of FIG. 図1の横断面図である。It is a cross-sectional view of FIG. 図1の作用を説明する図である。It is a figure explaining the effect | action of FIG. 本発明の建造物を自動倉庫などの縦型建造物に適用した第二実施形態に係る縦型建造物1Aを示す縦断面図である。It is a longitudinal cross-sectional view which shows 1 A of vertical buildings which concern on 2nd embodiment which applied the building of this invention to vertical buildings, such as an automatic warehouse. 本発明の建造物を自動倉庫などの縦型建造物に適用した第三実施形態に係る縦型建造物1Bを示す縦断面図である。It is a longitudinal cross-sectional view which shows the vertical building 1B which concerns on 3rd embodiment which applied the building of this invention to vertical type buildings, such as an automatic warehouse. 本発明の建造物を自動倉庫などの縦型建造物に適用した第四実施形態に係る縦型建造物1Cを示す横断面図である。It is a cross-sectional view showing a vertical building 1C according to a fourth embodiment in which the building of the present invention is applied to a vertical building such as an automatic warehouse. 本発明の建造物を自動倉庫などの縦型建造物に適用した第五実施形態に係る縦型建造物1Dを示す側面図である。It is a side view which shows 1D of vertical buildings which concern on 5th embodiment which applied the building of this invention to vertical buildings, such as an automatic warehouse. 本発明の建造物を自動倉庫などの縦型建造物に適用した第六実施形態に係る縦型建造物1Eを示す横断面図である。It is a cross-sectional view showing a vertical building 1E according to a sixth embodiment in which the building of the present invention is applied to a vertical building such as an automatic warehouse. 本発明の建造物を自動倉庫などの縦型建造物に適用した第七実施形態に係る縦型建造物1Fを示す横断面図である。It is a cross-sectional view showing a vertical building 1F according to a seventh embodiment in which the building of the present invention is applied to a vertical building such as an automatic warehouse. 実施例に用いる縦型オープン建築1Xを示す縦断面図である。It is a longitudinal section showing vertical type open architecture 1X used for an example. 実施例に用いる縦型オープン建築1Yを示す縦断面図である。It is a longitudinal cross-sectional view which shows the vertical open architecture 1Y used for an Example. 実施例における各建物内部の温度、換気性状を示すW−E断面図である。It is WE sectional drawing which shows the temperature inside each building in an Example, and ventilation property.

(a)本実施例による縦型建造物(周囲空間上部開)1
(b)本実施例による縦型建造物(周囲空間上部閉)1A
(c)縦型オープン建築(蒸発冷却あり)1X
(d)縦型オープン建築(蒸発冷却なし)1Y
実施例における各建物内部の温度、換気性状を示すN−S断面図である。
(A) Vertical building according to this example (upper surrounding space opened) 1
(B) Vertical building according to this embodiment (closed upper part of surrounding space) 1A
(C) Vertical open architecture (with evaporative cooling) 1X
(D) Vertical open architecture (no evaporative cooling) 1Y
It is NS sectional drawing which shows the temperature inside each building in an Example, and ventilation property.

(a)本実施例による縦型建造物(周囲空間上部開)1
(b)本実施例による縦型建造物(周囲空間上部閉)1A
(c)縦型オープン建築(蒸発冷却あり)1X
(d)縦型オープン建築(蒸発冷却なし)1Y
実施例における各建築内部の温度変化を示す図である。
(A) Vertical building according to this example (upper surrounding space opened) 1
(B) Vertical building according to this embodiment (closed upper part of surrounding space) 1A
(C) Vertical open architecture (with evaporative cooling) 1X
(D) Vertical open architecture (no evaporative cooling) 1Y
It is a figure which shows the temperature change inside each building in an Example.

(a)上部空間の温度変化
(b)中部空間の温度変化
(c)下部空間の温度変化
実施例における縦型建造物と縦型オープン建築(蒸発冷却なし)1Yの内部温度の比較を示す図である。
(A) Temperature change in upper space (b) Temperature change in middle space (c) Temperature change in lower space
It is a figure which shows the comparison of the internal temperature of the vertical building in an Example, and a vertical open building (no evaporative cooling) 1Y.

(a)東京、夏期(7月〜9月)における上部空間の温度
(b)東京、夏期(7月〜9月)における中部空間の温度
(c)東京、夏期(7月〜9月)における下部空間の温度
(d)東京、夏期(7月〜9月)(7時〜18時)における上部空間の温度
(e)東京、夏期(7月〜9月)(7時〜18時)における中部空間の温度
(f)東京、夏期(7月〜9月)(7時〜18時)における下部空間の温度
東京、夏期(7月〜9月)における実施例による縦型建造物(1,1A)と縦型オープン建築(蒸発冷却なし)1Yの内部温度差(1Y−1,1Y−1A)の度数分布を示す図である。
(A) The temperature of the upper space in Tokyo, summer (July to September) (b) The temperature of the central space in Tokyo, summer (July to September) (c) In Tokyo, summer (July to September) Lower space temperature (d) Temperature of upper space in Tokyo, summer (July to September) (7am to 6pm) (e) Tokyo, summer (July to September) (7am to 6pm) Central space temperature (f) Lower space temperature in Tokyo, summer (July to September) (7am to 6pm)
Frequency distribution of internal temperature difference (1Y-1, 1Y-1A) between vertical building (1, 1A) and vertical open building (no evaporative cooling) 1Y according to the example in Tokyo, summer (July to September) FIG.

(a)縦型建造物1と縦型オープン建築(蒸発冷却なし)1Yにおける上部空間の温度
(b)縦型建造物1と縦型オープン建築(蒸発冷却なし)1Yにおける中部空間の温度
(c)縦型建造物1と縦型オープン建築(蒸発冷却なし)1Yにおける下部空間の温度
(d)縦型建造物1Aと縦型オープン建築(蒸発冷却なし)1Yにおける上部空間の温度
(e)縦型建造物1Aと縦型オープン建築(蒸発冷却なし)1Yにおける中部空間の温度
(f)縦型建造物1Aと縦型オープン建築(蒸発冷却なし)1Yにおける下部空間の温度
東京、夏期(7月〜9月)(7時〜18時)における実施例による縦型建造物(1,1A)と縦型オープン建築(蒸発冷却なし)1Yの内部温度差(1Y−1,1Y−1A)の度数分布を示す図である。
(A) Temperature of upper space in vertical building 1 and vertical open building (no evaporative cooling) 1Y (b) Temperature of central space in vertical building 1 and vertical open building (no evaporative cooling) 1Y (c ) Temperature of lower space in vertical building 1 and vertical open building (no evaporative cooling) 1Y (d) Temperature of upper space in vertical building 1A and vertical open building (no evaporative cooling) 1Y (e) Vertical Temperature of the central space in the type building 1A and the vertical open building (no evaporative cooling) 1Y (f) Temperature of the lower space in the vertical type building 1A and the vertical open building (no evaporative cooling) 1Y
Tokyo, summer (July-September) (7 o'clock to 18 o'clock) embodiment vertical building (1, 1A) and vertical open building (no evaporative cooling) 1Y internal temperature difference (1Y-1, It is a figure which shows the frequency distribution of 1Y-1A).

(a)縦型建造物1と縦型オープン建築(蒸発冷却なし)1Yにおける上部空間の温度
(b)縦型建造物1と縦型オープン建築(蒸発冷却なし)1Yにおける中部空間の温度
(c)縦型建造物1と縦型オープン建築(蒸発冷却なし)1Yにおける下部空間の温度
(d)縦型建造物1Aと縦型オープン建築(蒸発冷却なし)1Yにおける上部空間の温度
(e)縦型建造物1Aと縦型オープン建築(蒸発冷却なし)1Yにおける中部空間の温度
(f)縦型建造物1Aと縦型オープン建築(蒸発冷却なし)1Yにおける下部空間の温度
実施例における各建物内部の温度、換気性状、(外部風速0m/sの場合)を示すW−E断面図である。
(A) Temperature of upper space in vertical building 1 and vertical open building (no evaporative cooling) 1Y (b) Temperature of central space in vertical building 1 and vertical open building (no evaporative cooling) 1Y (c ) Temperature of lower space in vertical building 1 and vertical open building (no evaporative cooling) 1Y (d) Temperature of upper space in vertical building 1A and vertical open building (no evaporative cooling) 1Y (e) Vertical Temperature of the central space in the type building 1A and the vertical open building (no evaporative cooling) 1Y (f) Temperature of the lower space in the vertical type building 1A and the vertical open building (no evaporative cooling) 1Y
It is WE sectional drawing which shows the temperature inside each building in an Example, ventilation property, (in the case of external wind speed of 0 m / s).

(a)本実施例による縦型建造物(周囲空間上部開)1
(b)本実施例による縦型建造物(周囲空間上部閉)1A
(c)縦型オープン建築(蒸発冷却あり)1X
(d)縦型オープン建築(蒸発冷却なし)1Y
実施例における各建物内部の温度、換気性状、(外部風速0m/sの場合)を示すN−S断面図である。
(A) Vertical building according to this example (upper surrounding space opened) 1
(B) Vertical building according to this embodiment (closed upper part of surrounding space) 1A
(C) Vertical open architecture (with evaporative cooling) 1X
(D) Vertical open architecture (no evaporative cooling) 1Y
It is NS sectional drawing which shows the temperature inside each building in an Example, ventilation characteristic, (in the case of external wind speed of 0 m / s).

(a)本実施例による縦型建造物(周囲空間上部開)1
(b)本実施例による縦型建造物(周囲空間上部閉)1A
(c)縦型オープン建築(蒸発冷却あり)1X
(d)縦型オープン建築(蒸発冷却なし)1Y
実施例における各建築内部の温度変化(外部風速0m/sの場合)を示す図である。
(A) Vertical building according to this example (upper surrounding space opened) 1
(B) Vertical building according to this embodiment (closed upper part of surrounding space) 1A
(C) Vertical open architecture (with evaporative cooling) 1X
(D) Vertical open architecture (no evaporative cooling) 1Y
It is a figure which shows the temperature change (in the case of an external wind speed of 0 m / s) inside each building in an Example.

(a)上部空間の温度変化
(b)中部空間の温度変化
(c)下部空間の温度変化
蒸発冷却なしの場合の各建築内部の温度、換気性状を示すW−E断面図である。
(A) Temperature change in upper space (b) Temperature change in middle space (c) Temperature change in lower space
It is WE sectional drawing which shows the temperature inside each building in the case of no evaporative cooling, and ventilation property.

(a)本実施例による縦型建造物(周囲空間上部開)1
(b)本実施例による縦型建造物(周囲空間上部閉)1A
蒸発冷却なしの場合の各建築内部の温度、換気性状を示すN−S断面図である。 (a)本実施例による縦型建造物(周囲空間上部開)1 (b)本実施例による縦型建造物(周囲空間上部閉)1A 蒸発冷却なしの場合の各建築内部の温度変化を示す図である。
(A) Vertical building according to this example (upper surrounding space opened) 1
(B) Vertical building according to this embodiment (closed upper part of surrounding space) 1A
It is NS sectional drawing which shows the temperature inside each building in the case of no evaporative cooling, and ventilation property. (A) Vertical building according to this embodiment (upper surrounding space opened) 1 (b) Vertical building according to this embodiment (upper surrounding space closed) 1A It is a figure which shows the temperature change inside each building in the case of no evaporative cooling.

(a)上部空間の温度変化
(b)中部空間の温度変化
(c)下部空間の温度変化
蒸発冷却なしの場合の各建築内部の温度、換気性状、(外部風速0m/sの場合)を示すW−E断面図である。
(A) Temperature change in upper space (b) Temperature change in middle space (c) Temperature change in lower space
It is WE sectional drawing which shows the temperature inside each building in the case of no evaporative cooling, ventilation characteristics, (in the case of external wind speed of 0 m / s).

(a)本実施例による縦型建造物(周囲空間上部開)1
(b)本実施例による縦型建造物(周囲空間上部閉)1A
蒸発冷却なしの場合の各建築内部の温度、換気性状、(外部風速0m/sの場合)を示すN−S断面図である。 (a)本実施例による縦型建造物(周囲空間上部開)1 (b)本実施例による縦型建造物(周囲空間上部閉)1A 蒸発冷却なしの場合の各建築内部の温度変化(外部風速0m/sの場合)を示す図である。
(A) Vertical building according to this example (upper surrounding space opened) 1
(B) Vertical building according to this embodiment (closed upper part of surrounding space) 1A
It is NS sectional drawing which shows the temperature inside each building in the case of no evaporative cooling, ventilation characteristics, (in the case of external wind speed of 0 m / s). (A) Vertical building according to this embodiment (upper surrounding space opened) 1 (b) Vertical building according to this embodiment (upper surrounding space closed) 1A It is a figure which shows the temperature change (in the case of an external wind speed of 0 m / s) inside each building in the case of no evaporative cooling.

(a)上部空間の温度変化
(b)中部空間の温度変化
(c)下部空間の温度変化
(A) Temperature change in upper space (b) Temperature change in middle space (c) Temperature change in lower space

符号の説明Explanation of symbols

1,1A,1B,1C 縦型建造物
2 内部空間
2A 上部空間
2B 中部空間
2C 下部空間
3 壁面
4 外壁
4a 開口
5 内壁
6 屋根
6a 換気開口
7 開口
8 周囲空間
9 散水機構
10 開口
11 蓋体
12 ヒンジ
30 第一壁部
31 第二壁面
40 外壁
50、51 間仕切り
52 ヒンジ
1, 1A, 1B, 1C Vertical building 2 Internal space 2A Upper space 2B Middle space 2C Lower space 3 Wall surface 4 Outer wall 4a Opening 5 Inner wall 6 Roof 6a Ventilation opening 7 Opening 8 Surrounding space 9 Sprinkling mechanism 10 Opening 11 Lid 12 Hinge 30 First wall 31 Second wall 40 Outer walls 50, 51 Partition 52 Hinge

Claims (15)

外気空気の流出入が可能な開口を設けた外壁と、
この外壁に隣接配置するとともに最下部に開口を設けた内壁と、
前記外壁と前記内壁とで形成した周囲空間と、
前記外壁の上部に位置するとともに換気開口を有する屋根と
を備えたことを特徴とする建造物。
An outer wall with an opening through which outside air can flow in and out;
An inner wall disposed adjacent to the outer wall and having an opening at the bottom,
A surrounding space formed by the outer wall and the inner wall;
And a roof located above the outer wall and having a ventilation opening.
外気空気の流出入が可能な開口を設けた外壁と、
この外壁に隣接配置するとともに最下部に開口を設けた内壁と、
前記外壁と前記内壁とで形成するとともに、前記内壁の頂部と前記外壁との間を閉じて成る周囲空間と、
前記外壁の上部に位置するとともに換気開口を有する屋根と
を備えたことを特徴とする建造物。
An outer wall with an opening through which outside air can flow in and out;
An inner wall disposed adjacent to the outer wall and having an opening at the bottom,
A surrounding space formed by the outer wall and the inner wall and closed between the top of the inner wall and the outer wall;
And a roof located above the outer wall and having a ventilation opening.
外気空気の流出入が可能な開口を設けた外壁と、
この外壁に隣接配置するとともに最下部に開口を設けた内壁と、
前記外壁と前記内壁とで形成するとともに、前記内壁の頂部と前記外壁との間を開閉自在として成る周囲空間と、
前記外壁の上部に位置するとともに換気開口を有する屋根と
を備えたことを特徴とする建造物。
An outer wall with an opening through which outside air can flow in and out;
An inner wall disposed adjacent to the outer wall and having an opening at the bottom,
A surrounding space formed by the outer wall and the inner wall, and capable of opening and closing between the top of the inner wall and the outer wall;
And a roof located above the outer wall and having a ventilation opening.
請求項1ないし請求項3の何れか1項記載の建造物において、
前記外壁の開口は、前記建造物の全ての面に設けられている
ことを特徴とする建造物。
In the building according to any one of claims 1 to 3,
The opening of the outer wall is provided on all surfaces of the building.
請求項1ないし請求項3の何れか1項記載の建造物において、
前記外壁の開口は、前記建造物に対して日射の少ない面には設けられていない
ことを特徴とする建造物。
In the building according to any one of claims 1 to 3,
The opening of the outer wall is not provided on a surface with less solar radiation with respect to the building.
請求項1ないし請求項3の何れか1項記載の建造物において、
前記外壁の開口は、前記建造物の風上側と風下側の面に設けられている
ことを特徴とする建造物。
In the building according to any one of claims 1 to 3,
The opening of the outer wall is provided on the windward side and the leeward side of the building.
請求項1ないし請求項4の何れか1項記載の建造物において、
前記内壁は、前記建造物の全ての面に設けられている
ことを特徴とする建造物。
In the building according to any one of claims 1 to 4,
The said inner wall is provided in all the surfaces of the said building. The building characterized by the above-mentioned.
請求項1、請求項2、請求項3または請求項5の何れか1項記載の建造物において、
前記内壁は、前記建造物に対して日射の少ない面には設けられていない
ことを特徴とする建造物。
In the building according to claim 1, claim 2, claim 3 or claim 5,
The said inner wall is not provided in the surface with little solar radiation with respect to the said building. The building characterized by the above-mentioned.
請求項1、請求項2、請求項3または請求項6の何れか1項記載の建造物において、
前記内壁は、前記建造物の風上側と風下側の面に設けられている
ことを特徴とする建造物。
In the building according to claim 1, claim 2, claim 3 or claim 6,
The inner wall is provided on the windward side and the leeward side of the building.
請求項1、請求項2、請求項3、請求項4または請求項7の何れか1項記載の建造物 において、
前記周囲空間は、隣り合う前記内壁の端部同士を接合して連続している
ことを特徴とする建造物。
In the building according to any one of claims 1, 2, 3, 4, or 7,
The said surrounding space has joined the edge parts of the said adjacent inner wall, and is continuous. The building characterized by the above-mentioned.
請求項5、請求項6、請求項8または請求項9の何れか1項記載の建造物において、
前記周囲空間は、隣り合う前記内壁側の端部を封鎖している
ことを特徴とする建造物。
In the building according to claim 5, claim 6, claim 8 or claim 9,
The said surrounding space has sealed the edge part of the said adjacent inner wall side. The building characterized by the above-mentioned.
請求項5、請求項6、請求項8または請求項9の何れか1項記載の建造物において、
前記周囲空間は、前記内壁と隣り合う前記外壁側の端部を封鎖している
ことを特徴とする建造物。
In the building according to claim 5, claim 6, claim 8 or claim 9,
The said surrounding space has sealed the edge part by the side of the said outer wall adjacent to the said inner wall. The building characterized by the above-mentioned.
請求項1ないし請求項9の何れか1項記載の建造物において、
前記周囲空間は、隣り合う前記内壁の端部と対向する前記外壁との間に間仕切りを設けている
ことを特徴とする建造物。
In the building according to any one of claims 1 to 9,
The said surrounding space has provided the partition between the said outer wall facing the edge part of the said adjacent inner wall. The building characterized by the above-mentioned.
請求項13項記載の建造物において、
前記間仕切りは、開閉自在になっている
ことを特徴とする建造物。
The building according to claim 13,
The building is characterized in that the partition is freely openable and closable.
請求項1ないし請求項14の何れか1項記載の建造物において、
前記屋根および前記外壁に散水する散水機構をさらに備えた
ことを特徴とする建造物。
The building according to any one of claims 1 to 14,
A building characterized by further comprising a watering mechanism for watering the roof and the outer wall.
JP2003276882A 2003-07-18 2003-07-18 Building Expired - Fee Related JP3747208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003276882A JP3747208B2 (en) 2003-07-18 2003-07-18 Building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003276882A JP3747208B2 (en) 2003-07-18 2003-07-18 Building

Publications (2)

Publication Number Publication Date
JP2005036596A JP2005036596A (en) 2005-02-10
JP3747208B2 true JP3747208B2 (en) 2006-02-22

Family

ID=34213067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003276882A Expired - Fee Related JP3747208B2 (en) 2003-07-18 2003-07-18 Building

Country Status (1)

Country Link
JP (1) JP3747208B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5372470B2 (en) * 2008-11-05 2013-12-18 株式会社フジタ Room temperature warehouse, article storage method in room temperature warehouse, and method of grasping vertical temperature distribution
JP5750055B2 (en) * 2012-01-12 2015-07-15 大成建設株式会社 Heat relaxation structure

Also Published As

Publication number Publication date
JP2005036596A (en) 2005-02-10

Similar Documents

Publication Publication Date Title
Bahadori Passive cooling systems in Iranian architecture
US3343474A (en) Building with a vent device
US4262656A (en) Solar climate control for greenhouses
JP5248101B2 (en) Buildings that consider the natural environment
CN209353511U (en) A kind of thermal-arrest, heat preservation, the southern wall construction of shading integrated building
US6408582B1 (en) Insulation system of a building wherein vertical air-flow zones divided by orientation or each facade of the building is controlled by open-close method
JP4392508B2 (en) Natural convection underfloor heating and ventilation system
US11619404B2 (en) Geothermal insulation system and method
JP3747208B2 (en) Building
JPH07208764A (en) High temperature and high humidity accommodation dwelling
JP5280703B2 (en) building
JP2001311232A (en) Temperature and humidity adjustment function attached house
JPH0293228A (en) Ventilating device for building
PL65194Y1 (en) Wall mounted aerator
KR101913626B1 (en) Prototype model for hot-arid climate regions
JP4974920B2 (en) Building with heat storage / cooling function
JPH0941506A (en) Building
JP5030246B1 (en) Building ventilation insulation structure
JP2003193579A (en) House
KR102056817B1 (en) Night Purge operating method using natural ventilation
JPH04106242A (en) Humidity and hot air discharging and hot air circulating system, and building utilizing same
JPH08135037A (en) Vent structure building
JPH08284285A (en) Trombe wall used for both cooling and heating
SU1195148A1 (en) System of building solar heating
JP3056667U (en) Structure of a building with air permeability

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees