JP3746306B2 - 負の動作抵抗の可能な半導体電子部品及びその使用方法 - Google Patents

負の動作抵抗の可能な半導体電子部品及びその使用方法 Download PDF

Info

Publication number
JP3746306B2
JP3746306B2 JP01217894A JP1217894A JP3746306B2 JP 3746306 B2 JP3746306 B2 JP 3746306B2 JP 01217894 A JP01217894 A JP 01217894A JP 1217894 A JP1217894 A JP 1217894A JP 3746306 B2 JP3746306 B2 JP 3746306B2
Authority
JP
Japan
Prior art keywords
region
active region
electronic component
semiconductor
depletable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01217894A
Other languages
English (en)
Other versions
JPH06283671A (ja
Inventor
スコトニッキ トマス
メルケル ジェラール
Original Assignee
フランセ テレコム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フランセ テレコム filed Critical フランセ テレコム
Publication of JPH06283671A publication Critical patent/JPH06283671A/ja
Application granted granted Critical
Publication of JP3746306B2 publication Critical patent/JP3746306B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8248Combination of bipolar and field-effect technology
    • H01L21/8249Bipolar and MOS technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/732Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S257/00Active solid-state devices, e.g. transistors, solid-state diodes
    • Y10S257/90MOSFET type gate sidewall insulating spacer

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、負の動作抵抗の構成を示すことのできる半導体電子部品及びその使用方法に関するものである。
【0002】
【従来の技術】
このような部品によって、とくに小型のスタティックメモリポイント、ならびに動作点を自動的に調整し、あるいは安定させるための信号発生器または回路を製造することが可能になる。このようなすべての機能は、とくに電気通信システムのための集積回路に用いられる。
負の動作抵抗(すなわち電圧が上昇するときに電流が低下するような電流/電圧構成)を示すことのできる電子部品は、とくに英国特許No.1,397,789により知られている。しかし、この部品は個別(ディスクリート)素子から製造され、従って集積構造のものではない。
【0003】
【発明が解決しようとする課題】
米国特許No.4,032,961は、負の動作抵抗を示すことのできる集積構造を開示している。しかし、このような構造ではエミッタ接点が基板上にあり、そのため(同じシリコンチップに、n-チャネルおよびp-チャネル絶縁ゲートトランジスタ(CMOSトランジスタ)に、たとえば、npnバイポーラトランジスタを接続して組合せる)CMOS/BiCMOS製造技術には適合しない。これは、基板が、同時に製造されたすべてのトランジスタのための共通のエミッタとして機能するため、トランジスタがもはや互いに絶縁されないからである。負の動作抵抗を示すことができ、またCMOS/BiCMOS製造技術と両立できるような集積構造は現在知られていない。
本発明は、この問題を解決することを目的とする。
【0004】
【課題を解決するための手段】
従って、本発明は、まず第一に負の動作抵抗の構成を示すことのできる半導体電子部品を提供する。この半導体電子部品は、半導体基板と、前記半導体基板の中に第一のタイプの導電性(例えばn型)を有する第一活性領域と、前記第一のタイプの導電性を有する第三活性領域を含み、前記半導体基板の上面に位置する突出領域と、前記第一のタイプの導電性と反対の第二のタイプの導電性(例えばp型)を有し、前記第一活性領域と前記半導体基板の上面の間に配置され、前記第三活性領域の下に位置する第一部分と、オーバードープされた領域からなる部分と、前記第一活性領域と前記半導体基板の上面との間に前記第一部分から延びる空乏可能領域とからなる第二活性領域と、前記第一活性領域、前記オーバードープされた領域上の前記第二活性領域、前記第三活性領域のそれぞれに接する第一、第二、第三のメタライズ層と、選ばれたバイアス電圧の作用のもとに、前記第一活性領域と前記第二活性領域との間の接合からなり、前記第一のメタライズ層に前記バイアス電圧が加えられることにより前記空乏可能領域を空乏化する空乏手段とを、有する。
【0005】
構造的にはほとんど縦形バイポーラトランジスタに似ているが、前記バイアス電圧が加えられた場合バイポーラトランジスタとして作動しない半導体電子部品を提供することによって起こる問題を本発明が解決できることに注目すべきである。
【0006】
しかし、バイポーラトランジスタの構造を特徴付ける用語を用いる場合、第一活性領域は類推によって「エミッタ」または「コレクタ」と呼ぶこともできるが、第二活性領域を「ベース」と呼び、第三活性領域を「コレクタ」または「エミッタ」と呼ぶこともできる。
【0007】
一つの実施例では、空乏可能部分は第二活性領域の第一部分(この第一部分は、突出部にある第三活性領域の下にある)と実質的に同じドーパント濃度を有する第二活性領域の第二部分によって形成され、厚さは下限厚さと上限厚さの間にあり、この下限および上限厚さはドーパント濃度に関連している。
【0008】
ドーパント濃度を1017cm-3に選ぶと、空乏可能部分の厚さを約0.15μmの値に調節することができる。
さらに、空乏可能部分を形成する第二活性領域の第二部分の長さが、少なくとも約0.3μm、さらに好ましくは少なくとも0.5μmに等しいような長さ限度に等しくなるようにすると、とくに有利である。
また、とくに電流の漏れを制限するためには、半導体部品の突起部分がその側面縁部に、部分的または全体が空乏可能部分上にある絶縁側方部分を含むことが好ましい。
【0009】
本発明の一つの実施例によれば、部品は半導体基板の上面の前記空乏可能領域上に配置された絶縁層上に載っている金属部分を含み、前記金属部分/前記絶縁層/前記空乏可能領域前記第一活性領域のスタック(堆積層)絶縁ゲート電界効果トランジスタを形成し、前記金属部分がゲートを形成し、チャネル領域前記空乏可能領域を形成する。
【0010】
空乏手段は、第一活性領域(「コレクタ」)と、空乏可能部分を形成する第二部分(「真性ベース」)の間に接合(ジャンクション)を含んでもよい。また絶縁ゲート電界効果トランジスタのゲートを含むこともできる。
【0011】
空乏手段として絶縁ゲート電界効果トランジスタを含むこの部品の実施例では前記突出領域は、前記空乏可能領域の上にある前記第三活性領域の側面縁部に絶縁領域を有し、前記絶縁領域は前記第三活性領域の端に位置する第1ポーションを含み、前記第1ポーションは前記絶縁層を形成する第2ポーションに対して直角に延びた構成であり、前記第三のメタライズ層が前記金属部分まれている。
【0012】
本発明による部品を使用するとき、バイポーラトランジスタのコレクタと考えられる活性領域でとられた電流/電圧関係から、負の動作抵抗が得られる。これを得るために「エミッタ/ベース」接合に順方向バイアスを加えるよう「ベース」および「エミッタ」領域に、選ばれた固定電圧を加えるが、空乏可能部分を空乏とするためか、または絶縁ゲート電界効果トランジスタのチャネルを空乏とするために、「コレクタ/ベース」接合に逆方向バイアスを加えるよう適当なバイアス電圧を「コレクタ」電圧として加える。
【0013】
た、負の動作抵抗の構成を示すことのできる半導体電気部品の製造方法は次の各段階により構成される。すなわち、
) 第一のタイプの導電性(えばn型)を有する第一半導体部分の上面の下に、半導体基板内に組込んで、第一のものと反対の第二のタイプ(えばp型)の導電性を有する第一半導体層を注入する段階と、
) 半導体物質の第二層を基板(または第一半導体層)の上面に形成し、第一のタイプ(えばn型)の導電性をもたせるためにこの第二層内にドーパントを選択的に注入する段階と、
) 基板上に突出している半導体部分を形成するため、この第二ドープ層をエッチングし、この第一層内に形成するためこの第一層をオーバーエッチングし、このようにして形成された半導体ブロックの突出部分のそれぞれの側に、突出する半導体部分の下に配置された第一層の部分と同じドーパント半導体を有する薄い部分と前記ドーパント濃度に関連した下限厚さと上限厚さの間にある厚い部分を形成する段階と、
) 接触箇所を第一半導体部分、第一導電層および半導体突出部分上に定める段階と、
) メタライズ層を前記接触箇所に形成する段階とによって形成される。
この方法を実施する一つのやり方によれば、段階d)で、第一絶縁層を基板と突出部に形成し、第一半導体層の薄い部分上に少なくとも部分的に配置される突出部絶縁側面領域の各側面に形成するためにこの第一絶縁層をエッチングし、対応する接触箇所の位置を定めるオーバードープ部分を形成するために絶縁側面領域の各側と薄い部分の外側で、第一層のオーバードーピングを行い、半導体突出部の下にあるこのオーバードープ部分と第一半導体層の距離が、薄い部分の長さを定める。
【0014】
薄い部分のこの長さは、そのベースを基板上に置き、厚さをその長さに等しくして絶縁側面領域をエッチングすることによって定めることができる。この場合、このようにして形成された半導体ブロック上に第一半導体層のオーバードーピングを行い、絶縁側面領域はマスクとして機能する。この絶縁側面領域のエッチングを行うために、部分的に前記薄い部分上にのった第一絶縁側面領域を形成するよう、前記第一絶縁層をエッチングすると有利であり、この第一側面領域は、たとえば、二酸化珪素で形成される。次にたとえばこれも二酸化珪素の薄い絶縁層を、このようにして形成された半導体ブロックの上面に形成し、次に薄い絶縁層および第一絶縁側面領域の形成するものとは異なった絶縁物質、たとえば、窒化シリコンでできた追加絶縁層を形成し、次に、第一のものを覆う第二絶縁側面領域を形成するようこの追加絶縁層のエッチングを行う。第一および第二絶縁側面領域、ならびにその間にある薄い絶縁層は薄い部分の長さにほぼ等しい厚さの前記絶縁側面領域を形成する。次に絶縁側面領域の外側にある薄い絶縁層の部分を除去する。
【0015】
一つの変形例としてそのベースの厚さが、薄い部分の所望の長さよりも薄くなるように絶縁側面領域をエッチングすることもできる。薄い部分の所望長さと絶縁側面領域の厚さの差に等しい距離だけそれぞれの側で、絶縁側面領域を越えて延びるマスクを、このように形成された半導体ブロック上に形成し、前記各領域を越えて延びるこのマスクを備えた半導体ブロック上で、この半導体層のオーバードーピングを行う。
【0016】
そのチャネルを空乏とすることのできる絶縁ゲート電界効果トランジスタを備えた電子部品を得るために、絶縁側面領域を形成し、第一半導体層を局所的にオーバードープしたあと、絶縁側面領域を除去し、ブロックの突出部の側方縁部上の部分とこの側方部をほぼ直角方向に延長する部分を含む別の絶縁層を形成し、また、段階e)で、絶縁層の直角端末部上に延びる金属部分へと延長され突出半導体部分に接してメタライズ処理を行う。
【0017】
基板が、第一半導体部分とともに、絶縁ゲート電界効果トランジスタが同時に形成される別の半導体部分を組入れる場合には、第二のタイプ(たとえばp型)の導電性を有する活性ドレインおよびソース領域が、選んだドーピングの2回の連続注入(LDD注入)によって注入され、第一半導体層の上面は、段階c)において、絶縁ゲート電界効果トランジスタのドレインおよびソース部分の最初の注入を行う前にマスクすると有利である。
【0018】
本発明のその他の利点および特徴は、付属図面に例示した発明の実施例とその実施方法について下記に示した説明を検討すれば明らかとなるが、これらは限定的なものではない。
【0019】
【実施例】
図1に示すように、部品1は、第一のタイプ(この場合はn型〔電子による伝導〕)の導電性を有し、第一のものと反対の第二のタイプ(この場合はp型〔正孔による伝導〕)の導電性を有する半導体基板3内に組込まれた半導体部分、すなわちウエル2内に形成される。半導体分野の技術精通者にはLOCOSの名称で知られている絶縁領域12の(図1の)右で、ウエル2はn++オーバードー部4を組込み、その上にメタライズ層15が配置されている。指示の上では、n++(またはp++)型のオーバードーピングは、約1020cm-3の電子(または正孔)濃度に等しいが、n-(またはp-)ドープ領域では、電子(または正孔)濃度は約1017cm-3またはそれ以下である。
【0020】
絶縁領域12の左で、部品1は第二のタイプ(この場合はp型)の導電性を有し、基板の上面5からnウエル内に延びる第二領域10を含んでいる。この第二領域10には、pドープ濃度を有し、側面にp++オーバードープ部10eを備えた中央部10aがあり、オーバードープ部10eの上には接触メタライズ層14が配置されている。
【0021】
突出領域6は、第二領域のpドープ中央部上で基板(または第二領域10)の上面5に載っている。この突出領域6は、その中央部に、たとえばポリシリコンででき、第一のタイプの導電性を有し、n++オーバードープされた領域7を含んでいる。オーバードープされたポリシリコンのこの領域7の下には、n+ ドープされたシリコンの層8が配置され、pドープされた領域10の中央部10aに載っている。突出領域6はまた領域7と8の両側に、たとえば二酸化珪素SiO2 でできた絶縁側面領域9、すなわちスペーサを含んでいる。この突出領域6の上部にはn++オーバードープされたシリコンと接して接触メタライズ層13が設けられている。
【0022】
スペーサ9の下には、第二領域10に、n+ シリコンの層8の下に中央部10aに対して薄い部分がある。この薄い部分10bは、長さがL、厚さがEである。当然、そのドーパント濃度は中央部10aと同じである。下記で述べるようにこの薄い部分10bは、選ばれたバイアス電圧の作用のもとにバイアス可能な空乏手段によって空乏とすることのできる空乏可能部分Zを形成している。これらの空乏手段は、この場合にはnウエルと第二領域10の間の接合11によって形成されている。
【0023】
図1で明らかなように、本発明による電子部品の構造は、そのほとんどが、たとえばBiCMOS製造技術によって製造された縦形バイポーラトランジスタの従来の構造に類似している。縦形バイポーラトランジスタとの構造上の差異は、この場合、たとえば技術精通者にはLDEB(Lightly Doped Extrinsic Base)として知られている外因性ベースの不均等ドーピングを限定するp+ ドープ注入部分の代わりに、選ばれたドーピングと寸法を有する空乏可能部分の存在にある。従って、図1に示した本発明による電子部品では、ウエル2と接触部4によって限定される第一活性領域を、類推によって用語「コレクタ」により呼称してもよい(真性コレクタを限定する実際のnウエルであり、オーバードープ領域4が外因性コレクタを限定する)。同様に、第二領域10は、第二活性「ベース」領域であり、その中でオーバードープ領域10eが外因性ベースを限定すると考えてもよい。最後に、領域7と8によって形成される第三活性領域はn++オーバードープ領域が外因性エミッタを限定しn+ ドープ領域が真性エミッタを限定する「エミッタ」領域のようなものである。
【0024】
簡単にするため本文の残りの部分ではエミッタ、ベース、コレクタなどの用語を用いるが、上述のようにこれらは本発明による部品については適切ではなく、この部品の作動は以下に詳しく述べるようにバイポーラトランジスタの作動とは関連がない。
【0025】
図2は、本発明による部品のもう一つの実施例の部分図である。この図では、図1に示したものに類似した、あるいは類似の機能を有する素子には、図1に用いた参照番号に100を加えた番号を割り当ててある。この両図の唯一の差異は次のようなものである。
【0026】
図2のこの実施例では、スペーサ109の厚さ(すなわち、基板の上面にあるスペーサのベースで、空乏可能領域Zの長さLに平行に測ったスペーサの寸法)は、図2では空乏可能領域の長さLよりも小さいが、図1ではこの厚さはほぼ長さLに等しい。言い換えると、図1ではスペーサは部品の空乏可能領域を形成する薄い部分10b上に全面的に載っているが、図2ではスペーサ9は空乏可能領域Z上に、ただ部分的に載っているだけである。
【0027】
本発明による部品の使用中、選ばれた固定電圧は一般にエミッタ/ベース接合に順方向バイアスを加えるために、外因性ベースおよびエミッタ領域のメタライズ層に加えられるが、空乏可能領域を空乏とするために外因性コレクタのメタライズ層にはコレクタ/ベース接合に逆方向バイアスを加える可変バイアス電圧が加えられる。そこで負の動作抵抗がコレクタの電流/電圧関係から得られる。
【0028】
さらに詳しく述べると、薄い部分10bの厚さEが約0.15μm、ドーパント濃度が約1017cm-3、長さLが約0.5μmの例では、エミッタを接地し、ベースに約0.5Vの固定電圧を加えることによって、約数Vの正のコレクタバイアス電圧で、領域Zを空乏とすることができることがわかった。コレクタ電圧がゼロのときはコレクタ電流はマイナスである。コレクタ電圧が上昇し始めるとコレクタ電流の絶対値はゼロに達するまで低下し、そのあと絶対値が上昇する。これは、コレクタ/ベース接合が低下するように順方向バイアスを加えられるからである。コレクタ電圧が上昇するにつれて、コレクタ/ベース電位差はプラスとなり、これがコレクタ/ベース接合に逆方向バイアスを加える。その結果、コレクタ電流が上昇するが、これはバイポーラトランジスタの場合のようにコレクタ電圧の関数として安定することはない。その理由はコレクタ電圧が同時に大部分のキャリア(この場合は正孔)をZ部分から追い出し、接合11の電界効果によって部分Zを徐々に空乏として、ベースのアクセス抵抗を変調させ、結果としてベースへの通電を徐々に遮断するからである。次に、コレクタバイアス電圧の上昇にもかかわらずコレクタ電流は低下し、こうして負の動作抵抗の特性が生じる。ベース内の故障、あるいはコレクタ/ベース接合内のアバランシ現象によって、コレクタ電圧の、高い方の、または低い方の閾値から、コレクタ電流は再び上昇を始める。
【0029】
このような作動を、構造的にnpn縦形バイポーラトランジスタに類似した部品構造について説明した。もちろん、pnpトランジスタに類似した本発明による部品の構造のドーパントの種類をすべて逆にすると、メタライズ層に加えられる電圧の(正負の)符号をすべて逆にすることによって、エミッタ/ベース接合に順方向バイアスが加えられ、コレクタ/ベース接合に逆方向バイアスが加えられる。
【0030】
図1と図2の実施例では、厚さEとドーパント濃度は、部分Zの空乏可能特性で重要な役割を演じる。実際に、この厚さEを下限厚さ以上とすることが望ましく、この下限厚さの値は空乏可能領域のドーパント濃度に関連している。この厚さEが下限厚さよりも小さいときは部分Zは空乏とすることができず、反対に、外因性コレクタにバイアス電圧が加えられていないため、それ自体で自然に空乏となる。もちろん、この場合、本発明による部品は作動できず、負の動作抵抗の構成を示さない。
【0031】
同様に、この空乏可能領域の厚さEは、ドーパント濃度に関連し、この部分を空乏とするために加えられるバイアス電圧の値にも関連する上限厚さ以下でなくてはならない。実際、この厚さEがこの上限厚さをこえるときは、高いバイアス電圧を加えても、適正なバイアス電圧を加えて部分Zを空乏とすることは難しく、実際に不可能である。
【0032】
すなわち、ドーパント濃度が約1017cm-3であり、低いバイアス電圧、たとえば5V未満の電圧を用いるときは、下限厚さは約0.1μmとし、上限厚さは約0.2μmに調節すると有利である。しかし技術精通者は、これらの数値が指示のためのものであり、試験および/またはシミュレーションにもとづいて、とくにその製造バッチの関数として各製品についてもっと正確に調節されることを理解するであろう。
【0033】
さらに、空乏可能部分の長さLはこの部分の空乏可能特性に影響を及ぼすことはないが、コレクタ電流の低下に影響する。実際に、この部分の長さLが不充分なときは、部分Zが完全に空乏となってもかなりのベース電流漏れが起こるかもしれない。従って、この部分の長さを少なくとも下限長さに等しくなるように調節することが有利である。この下限長さは、この場合には、約0.3μmである。
【0034】
とくに図1と図2に示された実施例を得るための製造方法を実施する一つのやり方を、図3乃至図7までを参照しながら説明する。
一般に、この製造方法は次の各段階で構成されている。すなわち、
第一のタイプ(たとえばn型)の導電性を有し、半導体基板内に組込まれた第一半導体部分の上面の下に、第一のものとは反対の、第二のタイプ(たとえばp型)の導電性を有する第一半導体層を注入する段階と、
基板(または第一半導体層)の上面に、半導体物質の第二層を形成し、そのあとこの第二層に第一のタイプの導電性を与えるためにドーパントを選択的に注入する段階と、
基板の上に突出する半導体部分を形成するために、この第二ドープ層をエッチングし、この第一層内に、半導体ブロック上にこのようにして形成された突出部分の両側に、突出半導体部分の下にある第一層の部分と同じドーパント濃度を有し、厚さが下限厚さと上限厚さの間にあり、これらの下限厚さと上限厚さが前記ドーパント濃度と関連があるような薄い部分をオーバーエッチングする段階と、
第一半導体部分、第一半導体層および半導体突出部分上で接触箇所を限定する段階と、
接触箇所にメタライズ層を形成する段階
とによって構成される。
【0035】
このような製造方法は、以下に述べるようにBiCMOS製造技術と完全に両立する。
図3のaで、参照記号3はpドープシリコンの半導体基板を示し、この中でたとえばnチャネル絶縁ゲート電界効果トランジスタ(NMOSトランジスタ)およびpチャネル絶縁ゲート電界効果トランジスタ(PMOSトランジスタ)が同時に形成され、これらの2個のトランジスタはCMOS複合体ならびに本発明による電子部品を形成する。
【0036】
従って、第一段階は各部品の活性領域の位置を限定し、基板Bの上面に窒化物層16を形成する。
次の段階(図3のb)では、PMOSトランジスタと、負の動作抵抗を有する部品が形成される部分にマスク17bを配置したあと、イソボロン(等ボロン)注入18を行う。このイソボロン注入によって、次の段階でp基板内に形成される絶縁(LOCOS)領域の下での反転現象を防止することができる。
【0037】
図3のcの段階では、既知の方法によって、二酸化珪素の局所酸化を行って絶縁(LOCOS)領域12を形成し、次に窒化物層を除去し、(図で)基板の左側部分にマスク17cを配置したあと、たとえば燐または砒素の注入20を行って、逆行ウエル2と19を形成し、その中で本発明による部品とPMOSトランジスタがそれぞれ作られる。NMOSトランジスタは、基板の左側部分で形成される。最後に、注入のあとアニーリングを行う。
【0038】
図3のdの段階では、ウエル2と19の上にマスク17dを配置したあと、2回のボロン注入21を行って、NMOSトランジスタの閾値を調節し「破壊」として知られている現象からそれを保護する。段階3eでは、同様に、ウエル2とNMOSトランジスタの部分の上にマスクを配置したあとボロン注入22を行ってPMOSトランジスタの閾値を調節する。
【0039】
これらの各段階の間に、負の抵抗を有する部品の領域を含めて基板の上面に酸化物の薄い層を形成し、これが電界効果トランジスタのゲート酸化物を構成するものとなる。
【0040】
次に、ウエル2上のこの絶縁薄層を除去し電界効果トランジスタの各部分を覆うマスク17fを設けた半導体ブロック上で(たとえばボロンの)注入23を行う。このようにして負の動作抵抗を有する部品のベース領域10が形成される。
【0041】
次に、基板の上面にポリシリコンの層25を形成し(図4のg)、そのあとその上にn++型ドーピングを与えるために、たとえば砒素の注入24を行う。迅速なアニーリングを行ったあと、このドープポリシリコン層をエッチングして、PMOSおよびNMOSトランジスタと、負の動作抵抗を有する部品の「エミッタ」領域をそれぞれ限定する。NMOSおよびPMOSトランジスタについては基板が酸化物の薄い層で絶縁されているので、ゲート領域の形成はドープポリシリコン層のエッチングだけを含む。一方、負の動作抵抗を有する部品では、図4のiに示すように基板をわずかにオーバーエッチングOEしてエッチングを延長し、半導体ブロック上にこのようにして形成された突出(エミッタ)領域の両側に、厚さEの薄い部分を形成し、その一部が、負の動作抵抗を有する部品の空乏可能部分Zを形成するようにする。
【0042】
のjに示した段階では、選んだ位置にマスク17jを配置して、半導体ブロックを覆ったあと、たとえば砒素の注入26を行ってNMOSトランジスタの軽ドープドレイン(LDD)と軽ドープソースを形成する。このような注入は、またPMOSトランジスタをウエル19と、また負の動作抵抗を有する部品をウエル2と接触させる効果がある。
【0043】
そのあと、たとえばボロンの注入によって、PMOSトランジスタの軽ドープドレイン(LDD)と軽ドープソースの各領域を形成する。この注入のためには、NMOSトランジスタの部分と、負の動作抵抗を有する部品の部分をマスク17kであらかじめ覆い、ウエル2に表面の下にあるベース領域(半導体層10)で均等なドーパント濃度が保たれるようにしなくてはならない。
【0044】
次に、たとえば酸化珪素の非ドープ層28を半導体ブロック上に形成し(図5のl)、図5のmに示した次の段階で、突出領域7、7aおよび7bにそれぞれに関連したスペーサーのエッチングを行う。この変形例では、すべてのスペーサー109の厚さは同じであるが、図6のpに示した変形例では、負の動作抵抗を有する部品に関連したスペーサ9はNMOSおよびPMOS電界効果トランジスタに関連したスペーサー109よりもベースが広い。
【0045】
広いスペーサ9の形成を図6のnと図6のoに示す。まず、二酸化珪素の薄層40を、図5のmの段階で得た半導体ブロックの上面に形成する。次に、窒化珪素Si34 の厚い層41をこの薄層40の上に形成する。次に、層41の部分的エッチングを行って、SiO2 のスペーサー109のまわりの薄層40上にSi34 スペーサ42を形成する。そのあと負の動作抵抗を有する部品を形成する予定の半導体ブロックの部分にマスク17oを形成し、次にNMOSおよびPMOSトランジスタのスペーサ42の化学エッチングを行う。そのあと、マスク17oを取り外し、薄層40を除去する。図6のpに示した構成では、SiO2 のスペーサ109/SiO2 の薄層40/Si34 のスペーサ42の集合が広いスペーサ9を形成しているが、これはこのようにして得られる。
【0046】
広いスペーサを形成するための2つの異なる絶縁部(二酸化珪素と窒化珪素)を使用することによって選択的化学エッチングを行うことができる。さらに二酸化珪素の薄層40をあらかじめ形成することによって化学エッチングがこの薄層に止められ(裸のSi)基板の上面ならびに二酸化珪素のスペーサ109のエッチングが防止される。
【0047】
従って、このような方法によって、同じシリコンチップ上で厚さの異なるスペーサを簡単に、また効果的に得ることができる。
次に(図7のq)、負の動作抵抗を有する部品とPMOSの突出領域の上にマスク17qを配置して、砒素の注入29を行って、NMOSトランジスタの高度ドープソース・ドレイン領域30を形成する。ここで、このソース・ドレイン部分は、スペーサーの下にn+ ドーピング、n+ 領域と絶縁(LOCOS)部分の間にn++ドーピングを有することに注目すべきである。負の動作抵抗を有する部品のn++オーバドープ接触箇所4と、PMOSトランジスタのウエルとの接触箇所も、この注入29によって形成される。
【0048】
図7のrは、NMOSトランジスタの部分、PMOSトランジスタとウエルの接触箇所、および負の動作抵抗を有する部品の接触箇所4上にマスク17rを配置したあとボロンの注入31によって得る高度ドープ(PMOS)ドレイン・ソース部分32の形成を示している。負の動作抵抗を有する部品のスペーサ9はマスクを形成するから、この注入にはまた負の動作抵抗を有する部品のP++オーバードープ「外因性ベース」領域10eを形成する効果もある。言い換えると、この注入の変形例では、負の動作抵抗を有する部品の空乏可能部分の長さLを決定するのはスペーサのベースでの厚さである。
【0049】
負の動作抵抗を有する部品のスペーサ109のベースでの厚さが、空乏可能部分について望まれる長さLよりも小さい場合には図7のsに示したように、負の動作抵抗を有する部品の突出領域の上に、空乏可能部分の望ましい長さLとスペーサのベースでの厚さの差に等しい所定の距離だけ両側にスペース109を越えて延びるマスク17sを配置する必要がある。
【0050】
製造方法の最終段階は、接触ホールのエッチングと、最終的な迅速アニーリングと、金属珪化物の層の形成と、このようにして形成された相互接続部のエッチングとアニーリングによって構成される。
【0051】
本発明による部品の突出「エミッタ」領域のn+ ドープ領域8(図1)がアニーリング作業中にn+ オーバードープ部分からのドーパントの拡散によって得られることに注目すべきである。
【0052】
本発明による負の動作抵抗を有する部品は、このようにして、図1に示したと同様の変形例で(図3のaから図7のsまでに示した特定の選択の結果、オーバードープ部4とLOCOS12に近い位置で)、また図2に示したと同様の(同じ差異内での)変形例では、用いるスペーサ、ならびにPMOSおよびNMOS電界効果トランジスタのサイズにより、同一のシリコンチップ上で得られる。このような負の動作抵抗を有する部品は、結果としてBiCMOS製造技術と両立でき、基板は共通のエミッタとして作用しない。さらに技術精通者には明らかなように、図4のiの段階でオーバーエッチングOEを行わない場合、またNMOSトランジスタの部分をちょうど覆うマスクによって、図5のkの段階のマスク17kを置換する場合、ならびに広くないスペーサ109を形成する場合には、負の動作抵抗を有する部品の代わりに、不均等ドープ外因性ベース(LDEB)を備えた縦形バイポーラトランジスタが得られると思われる。
【0053】
負の動作抵抗を有する部品の製造方法では、スペーサ9または109を形成し、オーバードープ領域10eの注入を行ったあと、これらのスペーサを除去して突出領域206の側面縁部に垂直側面部209aを含む厚さ105Aの薄い絶縁部209(図8)を形成することができ、この垂直側面部209aは負の動作抵抗を有する部品の空乏可能部分Zを形成する薄い部分の上の基板の上面で水平部分209bによりほぼ直角に延びている。メタライズ層の形成の最終段階で突出領域206の活性半導体領域に接して配置されたメタライズ層は、絶縁層の部分209bの上に配置された金属部分を組み入れる。
【0054】
図9に示した負の動作抵抗を有する部品の実施例は、従って製造の終了時に得られる。
この図では、図1に示したものと同様の部分、または同様の機能を備えた部分は、図1のものに200を加えた参照番号で表示してある。この2つの図における唯一の相違は次のようなものである。
【0055】
金属部分213b/絶縁層209b/半導体部分210b/ウエル202のスタック(堆積層)が、絶縁ゲート電界効果トランジスタを形成し、その薄い半導体部210bがチャネル領域を形成している。この変形例では、領域207と208はこの場合「コレクタ」領域を形成しているが、領域204と202はそれぞれ「外因性エミッタ」と「真性エミッタ」領域を形成し、領域210が「ベース」領域を形成している。
【0056】
この部分の使用中、第一活性領域/第二活性領域(エミッタ/ベース)接合に順方向バイアスを加えるために、選ばれた固定電圧をメタライズ層215と214に加える。(メタライズ層215は、たとえば接地し、メタライズ層214はこの場合には0.5Vの正電圧に接続してある。) 一方、形成された電界効果トランジスタのチャネルを空乏とするための適当なバイアス電圧(この場合は、0Vから数Vへと上昇)を、第三活性領域(コレクタ)のメタライズ層に加え、こうして負の動作抵抗の構成が常にコレクタの電流/電圧ペアから得られる。
【0057】
上に述べた各実施例(図1、2、9)では、個別の空乏手段(接合の電界効果、絶縁ゲート電界効果トランジスタの電界効果)を用いている。しかし接合の電界効果と絶縁ゲート電界効果トランジスタの電界効果を同時に用いた空乏手段を使用することも考えられる。この目的のため、絶縁層209b上の金属部分を、第三活性領域のメタライズ層213から独立とすることができる。この場合、この第三活性領域が「エミッタ」領域を形成するが、第二活性領域が依然として「ベース」領域を形成し、第一活性領域が「コレクタ」領域を形成する。電界効果トランジスタ(そのチャネルが空乏可能部分を形成している)のゲートを形成する金属部分に適切な方法でバイアスを加える。さらに、コレクタ領域に選ばれた上昇するバイアス電圧を加えることによって、一方で電界効果トランジスタによって、もう一方でコレクタ/ベース接合によって2つの電界効果が生じ、これらがいっしょになって空乏可能部分の空乏化に貢献する。こうして、数Vの同じコレクタ電圧でさらに迅速に空乏化することができ、あるいは空乏可能部分の寸法上の要求(厚さと長さ)、またはドーパント濃度をそれほど強要されずにこのような空乏化を行うことができる。
【0058】
上記ではシリコンにもとづいて説明したが、本発明による部品は、その他の半導体物質に基づいて形成することができる。さらに上記のすべての実施例では、メタライズ層をn++またはp++オーバードープ領域に形成した。使用される半導体物質がシリコンである場合にこれが好ましいことは技術精通者が知っている。しかしメタライズ層と充分な接触が直接得られるような半導体物質を用いるときは、これらの領域のオーバードーピングによって拘束されない。このような物質はIII‐V物質の中に存在する。すなわち、元素の周期律表の第3列の元素と第5列の元素を同量に含む物質である。
【0059】
本発明のすべての利点は上記の実施例に見られるが、用途によっては、空乏可能部分の下のオーバードープ部分を基板の第一活性領域内に形成すると有利であることがわかっている。この変形例は上記のすべての実施例と両立するが、図2ではオーバードープ部分だけが示されており、ODPとして表わされている。
【0060】
空乏可能部分の上にこのようなオーバードープ部分が存在するために、オーバーエッチングOEの深さを浅くすることによって、場合によってはこのオーバーエッチングをなくすことによって、接合の深さを浅くして薄い空乏可能領域を得ることができ、また接合の基板部分の濃度を増し、空乏可能部分の空乏化を容易にすることができる。
【0061】
さらに、オーバーエッチングの減少、すなわち空乏可能部分の厚さEの増加によって、空乏可能部分Zと第二活性領域110の第一部分110aの間の境界に形成されたコーナーの部分での電流漏れを制限することができる。
【0062】
一般に薄い部分Zの下でのこのオーバードープ基板部分ODPの形成は、基板と同じタイプの導電性を有するドーパントを薄い部分の下にある基板の部分に深部注入することによって行われる。基板がn型である場合には砒素の深部注入を第二p型活性領域110を通って基板に達するような用量とエネルギーで行い、これをこの部分の導電性のタイプを変えずに行う。たとえば砒素の注入を、注入表面のcm2 あたり2×1012の用量で、また1017cm-3のピークで、500keVのエネルギーで行う。
【0063】
このようにして、このようなドーパントの深部注入を行わない実施例に比べて、オーバーエッチングOEを約20%減少させることができる。
このドーパントの深部注入は、上記の製造方法に完全に組入れられている。
広いスペーサーを用いる場合には、砒素の注入は、第一絶縁側面領域109(図5のm)を形成したあと、広い絶縁側面領域9(図6のn〜図6のp)を形成する前に行う。
【0064】
空乏可能部分の幅Lよりも広い幅のスペーサ109を用いる場合には、砒素の注入は図7のsに示したマスク17sを配置する前に行うと有利である。
このような2つの砒素深部注入方法によって、空乏可能部分の下にある基板のオーバードープ部分が空乏可能部分と第二活性領域110の第一部分110aの間の境界からいくらかの距離だけ延びており、これによってスペーサのコーナーからいくらかの距離にわたって空乏可能部分の空乏化を集中する効果が得られ、電流漏れが制限されることは技術精通者には明らかである。
もちろん、基板がp型の場合には砒素の深部注入を、たとえばボロン(硼素)の深部注入によって置き換えることが必要である。
【図面の簡単な説明】
【図1】本発明による電子部品の第一の実施例の図である。
【図2】本発明による部品の第二の実施例の部分図である。
【図3】本発明による半導体電子部品の製造方法の各段階の一部を示す図である。
【図4】本発明による半導体電子部品の製造方法の各段階の一部を示す図である。
【図5】本発明による半導体電子部品の製造方法の各段階の一部を示す図である。
【図6】本発明による半導体電子部品の製造方法の各段階の一部を示す図である。
【図7】本発明による半導体電子部品の製造方法の各段階の一部を示す図である。
【図8】上記の製造方法の一つの変形例を示す図である。
【図9】本発明による電子部品のもう一つの実施例の図である。
【符号の説明】
1 部品
2,4 第一活性領域(第一半導体部分)
3 半導体基板
5 上面
6 突出領域
7,8 第三活性領域
9 絶縁側面領域(スペーサ)
10 第二活性領域(第一半導体層)
10a 第二活性領域の第一部分
10b 第二活性領域の第二部分
11 空乏化手段11;213b,209b,211
13,14,15 メタライズ層
E 厚さ
L 長さ
Z 空乏可能部分

Claims (20)

  1. 負の動作抵抗の構成を示すことのできる半導体電子部品であって、
    半導体基板と、
    前記半導体基板の中に第一のタイプの導電性を有する第一活性領域と、
    前記第一のタイプの導電性を有する第三活性領域を含み、前記半導体基板の上面に位置する突出領域と、
    前記第一のタイプの導電性と反対の第二のタイプの導電性を有し、前記第一活性領域と前記半導体基板の上面の間に配置され、前記第三活性領域の下に位置する第一部分と、オーバードープされた領域からなる部分と、前記第一活性領域と前記半導体基板の上面との間に前記第一部分から延びる空乏可能領域とからなる第二活性領域と、
    前記第一活性領域、前記オーバードープされた領域上の前記第二活性領域、前記第三活性領域のそれぞれに接する第一、第二、第三のメタライズ層と、
    選ばれたバイアス電圧の作用のもとに、前記第一活性領域と前記第二活性領域との間の接合からなり、前記第一のメタライズ層に前記バイアス電圧が加えられることにより前記空乏可能領域を空乏化する空乏手段とを、
    有する半導体電子部品。
  2. 前記空乏可能領域が前記第二活性領域の第二部分によって形成される請求項1に記載の半導体電子部品。
  3. 前記第二活性領域の前記第二部分は、前記第二活性領域の前記第一部分よりも薄い請求項2に記載の半導体電子部品。
  4. 前記第一部分と前記第二部分は、等しいドーパント濃度を有し、前記第二部分は、厚さが下限の厚さと上限の厚さとの間にあり、前記下限の厚さと前記上限の厚さが前記ドーパント濃度の値に関連している請求項2又は3に記載の半導体電子部品。
  5. 前記ドーパント濃度は約1017cm-3であり、前記空乏可能領域の厚さが約0.15μmである請求項4に記載の半導体電子部品。
  6. 前記第一活性領域は、前記空乏可能領域の下にオーバドープ基板部分を含む請求項1〜5のいずれか1つに記載の半導体電子部品。
  7. 前記オーバドープ基板部分が、前記空乏可能領域と前記第二活性領域の前記第一部分との境界から延びている請求項6に記載の半導体電子部品。
  8. 前記第二活性領域の前記第二部分の長さが、少なくとも所定の下限の長さに等しい請求項2〜7のいずれか1つに記載の半導体電子部品。
  9. 前記所定の下限の長さが0.3μmである請求項8に記載の半導体電子部品。
  10. 前記所定の下限の長さが0.5μmである請求項8に記載の半導体電子部品。
  11. 前記突出領域が、前記第三活性領域のそれぞれの側に絶縁領域を含み、前記空乏可能領域の一部の上の一部分に載っている請求項1〜10のいずれか1つに記載の半導体電子部品。
  12. 前記突出領域が、前記第三活性領域のそれぞれの側に絶縁領域を含み、前記空乏可能領域の前記一部の上の全体部分に載っている請求項1〜10のいずれか1つに記載の半導体電子部品。
  13. 前記絶縁領域は、異なる絶縁材料からなる請求項11又は12に記載の半導体電子部品。
  14. 前記空乏手段は、前記第一活性領域と前記空乏可能領域を形成する前記第二部分との間に接合(ジャンクション)を含む請求項2〜13のいずれか1つに記載の半導体電子部品。
  15. 前記半導体基板の上面の前記空乏可能領域上に配置された絶縁層上に載っている金属部分を含み、前記金属部分/前記絶縁層/前記空乏可能領域/前記第一活性領域のスタック(堆積層)が、絶縁ゲート電界効果トランジスタを形成し、前記金属部分がゲートを形成し、チャネル領域が前記空乏可能領域を形成する請求項1〜14のいずれか1つに記載の半導体電子部品。
  16. 前記空乏手段が、前記絶縁ゲート電界効果トランジスタの前記ゲートを含む請求項15に記載の半導体電子部品。
  17. 前記突出領域は、前記空乏可能領域の上にある前記第三活性領域の側面縁部に絶縁領域を有し、前記絶縁領域は前記第三活性領域の端に位置する第1ポーションを含み、前記第1ポーションは前記絶縁層を形成する第2ポーションに対して直角に延びた構成であり、前記第三のメタライズ層が前記金属部分に組み込まれている請求項15又は16に記載の半導体電子部品。
  18. 負の動作抵抗の構成を示すことのできる半導体電子部品であって、
    半導体基板と、
    前記半導体基板の中に第一のタイプの導電性を有する第一活性領域と、
    前記第一のタイプの導電性を有する第三活性領域を含み、前記半導体基板の上面に位置する突出領域と、
    前記第一のタイプの導電性と反対の第二のタイプの導電性を有し、前記第一活性領域と前記半導体基板の上面の間に配置され、前記第三活性領域の下に位置する第一部分と、オーバードープされた領域からなる部分と、前記第一活性領域と前記半導体基板の上面との間に前記第一部分から延びる空乏可能領域とからなる第二活性領域と、
    前記第一活性領域、前記オーバードープされた領域上の前記第二活性領域、前記第三活性領域のそれぞれに接する第一、第二、第三のメタライズ層と、
    選ばれたバイアス電圧の作用のもとに、前記第一活性領域と前記第二活性領域との間の接合からなり、前記第一のメタライズ層に前記バイアス電圧が加えられることにより前記空乏可能領域を空乏化する空乏手段とを有し、
    前記半導体基板の上面の前記空乏可能領域上に配置された絶縁層上に載っている金属部分を含み、前記金属部分/前記絶縁層/前記空乏可能領域/前記第一活性領域のスタック(堆積層)が、絶縁ゲート電界効果トランジスタを形成し、前記金属部分がゲートを形成し、チャネル領域が前記空乏可能領域を形成し、前記空乏手段が、前記絶縁ゲート電界効果トランジスタの前記ゲートを含み、
    前記突出領域は、前記空乏可能領域の上にある前記第三活性領域の側面縁部に絶縁領域を有し、
    前記絶縁領域は異なる絶縁材料からなり、
    前記空乏手段は、前記第一活性領域と前記空乏可能領域を形成する前記第二部分との間に接合(ジャンクション)を含み、
    それぞれの絶縁領域は、前記第三活性領域の端に位置する第1ポーションを含み、前記第1ポーションは前記絶縁層を形成する第2ポーションに対して直角に延びた構成であり、前記第三活性領域に接して位置するメタライズ層が前記金属部分に組み込まれている半導体電子部品。
  19. 請求項1に記載の半導体電子部品の使用方法であって、
    前記第三活性領域/前記第二活性領域接合に順方向バイアスを加えるために、前記第二、第三のメタライズ層に選ばれた固定電圧を加え、
    前記空乏可能領域を空乏とするため、前記第一活性領域/前記第二活性領域接合に逆方向バイアスを加えるに適した可変バイアス電圧を前記第一のメタライズ層に加え、前記第一活性領域で得た電流/電圧関係から負の動作抵抗を得る方法。
  20. 請求項17に記載の半導体電子部品の使用方法であって、
    前記第一活性領域/前記第二活性領域接合に順方向バイアスを加えるために、前記第一、第二のメタライズ層に選ばれた固定電圧を加え、
    前記絶縁ゲート電界効果トランジスタのチャネルを空乏化するのに適したバイアス電圧を前記第三のメタライズ層に加え、前記第三活性領域で得た電流/電圧関係から負の動作抵抗を得る方法。
JP01217894A 1993-01-12 1994-01-10 負の動作抵抗の可能な半導体電子部品及びその使用方法 Expired - Fee Related JP3746306B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9300197A FR2700418B1 (fr) 1993-01-12 1993-01-12 Composant électronique capable de résistance dynamique négative et procédé de fabrication correspondant.
FR9300197 1993-01-12

Publications (2)

Publication Number Publication Date
JPH06283671A JPH06283671A (ja) 1994-10-07
JP3746306B2 true JP3746306B2 (ja) 2006-02-15

Family

ID=9442957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01217894A Expired - Fee Related JP3746306B2 (ja) 1993-01-12 1994-01-10 負の動作抵抗の可能な半導体電子部品及びその使用方法

Country Status (5)

Country Link
US (1) US5465001A (ja)
EP (1) EP0607075B1 (ja)
JP (1) JP3746306B2 (ja)
DE (1) DE69432494D1 (ja)
FR (1) FR2700418B1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3333813B2 (ja) * 1996-11-20 2002-10-15 トヨタ自動車株式会社 乗員保護装置の起動制御装置
JP2000232167A (ja) * 1999-02-08 2000-08-22 Texas Instr Inc <Ti> より少ないマスク・ステップによる高信頼性高性能のコア・トランジスタおよびi/oトランジスタのための新規な混合電圧cmos処理
US9306042B2 (en) * 2014-02-18 2016-04-05 International Business Machines Corporation Bipolar transistor with carbon alloyed contacts

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1397789A (en) * 1970-01-02 1975-06-18 Post Office Electrical networks
US4032961A (en) * 1974-10-16 1977-06-28 General Electric Company Gate modulated bipolar transistor
US4337474A (en) * 1978-08-31 1982-06-29 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
SE433907B (sv) * 1980-05-30 1984-06-25 Duni Bila Ab Formanpassande dyna
JPS58138078A (ja) * 1982-02-10 1983-08-16 Mitsubishi Electric Corp 半導体装置
JPS60176228A (ja) * 1984-02-23 1985-09-10 Toshiba Corp 半導体装置の製造方法
DE3628857A1 (de) * 1985-08-27 1987-03-12 Mitsubishi Electric Corp Halbleitereinrichtung
JPH027529A (ja) * 1988-06-27 1990-01-11 Nec Corp バイポーラトランジスタ及びその製造方法
JPH0244758A (ja) * 1988-08-05 1990-02-14 Koudenshi Kogyo Kenkyusho:Kk ベース変調形バイポーラ・トランジスタ
US5006476A (en) * 1988-09-07 1991-04-09 North American Philips Corp., Signetics Division Transistor manufacturing process using three-step base doping
GB8926414D0 (en) * 1989-11-18 1990-01-10 Lsi Logic Europ Bipolar junction transistors

Also Published As

Publication number Publication date
JPH06283671A (ja) 1994-10-07
DE69432494D1 (de) 2003-05-22
US5465001A (en) 1995-11-07
EP0607075B1 (fr) 2003-04-16
EP0607075A1 (fr) 1994-07-20
FR2700418A1 (fr) 1994-07-13
FR2700418B1 (fr) 1995-04-07

Similar Documents

Publication Publication Date Title
US4965220A (en) Method of manufacturing a semiconductor integrated circuit device comprising an MOS transistor and a bipolar transistor
JPH06326306A (ja) Mosトランジスタおよびその製造方法
US5082796A (en) Use of polysilicon layer for local interconnect in a CMOS or BiCMOS technology incorporating sidewall spacers
US20060027895A1 (en) Forming lateral bipolar junction transistor in CMOS flow
EP0435257A2 (en) Fabrication method for biMOS semiconductor device with improved speed and reliability
US5552624A (en) Multi-function electronic component, especially negative dynamic resistance element, and corresponding method of fabrication
US4966858A (en) Method of fabricating a lateral semiconductor structure including field plates for self-alignment
US6180442B1 (en) Bipolar transistor with an inhomogeneous emitter in a BICMOS integrated circuit method
US6362025B1 (en) Method of manufacturing a vertical-channel MOSFET
KR20020069002A (ko) 인듐-증진형 바이폴라 트랜지스터
US20090114950A1 (en) Semiconductor Device and Method of Manufacturing such a Device
US5081518A (en) Use of a polysilicon layer for local interconnect in a CMOS or BICMOS technology incorporating sidewall spacers
US6146982A (en) Method for producing a low-impedance contact between a metallizing layer and a semiconductor material
JP3746306B2 (ja) 負の動作抵抗の可能な半導体電子部品及びその使用方法
US4109273A (en) Contact electrode for semiconductor component
US20040046186A1 (en) Bipolar transistors and methods of manufacturing the same
JP2000058665A (ja) 半導体装置及びその製造方法
US5506156A (en) Method of fabricating bipolar transistor having high speed and MOS transistor having small size
US5597757A (en) Method of manufacturing a semiconductor device including bipolar and MOS transistors
KR100395159B1 (ko) 규소게르마늄을 이용한 바이씨모스 소자 제조 방법
KR100252747B1 (ko) 플래쉬메모리소자및그제조방법
US6117718A (en) Method for forming BJT via formulation of high voltage device in ULSI
KR0167664B1 (ko) 반도체소자 제조방법
KR100274604B1 (ko) 반도체장치제조방법
US7465638B2 (en) Bipolar transistor and fabricating method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20040813

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20040818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees