JP3743141B2 - パルス発生装置および放電灯点灯装置 - Google Patents

パルス発生装置および放電灯点灯装置 Download PDF

Info

Publication number
JP3743141B2
JP3743141B2 JP29605197A JP29605197A JP3743141B2 JP 3743141 B2 JP3743141 B2 JP 3743141B2 JP 29605197 A JP29605197 A JP 29605197A JP 29605197 A JP29605197 A JP 29605197A JP 3743141 B2 JP3743141 B2 JP 3743141B2
Authority
JP
Japan
Prior art keywords
capacitor
voltage
circuit
diode
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29605197A
Other languages
English (en)
Other versions
JPH11135278A (ja
Inventor
俊朗 中村
務 塩見
武志 鴨井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP29605197A priority Critical patent/JP3743141B2/ja
Priority to US09/177,979 priority patent/US6104147A/en
Priority to DE19849738A priority patent/DE19849738C2/de
Publication of JPH11135278A publication Critical patent/JPH11135278A/ja
Application granted granted Critical
Publication of JP3743141B2 publication Critical patent/JP3743141B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Generation Of Surge Voltage And Current (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、両端電圧がブレークダウン電圧に達すると導通する2端子の電圧応答形スイッチを用いたパルス発生装置およびそのパルス発生装置をイグナイタとして用いた放電灯点灯装置に関するものである。
【0002】
【従来の技術】
従来より、メタルハライドランプのような高圧放電灯を点灯させる際には、点灯用の電源と、放電を安定させるための安定器とのほかに、放電を開始させるために放電灯に高電圧を印加するイグナイタが設けられる。
たとえば、特開平4−62796号公報には、図39に示す構成の放電灯点灯装置が記載されている。この構成では、交流電源Vs1に安定器4を介して放電灯2を接続してあり、安定器4と放電灯2との間にパルス発生装置としてのイグナイタ3の出力部に設けたパルストランスPTの2次巻線が挿入してある。また、安定器4の出力端間にはコンデンサCpを接続してある。
【0003】
イグナイタ3は、交流電源Vs2を電源として直流高電圧を出力する直流高圧発生回路5と、直流高電圧発生回路5の出力端間に接続したコンデンサC1と、パルストランスPTの1次巻線を介してコンデンサC1の両端間に接続したギャップGとを備える。ギャップGは、両端への印加電圧が所定のブレークダウン電圧に達すると導通してコンデンサC1の電荷をパルストランスPTの1次巻線を介して急速に放電させる。このようにしてパルストランスPTの1次巻線に瞬間的に電流が流れると2次巻線には1次巻線と2次巻線との巻比に応じた高電圧のパルス電圧が発生し、このパルス電圧を放電灯2に印加して放電灯2を始動することができる。ここにおいて、コンデンサCpはパルストランスPTで発生した高電圧を放電灯2に効率よく印加するために設けられている。
【0004】
放電灯2を点灯させるための交流電源Vs1と、イグナイタ3に給電する交流電源Vs2とは、図39には別電源として記載しているが、同じ電源とする場合もある。また、安定器4の出力端から交流電源Vs2を得る場合もある。
ギャップGは、両端への印加電圧が所定のブレークダウン電圧に達すると導通し、ブレークダウン電圧より低いときには非導通になる2端子の電圧応答形スイッチであり、この種の電圧応答形スイッチには、ギャップ(エアギャップおよびガスを封入した容器内にギャップを設けたガスギャップ)のほか、SSS(Silicon Symmetrical Switch) あるいは逆阻止2端子サイリスタ(4層ダイオード)のような半導体トリガ素子なども用いることが可能である。
【0005】
【発明が解決しようとする課題】
ところで、電圧応答形スイッチのブレークダウン電圧には素子ごとのばらつきや経年変化(ギャップGでは電極の消耗など)によるばらつきがあり、またエアギャップでは、温度、湿度、雰囲気、気圧などの影響を受け、ガスギャップや他の電圧応答形スイッチでも温度の影響を受ける。すなわち、図40に示すように、コンデンサC1の両端電圧とギャップGが導通するタイミングとが、ブレークダウン電圧VB1〜VB3のばらつきによってずれることになる。
【0006】
ブレークダウン電圧が低いときには、パルストランスPTの2次巻線に放電灯2を始動するのに必要な電圧を得ることができないという問題が生じる。逆に、ブレークダウン電圧の低下を考慮してブレークダウン電圧の最低電圧で放電灯2を始動するのに必要な最低電圧が得られるように設計したとすると、ブレークダウン電圧が上昇したきに過大な高電圧が発生することになる。つまり、装置の耐圧を高くするように設計する必要があり、装置の大型化やコストの増大につながるという問題がある。
【0007】
本発明は上記事由に鑑みて為されたものであり、その目的は、2端子の電圧応答形スイッチのブレークダウン電圧にばらつきがあっても出力電圧にばらつきが生じないパルス発生装置を提供し、このパルス発生装置をイグナイタに用いた放電灯点灯装置を提供することにある。
【0008】
【課題を解決するための手段】
請求項1の発明は、交流電源を整流し比較的低い電圧を出力するn倍電圧整流回路よりなる第1の整流回路と、交流電源を整流し比較的高い電圧を出力するn倍電圧整流回路よりなる第2の整流回路と、各整流回路の出力端間にそれぞれ接続された第1および第2のコンデンサと、非導通時に第2のコンデンサの両端電圧を含む電圧が印加されると導通する電圧応答形スイッチと、第2のコンデンサの両端電圧を含む電圧を前記電圧応答形スイッチに印加する経路内に挿入された負荷回路と、該経路内で第2のコンデンサに直列接続され負荷回路よりもインピーダンスが十分に大きいインピーダンス要素とを備え、電圧応答形スイッチが導通すると第1のコンデンサの電荷を電圧応答形スイッチを通して負荷回路に流すものである。
【0009】
請求項2の発明は、請求項1の発明において、前記電圧応答形スイッチに第1および第2のコンデンサが並列的に接続され、第1のコンデンサの両端電圧の上限値は電圧応答形スイッチのブレークダウン電圧よりも低く、第2のコンデンサの両端電圧は電圧応答形スイッチのブレークダウン電圧を越えるように設定されているものである。
【0010】
請求項3の発明は、請求項1の発明において、前記電圧応答形スイッチの非導通時に電圧応答形スイッチに第1および第2のコンデンサが直列的に接続され、第1のコンデンサの両端電圧の上限値は電圧応答形スイッチのブレークダウン電圧よりも低く、第1および第2のコンデンサの両端電圧の加算値は電圧応答形スイッチのブレークダウン電圧を越えるように設定されているものである。
【0011】
請求項4の発明は、請求項3の発明において、前記電圧応答形スイッチの導通時に電圧応答形スイッチに第1および第2のコンデンサが並列的に接続されるものである。
請求項5の発明は、請求項1の発明において、前記電圧応答形スイッチに第1のコンデンサが並列的に接続されるとともに、前記電圧応答形スイッチの非導通時に電圧応答形スイッチに交流電源と第2のコンデンサとが直列的に接続され、第1のコンデンサの両端電圧の上限値は電圧応答形スイッチのブレークダウン電圧よりも低く、交流電源のピーク値と第2のコンデンサの両端電圧との加算値は電圧応答形スイッチのブレークダウン電圧を越えるように設定されているものである。
【0012】
請求項6の発明は、請求項1の発明において、前記電圧応答形スイッチの非導通時に電圧応答形スイッチに交流電源と第1および第2のコンデンサとが直列的に接続され、第1のコンデンサの両端電圧の上限値は電圧応答形スイッチのブレークダウン電圧よりも低く、交流電源のピーク値と第1および第2のコンデンサの両端電圧との加算値は電圧応答形スイッチのブレークダウン電圧を越えるように設定されているものである。
【0013】
請求項7の発明は、請求項6の発明において、前記電圧応答形スイッチの導通時に電圧応答形スイッチに第1および第2のコンデンサが並列的に接続されるものである。
請求項8の発明は、請求項5ないし請求項7の発明において、前記電圧応答形スイッチの導通時に交流電源から負荷回路へのエネルギの供給を阻止する手段を設けたものである。
【0014】
請求項9の発明は、請求項1の発明において、第1のコンデンサは複数個の分割コンデンサの直列回路であって、前記電圧応答形スイッチの非導通時に電圧応答形スイッチに交流電源と第1のコンデンサを構成する分割コンデンサの一部と第2のコンデンサとが直列的に接続され、第1のコンデンサの両端電圧の上限値は電圧応答形スイッチのブレークダウン電圧よりも低く、交流電源のピーク値と前記分割コンデンサの両端電圧と第2のコンデンサの両端電圧との加算値は電圧応答形スイッチのブレークダウン電圧を越えるように設定されているものである。
【0016】
請求項10の発明は、請求項5ないし請求項9の発明において、前記インピーダンス要素を交流電源に直列接続したものである
請求項11の発明は、請求項1の発明において、第2のコンデンサとインピーダンス要素との直列回路に、第2のコンデンサから第1のコンデンサへの電荷移動を阻止する別のインピーダンス要素と第1のコンデンサとの直列回路を並列的に接続したものである。
【0017】
請求項12の発明は、請求項10の発明において、交流電源とインピーダンス要素との直列回路に、第2のコンデンサから第1のコンデンサへの電荷移動を阻止する別のインピーダンス要素と第1のコンデンサとの直列回路を並列的に接続したものである。
請求項13の発明は、請求項11または請求項12の発明において、上記別のインピーダンス要素は第1のコンデンサの放電電流を流す極性で第1のコンデンサに直列的に接続されたダイオードを含むものである。
【0018】
請求項14の発明は、第1および第2のダイオードの直列回路と、第1および第2のコンデンサの直列回路とを並列接続し、第1および第2のダイオードの接続点と第1および第2のコンデンサの接続点との間に交流電源を接続し、第1および第2のコンデンサの直列回路の一端にインピーダンス要素を介して第1および第2のダイオードの接続点との間に第3のコンデンサを接続し、第1のインピーダンス要素と第3のコンデンサとの接続点と第1および第2のコンデンサの直列回路の他端との間に少なくとも電圧応答形スイッチを含む回路を接続し、電圧応答形スイッチが導通することにより形成される各コンデンサの放電経路のうちの少なくとも1つであって第2のコンデンサの両端電圧を含む電圧を前記電圧応答形スイッチに印加する経路内に負荷回路を挿入し、該経路内で負荷回路よりもインピーダンスが十分に大きいインピーダンス要素を第2のコンデンサに直列接続したものである。
【0019】
請求項15の発明は、請求項14の発明において、交流電源との接続部に電圧応答形スイッチへの印加電圧の上昇を遅延させる遅延回路を設けたものである。
請求項16の発明は、請求項14の発明において、交流電源と第3のコンデンサとの間に電圧応答形スイッチへの印加電圧の上昇を遅延させる遅延回路を設けたものである。
【0020】
請求項17の発明は、請求項1ないし請求項16の発明において、第1のコンデンサが負荷回路に放電電流を流す極性とは逆の極性の電圧を第1のコンデンサに充電させないバイパス回路が存在するパルス発生装置において、該パイパス回路内にインピーダンス要素を挿入したものである。
請求項18の発明は、請求項1ないし請求項17の発明において、第1のコンデンサが負荷回路に放電電流を流す極性とは逆の極性の電流を流す向きで第1のコンデンサと負荷回路との間に挿入した放電用のダイオードを付加したものである。
【0021】
請求項19の発明は、第1および第2のコンデンサを交流電源を介して直列接続し、交流電源と第2のコンデンサとの直列回路の両端間に第1のダイオードを接続するとともに、交流電源と第1のコンデンサとの直列回路の両端間に第2のダイオードを接続し、第3のダイオードと第3のコンデンサとの直列回路を交流電源から第1および第3のダイオードと第3のコンデンサと第2のダイオードとの経路で第3のコンデンサを充電するように第1のコンデンサと第1のダイオードとの直列回路に並列接続し、第4のダイオードと第4のコンデンサとの直列回路を交流電源から第1のダイオードと第4のコンデンサと第4および第2のダイオードとの経路で第4のコンデンサを充電するように第2のコンデンサと第2のダイオードとの直列回路に並列接続し、第3のコンデンサおよび第3のダイオードの接続点と第4のコンデンサおよび第4のダイオードの接続点との間に負荷回路と電圧応答形スイッチとの直列回路を接続し、交流電源には少なくとも負荷回路よりもインピーダンスの大きいインピーダンス要素を直列接続したものである。
【0022】
請求項20の発明は、第1および第2のコンデンサを交流電源を介して直列接続し、交流電源と第2のコンデンサとの直列回路の両端間に第1のダイオードを接続するとともに、交流電源と第1のコンデンサとの直列回路の両端間に第2のダイオードを接続し、第3のダイオードと第3のコンデンサとの直列回路を交流電源から第2のコンデンサと第3のダイオードと第3のコンデンサとの経路で第3のコンデンサを充電するように第1のダイオードに並列接続し、第4のダイオードと第4のコンデンサとの直列回路を交流電源から第4のコンデンサと第4のダイオードと第1のコンデンサとの経路で第4のコンデンサを充電するように第2のダイオードに並列接続し、第3のコンデンサおよび第3のダイオードの接続点と第4のコンデンサおよび第4のダイオードの接続点との間に負荷回路と電圧応答形スイッチとの直列回路を接続し、交流電源には少なくとも負荷回路よりもインピーダンスの大きいインピーダンス要素を直列接続したものである。
【0023】
請求項21の発明は、請求項1ないし請求項20の発明において、負荷回路が少なくともパルストランスを含み、パルストランスの1次巻線と電圧応答形スイッチとが直列接続されているものである。
請求項22の発明は、請求項1ないし請求項21のいずれか1項に記載のパルス発生装置をイグナイタとして用いた放電灯点灯装置である。
【0024】
【発明の実施の形態】
(基本構成1)
本構成は、図1に示すように、交流電源Vsを昇圧して整流(倍電圧整流またはn倍電圧整流)する第1および第2の整流回路5a,5bを備え、各整流回路5a,5bの出力端間にはそれぞコンデンサC1,C2を接続してある。交流電源Vsは矩形波や正弦波などどのような波形のものでもよい。各コンデンサC1,C2にはそれぞれインピーダンス要素Z1,Z2が直列接続され、コンデンサC1,C2とインピーダンス要素Z1,Z2との各直列回路は互いに並列接続される。この並列回路には負荷回路51とギャップGとの直列回路が接続される。
【0025】
ここで、コンデンサC1の両端電圧はギャップGのブレークダウン電圧よりも低くなるように整流回路5aの出力電圧が設定され、コンデンサC2の両端電圧はギャップGのブレークダウン電圧よりも十分に高くなるように整流回路5bの出力電圧が設定される。
また、インピーダンス要素Z2のインピーダンスは負荷回路51に比べて十分に大きく設定され、ギャップGが導通したときにコンデンサC2の両端電圧が負荷回路51にはほとんど印加されないようにしてある。また、コンデンサC2の容量を小さくすることによっても等価的にインピーダンスを大きくしてインピーダンス要素Z2を大きくした場合と同様に機能させることができる。
【0026】
一方、インピーダンス要素Z1は、コンデンサC2とコンデンサC1との両端電圧の差による充電電流がコンデンサC1に流れるのを阻止し、かつコンデンサC1の放電電流を負荷回路51に十分に流すことができるように設定される。この種のインピーダンス要素Z1の具体例は後述する実施形態において説明する。ここでは、インピーダンス要素Z1としてはコンデンサC1の放電電流を流す極性に挿入されたダイオードを想定し、インピーダンス要素Z2としては抵抗を想定し、負荷回路51はパルストランスを想定しておけばよい。他のインピーダンス要素Z1,Z2については後述する。
【0027】
いま、コンデンサC2の両端電圧が上昇してインピーダンス要素Z2および負荷回路51を介してギャップGに印加される電圧がブレーウダウン電圧に達するとギャップGが導通する。このとき、ギャップGが導通するまではギャップGのインピーダンスは無限大であり、インピーダンス要素Z1はコンデンサC1への充電電流を阻止しているから、コンデンサC2の両端電圧はギャップGに印加される。
【0028】
一方、ギャップGが導通すれば、インピーダンス要素Z2および負荷回路51を通してコンデンサC2が放電される。ここで、インピーダンス要素Z2は負荷回路51よりも十分に大きいから、負荷回路51に印加される電圧は小さくコンデンサC2の両端電圧は負荷回路51にほとんど影響を与えない。一方、ギャップGの導通に伴ってインピーダンス要素Z1を通してコンデンサC1も放電され、コンデンサC1の両端電圧が負荷回路51に印加されることになる。つまり、コンデンサC1の両端電圧が一定であれば、負荷回路51に印加される電圧もほぼ一定になる。
【0029】
以上説明したように、ギャップGを導通させるためにブレークダウン電圧よりも高い電圧を印加するが、ギャップGの導通時にはこの電圧が負荷回路51にほとんど影響しないようにしてある。しかも、ギャップGの導通後には、負荷回路51とギャップGとの直列回路にギャップGのブレークダウン電圧よりも低い電圧を印加して、ギャップGの導通状態が継続している間に負荷回路51に一定電圧を印加することができるのである。
【0030】
(基本構成2)
本構成は、図2に示すように、整流回路5a,5bの出力端間に接続したコンデンサC1,C2を直列接続し、負荷回路51とギャップGとの直列回路にインピーダンス要素Z1を介してコンデンサC1を接続するとともに、負荷回路51とギャップGとの直列回路にインピーダンス要素Z2を介してコンデンサC1,C2の直列回路を接続した構成を有している。
【0031】
この構成では、コンデンサC1の両端電圧はギャップGのブレークダウン電圧よりも低く設定され、コンデンサC1,C2の直列回路の両端電圧がギャップGのブレークダウン電圧よりも高く設定される。他の構成は基本構成1と同様であり、同符号を付した構成は同様に機能する。
したがって、コンデンサC1,C2の直列回路の両端電圧がギャップGのブレークダウン電圧に達するとギャップGが導通する。インピーダンス要素Z2は負荷回路51よりも十分に大きなインピーダンスを持つから、ギャップGが導通したときに、負荷回路51はコンデンサC1,C2の直列回路の両端電圧の影響をほとんど受けない。一方、ギャップGの導通によってコンデンサC1が放電するから、負荷回路51にはコンデンサC1の両端電圧が印加され、負荷回路51に印加される電圧がほぼ一定になる。
【0032】
以上説明したように、本構成でも基本構成1とほぼ同様に動作することになる。
(基本構成3)
本構成は、図3に示すように、整流回路5a,5bの出力端間に接続されたコンデンサC1,C2をインピーダンス要素Z2を介して直列接続し、この直列回路を負荷回路51とギャップGとの直列回路に接続するとともに、負荷回路51とギャップ51との直列回路に、各コンデンサC1,C2をそれぞれインピーダンス要素Z1,Z3を介して接続した構成を有する。
【0033】
この構成では、インピーダンス要素Z1,Z2は基本構成1と同様に設定され、新たに追加されたインピーダンス要素Z3はインピーダンス要素Z1と同様にコンデンサC2への充電電流を阻止し、かつコンデンサC2の放電電流が負荷回路51に十分に流れるように設定される。
したがって、基本構成2と同様に、コンデンサC1,C2の両端電圧の合計電圧がギャップGのブレークダウン電圧に達するとギャップGが導通する。本構成では、ギャップGが導通すると、コンデンサC1,C2の電荷がそれぞれインピーダンス要素Z1,Z3および負荷回路51を通して放電されるから、両コンデンサC1,C2を並列した形で負荷回路51に電流を流すことができ、負荷回路51に大きいエネルギを与えることができる。他の構成および動作は基本構成1と同様である。
【0034】
(基本構成4)
本構成は、図4に示すように、基本構成1の構成に負荷回路51としてパルストランスPTを用いたものである。パルストランスPTは、図5に示すように1次巻線と2次巻線とを備え、昇圧トランスとして巻比が設定されている。
パルストランスPTの1次巻線にはギャップGが直列接続される。他の構成および動作は基本構成1と同様であり、ギャップGの導通によってコンデンサC1の両端電圧がパルストランスPTの1次巻線に印加されると、パルストランスPTの2次巻線に高電圧のパルス電圧が出力されるのである。
【0035】
(基本構成5)
本構成は、図6に示すように、基本構成1の構成において、整流回路5a,5bの一部を兼用したものである。すなわち、整流回路5aの出力電圧は整流回路5bの出力電圧よりも低く、整流回路5bを構成しているn倍電圧整流回路は一般に中間部分で出力電圧よりも低い電圧を取り出すことが可能であることが多いから、中間部分から取り出した電圧を整流回路5aの出力電圧として用いることができる。他の構成および動作は基本構成1と同様である。
【0036】
(基本構成6)
本構成は、図7に示すように、整流回路5a,5bが互いに一部分ずつを共有するものである。図示例はこの概念を示すものであって、整流回路5a,5bがそれぞれ非共有の個別回路部A,Bと、両者に共有の共通回路部Cとで構成されているのである。他の構成および動作は基本構成1と同様である。
【0037】
(基本構成7)
本構成は、図8に示すように、整流回路5bの出力電圧によってコンデンサC2を充電し、ギャップGを導通させるための電圧をコンデンサC2と交流電源Vsとの加算電圧によて得るようにしているものである。したがって、パルストランスPTの1次巻線とギャップとの直列回路を、交流電源VsとコンデンサC2とインピーダンス要素2との直列回路の両端に接続した構成を採用している。他の構成および動作は基本構成1と同様である。
【0038】
(基本構成8)
本構成は、図9に示すように、基本構成1の構成において、負荷回路51としてパルストランスPTを用いるとともに、インピーダンス要素Z1としてコンデンサC1からパルストランスPTの1次巻線に放電電流を流す極性に接続したダイオードを用い、インピーダンス要素Z2として抵抗を用いたものである。
【0039】
ギャップGが導通していない期間にはコンデンサC1の両端電圧よりもコンデンサC2の両端電圧が高いが、ダイオードZ1がオフであるからコンデンサC2の両端電圧がギャップGに印加される。コンデンサC2の両端電圧がギャップGのブレークダウン電圧に達するとギャップGが導通するが、抵抗Z2をパルストランスPTのインピーダンスよりも十分に大きく設定していることによってパルストランスPTの1次巻線にはコンデンサC2の両端電圧はほとんど印加されない。また、ギャップGが導通することによってコンデンサC1の電荷がパルストランスPTの1次巻線に急速に放電され、パルストランスPTの2次巻線に高電圧のパルス電圧が出力される。他の構成および動作は基本構成1と同様である。
【0040】
(基本構成9)
本構成は、図10に示すように、基本構成7として示したものにおいてインピーダンス要素Z1,Z2として、それぞれ可飽和リアクトルと抵抗とを用いたものである。他の構成および動作は基本構成7と同様である。
(実施形態1)
本実施形態は、図11に示すように、基本構成1において、整流回路5aとして倍電圧整流回路、整流回路5bとして4倍電圧整流回路を用い、インピーダンス要素Z1,Z2をそれぞれ抵抗とダイオードとし、負荷回路51をパルストランスPTとしたものである。つまり、基本構成8において各整流回路5a,5bとしてそれぞれ倍電圧整流回路と4倍電圧整流回路とを用いたものである。各整流回路5a,5bは半波整流回路である。
【0041】
ギャップGにはジーメンス社製のFS08X−1を用いている。このギャップGのブレークダウン電圧は680〜1000Vの範囲で変動する。そこで、交流電源Vsの電圧を300Vとし、整流回路5aの出力電圧が600Vになり、整流回路5bの出力電圧が1200Vになるようにしている。
このような電圧の関係によって、コンデンサC2の両端電圧が上昇すればギャップGが導通するが、抵抗Z2がパルストランスPTのインピーダンスよりも十分に大きいからパルストランスPTの1次巻線にはコンデンサC2の電圧はほとんど印加されない。また、ギャップGの導通によりコンデンサC1の電荷がダイオードZ1およびパルストランスPTの1次巻線を通して放電され、このときパルストランスPTの2次巻線に高電圧のパルスが出力される。
【0042】
コンデンサC1,C2の放電電流が所定電流以下になるとギャップGが非導通になり、コンデンサC1,C2が再度充電される。
すなわち、交流電源Vsとして図12に示すような矩形波電圧を与えるものとして、交流電源Vsのピーク電圧がEであるとすれば、コンデンサC1,C2の両端電圧はそれぞれ図12(b)(c)のように変化する。ギャップGのブレークダウン電圧は、図12(c)に示すように上限値VBHと下限値VBLとの間で変動し、たとえばコンデンサC2の両端電圧がVBD(VBH>VBD>VBL)に達したときにギャップGがオンになったとすると(図示例では時刻ton)、コンデンサC1もこのタイミングで放電されコンデンサC1,C2の両端電圧は0Vになる。その後、回路動作を停止させなければ、再度充電されて上記動作を繰り返す。
【0043】
上述のように、本実施形態ではコンデンサC1の両端電圧の飽和電圧(=2E)をギャップGのブレークダウン電圧の下限値よりも低く設定し、コンデンサC2の両端電圧の飽和電圧(=4E)をギャップGのブレークダウン電圧の上限値よりも高く設定してある。また、コンデンサC2の両端電圧がギャップGのブレークダウン電圧の下限値に達するのは、コンデンサC1の両端電圧が飽和する時点(図示例では時刻ta)以降になるように設計してある。このような関係に設定しておくことによって、ギャップGのブレークダウン電圧のばらつきによらず、パルストランスPTの1次巻線にほぼ一定電圧を印加することができ、パルストランスPTの2次巻線に電圧がほぼ一定なパルス電圧を発生させることができる。他の構成および動作は基本構成1ないし基本構成8と同様である。
【0044】
(実施形態2)
本実施形態は、図13に示すように、交流電源Vsに抵抗Z2を介して倍電圧整流回路よりなる整流回路5aを接続し、整流回路5aの出力端間に接続されたコンデンサC1と、このコンデンサC1に直列接続されたダイオードZ1とを整流回路5aとともに用いて3倍電圧整流回路である整流回路5bを構成し、整流回路5bの出力端間にコンデンサC2と抵抗Z2と交流電源Vsとの直列回路を接続してある。さらに、コンデンサC1とダイオードZ1との直列回路の両端間にパルストランスPTの1次巻線とギャップGとの直列回路を接続してある。言い換えると、整流回路5bである3倍電圧整流回路の一部を整流回路5aとして用いるとともに、3倍電圧整流回路の一部を構成しているコンデンサおよびダイオードをコンデンサC1およびダイオードZ1として用いている。
【0045】
この構成では、コンデンサC1の両端電圧の上限値は交流電源Vsのピーク電圧の2倍になり、コンデンサC2の両端電圧の上限値は交流電源Vsのピーク電圧の3倍になるから、コンデンサC2が上限値まで充電された後に交流電源Vsの極性が反転すると交流電源Vsの4倍の電圧がパルストランスPTの1次巻線とギャップGとの直列回路に印加される。ただし、抵抗Z2はパルストランスPTの1次巻線のインピーダンスよりも十分に大きく設定してあるから、パルストランスPTの1次巻線にはコンデンサC2による電圧はほとんど印加されない。ここで、ギャップGの導通によりコンデンサC1の電荷がダイオードZ1を通して放電され、パルストランスPTの1次巻線に急速に電流が流れることで、パルストランスPTの2次巻線に高電圧のパルス電圧が出力される。
【0046】
ここにおいて、ギャップGには実施形態1と同様にジーメンス社製のFS08X−1を用い、交流電源Vsのピーク電圧を300Vとしている。この関係によってコンデンサC1の両端電圧の最大値は600V、コンデンサC2の両端電圧の最大値は900Vになり、ギャップGの非導通時に印加可能な最大電圧はほぼ1200Vになる。つまり、実施形態1と同様の関係で動作することになる。
【0047】
なお、本実施形態では、インピーダンス要素Z2はコンデンサC2の両端電圧がパルストランスPTの1次巻線にほとんど印加されないようにする機能を持つほか、コンデンサC1の充電電流を制限する限流要素としても共用される。また、コンデンサC2はコンデンサC1よりも容量を十分に小さくすることによって、コンデンサC1の電荷をコンデンサC2に充電する際に、コンデンサC1の電圧の低下を抑制し、コンデンサC1の両端電圧を安定に保つのが望ましい。
【0048】
(実施形態3)
本実施形態は、図14に示すように、実施形態2と同様にインピーダンス要素21を介して整流回路5aを接続し、整流回路5aの出力端間に接続したコンデンサC1にダイオードZ11を直列接続してある。また、整流回路5aは3倍電圧整流回路であって、コンデンサC1とダイオードZ11とは6倍電圧整流回路である整流回路5bの一部を構成している。ただし、コンデンサC1とダイオードZ11との直列回路にはダイオードZ12を介して抵抗Z22とコンデンサC3との直列回路が接続され、また、コンデンサC1とダイオードZ11,Z12との直列回路には、ダイオードZ13を介してパルストランスPTの1次巻線とギャップGとの直列回路が接続される。つまり、ダイオードZ11〜Z13がインピーダンス要素Z1として機能する。
【0049】
整流回路5bはコンデンサC3と抵抗Z22とダイオードZ13との直列回路の両端を出力端とし、この出力端間にはコンデンサC2と抵抗Z21と交流電源Vsとの直列回路が接続される。したがって、コンデンサC2に交流電源Vsのピーク値の6倍の電圧が充電された後に、交流電源Vsの極性が反転すると、ギャップGには交流電源Vsのピーク値のほぼ7倍の電圧を印加することができることになる。ここにおいて、整流回路5bは6倍電圧整流回路であるから、最終段に設けたコンデンサC3の両端電圧もギャップGのブレークダウン電圧よりも高くなる可能性があるから、パルストランスPTの1次巻線のインピーダンスよりも十分に大きい抵抗Z22を直列に接続することによって、コンデンサC3の両端電圧でギャップGが導通した場合でも、パルストランスPTにはコンデンサC3の両端電圧がほとんど印加されないようにしてある。つまり、抵抗Z21,Z22はともにインピーダンス要素Z2としての機能を有する。また、抵抗Z21は実施形態2における抵抗Z2と同様に、整流回路5aの入力電流の限流要素としても機能する。他の構成および動作は実施形態1と同様である。
【0050】
(実施形態4)
本実施形態は、基本的には図8に示した基本構成7と同様の技術思想に基づくものであって、図15に示すように、交流電源Vsに抵抗Z2を介してダイオードD11とコンデンサC11との直列回路を接続するとともに、交流電源Vsに抵抗Z2を介してダイオードD12とコンデンサC12との直列回路を接続してある。ここに、各コンデンサC11,C12は交流電源Vsの電圧極性が互いに逆極性である期間に充電されるようにダイオードD11,D12の極性が設定されている。コンデンサC11,C12の直列回路にはダイオードZ1を介してパルストランスPTの1次巻線とギャップGとの直列回路が接続される。また、交流電源Vsの両端間には、抵抗Z2とコンデンサC11とダイオードZ1とともにコンデンサC2が直列接続される。
【0051】
この構成では、交流電源Vsの電圧(図15に矢印で示す極性を正とする)が図16(a)のように変化するとすれば、コンデンサC11は図16(b)のように充放電され、コンデンサC12は図16(c)のように充放電される。つまり、コンデンサC11,C12はそれぞれ交流電源Vsのピーク電圧Eまで充電される。両コンデンサC11,C12の両端電圧がともに交流電源Vsのピーク電圧Eまで充電されると、図16(d)のようにコンデンサC11,C12の直列回路の両端電圧は2Eになる。
【0052】
また、コンデンサC11が交流電源Vsのピーク電圧Eまで充電された後に、交流電源Vsの極性が反転すると、交流電源Vsの電圧にコンデンサC11の両端電圧が加算されてコンデンサC2が充電され、図16(e)のように、コンデンサC2の両端電圧が交流電源Vsのピーク電圧Eの2倍になる。したがって、次に、交流電源Vsの極性が反転すると、コンデンサC12と交流電源VsとコンデンサC2との直列回路によってギャップGには、図16(f)のように最大で交流電源Vsのピーク電圧Eの4倍の電圧が印加されることになる。
【0053】
以後の動作は上述した各実施形態と同様であって、ギャップGが導通してダイオードZ1が導通し、コンデンサC11,C12の直列回路の電荷がパルストランスPTの1次巻線に急速に流れてパルストランスPTの2次巻線に高電圧のパルス出力が発生する。ここに、ギャップGの導通前には交流電源Vsのピーク電圧Eの4倍の電圧が印加されるが、ギャップGの導通時には抵抗Z2の存在によってパルストランスPTの1次巻線には交流電源Vsのピーク電圧Eの4倍の電圧ではなく、コンデンサC11,C12の直列回路の両端電圧が印加される。
【0054】
ここに、ギャップGはブレークダウン電圧VBDの上限値VBHが交流電源Vsのピーク電圧Eの4倍以下で下限値VBLが交流電源Vsのピーク電圧Eの2倍以上であればよい。たとえば、交流電源Vsの電圧波形が矩形波であって、ピーク電圧が300Vであるとすれば、ジーメンス社製のFS08X−1を使用することができる。
【0055】
上述の動作から明らかなように、本実施形態では、コンデンサC11,C12が実施形態2のコンデンサC1と同様に機能し、コンデンサC2とコンデンサC12とが実施形態2のコンデンサC2と同様に機能する。また、コンデンサC2はコンデンサC11により充電されるから、コンデンサC11の両端電圧を保つために、コンデンサC2の容量はコンデンサC11よりも十分に小さく設定するのが望ましい。また、コンデンサC11,C12の容量がコンデンサC2の容量よりも十分に大きければ、パルストランスPTの2次巻線の出力電圧は主としてコンデンサC11,C12の両端電圧によって決定される。また、インピーダンス要素Z2はギャップGの導通開始時にパルストランスPTに高電圧が印加されるのを防止する機能のほか、コンデンサC11,C12の充電時の限流要素としても機能する。ただし、交流電源Vsの電源波形の半周期の間にコンデンサC11,C12の両端電圧が交流電源Vsのピーク電圧Eまで充電されるように設定される。このように設定することで、交流電源Vsの電源波形の1周期毎にパルストランスPTの2次巻線に高電圧のパルス出力が得られる。
【0056】
なお、パルストランスPTの2次巻線の出力電圧へのコンデンサC2の両端電圧の影響をより低減するには、パルストランスPTの1次巻線よりも十分に大きいインピーダンスを有するインピーダンス要素を、ダイオードD12とダイオードZ1との間でコンデンサC2に直列接続してもよい。パルストランスPTの2次巻線の出力電圧を主としてコンデンサC2の電荷で制御するのであれば、コンデンサC11,C12の直列回路とパルストランスPTとの間にパルストランスPTの1次巻線よりもインピーダンスの大きいインピーダンス要素を接続してもよい。
【0057】
(実施形態5)
本実施形態は、図17に示すように、実施形態4の構成を放電灯点灯装置のイグナイタ3として用いたものである。接続形態は、図39に示した従来構成と同様であって、交流電源Vsは直流電源PSと、直流電源PSの直流電圧を矩形波交流電圧に変換する電力変換回路4aとにより構成される。電力変換回路4aは、直流電圧を昇圧する極性反転形のDC−DCコンバータと、DC−DCコンバータの出力を低周波交番電圧に変換するインバータとにより構成される。電力変換回路4aの出力端間には実施形態4として示したイグナイタ3が接続されるとともに、パルストランスPTの2次巻線を介して高圧放電灯である放電灯2が接続される。また、電力変換回路4aの出力端間にはコンデンサCpも接続される。ここに、電力変換回路4aは放電灯2の安定器としての機能も備えている。この電力変換回路4aは放電灯2の始動前には始動後よりも高い電圧を出力するように構成されている。この種の構成としては、タイマを用いて電源投入から一定時間は高電圧を出力するものや、ランプ電流もしくはランプ電圧を検出することにより放電灯2の点灯状態を検出して出力電圧を制御するものなど周知のものがある。しかして、たとえば始動前にはピーク電圧を300Vとし、始動後にはピーク電圧を80Vとする。
【0058】
この構成では、直流電源PSが接続されると、電力変換装置4aから高いほうの電圧が出力され、イグナイタ3は実施形態4として説明した図18(a)〜(f)の動作によってパルストランスPTの2次巻線に高電圧を出力する。すなわち、放電灯2には図18(g)のように高電圧のパルスPLが印加され、放電灯2に始動電圧が印加される。高圧放電灯では一般に始動電圧が印加されると微放電が生じて発光管内にイオンが生成され、その後、アーク放電に移行する。こうしてアーク放電に移行すれば電力変換装置4aの出力電圧が低下するから、電力変換装置4aの出力電圧のピーク値の4倍がギャップGのブレークダウン電圧に達しないように電力変換装置4aの出力電圧を設定しておけば、パルストランスPTの2次巻線には高電圧のパルスは発生しなくなる。つまり、イグナイタ3は停止する。
【0059】
なお、本実施形態では、電力変換回路4aを安定器に用いているが、商用電源のような交流電源を電源としてチョークコイル(いわゆる銅鉄型の安定器)を安定器として用いてもよい。また、イグナイタ3の電源は放電灯2の電源とは別に設けてもよい。イグナイタ3の動作は実施形態4と同様である。
(実施形態6)
実施形態5において、図18(a)に示しているように交流電源(電力変換回路4aの出力)の極性の反転に要する時間が比較的長い場合に、高電圧のパルスPLの発生するタイミングが、ギャップGのブレークダウン電圧のばらつきによってばらつくことになる。これは図18(f)のように交流電源Vsの極性の反転時の電圧変化に伴ってギャップGに印加される電圧が上昇するからである。
【0060】
一方、放電灯点灯装置のイグナイタ3として用いる場合には、高電圧のパルスPLと交流電源Vsの電圧(電力変換回路4aの出力電圧)とが加算されて放電灯2に印加されるから、交流電源Vsの電圧が高い時点で高電圧のパルスPLを発生させるのが望ましい。つまり、極性反転後に交流電源Vsの電圧がピーク電圧に達してから高電圧のパルスPLを発生させるのが望ましい。
【0061】
そこで、図19に示すように、図8に示した基本構成7の構成において交流電源VsとコンデンサC2との間に遅延回路5dを挿入する構成とすれば、交流電源Vsの電圧をコンデンサC2の両端電圧に加算してギャップGに印加するタイミングを遅延させることができ、高電圧のパルスPLを発生させるタイミングをずらすことが可能である。また、ギャップGに並列的(ギャップGに並列ないしパルストランスPTの1次巻線とギャップGとの直列回路に並列)にコンデンサCd2を接続し、インピーダンス要素Z2とコンデンサC2とによってギャップGに高電圧が印加されるタイミングを遅らせても同様の機能を実現することができる。
【0062】
このような知見に基づいて実施形態5の放電灯点灯装置に変更を加えたものが図20に示す本実施形態の具体回路であって、図17に示した回路において抵抗Z2とコンデンサC2との接続点にコンデンサCd1を接続し、抵抗Z2とコンデンサCd1との直列回路を電力変換回路4aの出力端間に接続した構成としている。この構成では、抵抗Z2とコンデンサCd1との直列回路によって遅延回路5dが構成される。
【0063】
電力変換回路4aの出力端間に遅延回路5dを設けた場合の動作を図21に示す。図21(f)および図21(g)のように実施形態5の構成に比較すると高電圧のパルスPLが発生するタイミングが遅れ、交流電源Vsの電圧がピーク値に達してから高電圧のパルスPLが発生していることがわかる。他の構成および動作は実施液体5と同様である。
【0064】
(実施形態7)
本実施形態は、図22に示すように、実施形態6において説明したコンデンサCd2を図17に示した実施形態5に付加したものである。つまり、図17に示した実施形態5の回路においてパルストランスPTの1次巻線とギャップGとの直列回路の両端間にコンデンサCd2を接続したものである。この構成では抵抗Z2とコンデンサCd2とによってギャップGに高電圧が印加されるタイミングを遅らせることができ、結果的に実施形態6と同様に動作する。他の構成は実施形態5と同様である。
【0065】
(実施形態8)
本実施形態は、図23に示すように、図13に示した実施形態2の構成において、遅延回路5dを構成するためのコンデンサCd1を付加したものである。すなわち、抵抗Z2におけるコンデンサC2との接続点にコンデンサCd1の一端を接続し、抵抗Z2とコンデンサCd1との直列回路を交流電源Vsの両端間に接続しているのである。この構成でも実施形態6と同様に動作し、交流電源Vsの電圧がピーク値に達してから高電圧のパルスを発生させることができる。他の構成および動作は実施形態2と同様である。
【0066】
(実施形態9)
ところで、実施形態1のような構成では、図24に示すように、コンデンサC1の両端間をバイパスするような等価的なダイオードDxが整流回路5aの内部に存在することになる。ギャップGの導通によってコンデンサC1の電荷が放電した後にパルストランスPTの1次巻線とギャップGとダイオードDxとダイオードZ1とを通る還流経路が形成される。
【0067】
このような回路を図39に示した従来の放電灯点灯装置のイグナイタ3として用いたとすると、高圧放電灯である放電灯2に始動用の高電圧のパルスを印加して微放電が生じた段階で放電灯2がまだ高インピーダンスであるときに、上述した還流経路によってパルストランスPTの1次側が短絡されているのと等価な状態になっており、高電圧のパルスのエネルギがパルストランスPTの1次側でほとんど消費されることになる。つまり、高電圧のパルスを放電灯2に印加するときに、そのエネルギの多くが放電灯2の始動に用いられずに消費され、パルスのエネルギを放電灯2に有効に伝達することができない場合がある。
【0068】
本実施形態は、このような問題を解決するものであって、図25に示すように、等価的なダイオードDxにインピーダンス要素Zxを直列接続し、ダイオードDxとインピーダンス要素Zxとの直列回路がコンデンサC1に並列接続されるようにしているのである。つまり、上述した還流経路にインピーダンス要素Zxを挿入することによって還流経路に流れる電流を抑制し、高電圧のパルスのエネルギが放電灯2に効率よく伝達されるようにしているものである。ここに、インピーダンス要素Zxは、パルストランスPTの2次側に接続された付加のインピーダンスをZL、パルストランスPTの巻比をkとするとき、Zx>ZL/kという関係に設定するのが望ましい。
【0069】
そこで、本実施形態では図26に示すように、図17に示した実施形態5の構成の放電灯点灯装置に上述の技術思想を適用している。すなわち、ダイオードD11とコンデンサC11との間にインピーダンス要素Zxを挿入し、コンデンサC11,C12の直列回路の両端間にダイオードD11,D12のみによる還流経路が形成されないようにし、この還流経路にインピーダンス要素Zxを挿入することによって還流経路を通る電流を抑制しているのである。なお、インピーダンス要素ZxはコンデンサC11,C12の直列回路の両端間に接続されるダイオードD11,D12の直列回路のどの部分に挿入してもよい。このインピーダンス要素Zxとして図27のように抵抗を用いることによって、コンデンサC11の充電電流を制限する限流要素として兼用させてもよい。インピーダンス要素Zxとしては、図28に示すように、インダクタを用いることもできる。他の構成および動作は実施形態5と同様である。
【0070】
(実施形態10)
本実施形態は、図29に示すように、図13に示した実施形態2の構成に還流経路に流れる電流を抑制するためのインピーダンス要素Zxを付加したものである。すなわち、ダイオードZ1とコンデンサC1との接続点と整流回路5aの出力端との間にインピーダンス要素Zxを挿入してある。この構成でも実施形態9と同様に動作し、放電灯点灯装置のイグナイタとして用いたときに高電圧のパルスのエネルギを効率よく放電灯に伝達することができる。他の構成および動作は実施形態2と同様である。
【0071】
(実施形態11)
図25に示した構成のように還流経路にインピーダンス要素Zxが挿入されている場合に、ギャップGが導通してパルストランスPTの1次巻線に電流が流れてコンデンサC1の電荷が放出された後に、パルストランスPTに蓄積された磁気エネルギが放出されてコンデンサC1が再充電される。しかしながら、この期間におけるコンデンサC1の充電極性は、整流回路5aによる充電極性とは逆極性になっているから、このエネルギを有効に利用することはできない。つまり、パルストランスPTの回生電流によるエネルギがコンデンサC1に充電されても損失になることが多い。
【0072】
そこで、図30に示すように、ギャップGとパルストランスPTの1次巻線との直列回路においてギャップGの一端をダイオードZ1のカソードに接続し、パルストランスPTの1次巻線の一端をコンデンサC1の負極に接続し、さらに、パルストランスPTの1次巻線の他端とコンデンサC1の正極との間にパルストランスPT側をアノードとしてダイオードDLを接続してある。したがって、パルストランスPTの磁気エネルギの放出によってコンデンサC1が逆極性に充電されたときに、コンデンサC1の電荷がパルストランスPTの1次巻線およびダイオードDLを通して放電され、パルストランスPTの出力として利用することが可能になる。
【0073】
本実施形態では、図31に示すように、上述の構成を図26に示した実施形態9の構成に適用している。つまり、実施形態9とはパルストランスPTとギャップGとを入れ換え、さらにギャップGとダイオードZ1のアノードとの間にギャップG側をアノードとしてダイオードDLを接続し、パルストランスPTの1次巻線とダイオードDLとの直列回路の両端間にコンデンサC11,C12の直列回路を接続した形になっている。本実施形態の特徴的な動作は上述した通りであって、ギャップGが導通してコンデンサC11,C12の電荷が放電され、パルストランスPTによって高電圧のパルスが発生する。その後、コンデンサC11,C12の放電後にパルストランスPTの磁気エネルギによってコンデンサC11,C12が再充電されると、コンデンサC11,C12の電荷はパルストランスPTとダイオードDLとを通して放電され、損失となっていたコンデンサC11,C12の蓄積エネルギをパルストランスPTで利用することが可能になるのである。
【0074】
(実施形態12)
本実施形態は、図32に示すように、図29に示した実施形態10の構成にダイオードDLを付加したものである。つまり、実施形態10とはパルストランスPTとギャップGとを入れ換え、さらにギャップGとダイオードZ1のアノードとの間にギャップG側をアノードとしてダイオードDLを接続し、パルストランスPTの1次巻線とダイオードDLとの直列回路の両端間にコンデンサC1を接続した形になっている。この構成でも実施形態11と同様に動作し、放電灯点灯装置のイグナイタとして用いたときに、損失となっていたコンデンサC1の蓄積エネルギをパルストランスPTで利用することが可能になる。他の構成および動作は実施形態10と同様である。
【0075】
(実施形態13)
パルストランスPTの磁気エネルギが損失になるのは、図9に示した基本構成8のような構成(実施形態1の構成など)でも同様であって、図24に示したように等価的なダイオードDxが存在しているから、パルストランスPTの磁気エネルギはダイオードDxを通して流れ、コンデンサC1に蓄積された電荷もダイオードDxを通して放電される。そこで、図9ないし図24に示した構成を図33に示す接続関係に変更することでコンデンサC1の蓄積エネルギを有効利用している。
【0076】
具体的には、整流回路5aの出力端間にコンデンサC1とパルストランスPTの1次巻線との直列回路を接続し、この直列回路の両端間にダイオードD1を介してギャップGを接続している。この構成においても、ギャップGはコンデンサC2に抵抗Z2を介して接続されるからギャップGを導通させるための高電圧をコンデンサC2によって印加することができ、また、コンデンサC1にはダイオードZ1を介してギャップGとパルストランスPTの1次巻線との直列回路が接続されるから、ギャップGが導通したときにパルストランスPTの1次巻線にコンデンサC1によって電流を流すことができる。また、パルストランスPTの磁気エネルギによってコンデンサC1に蓄積されたエネルギはパルストランスPTの1次巻線およびダイオードDxを通して放出されるから、このエネルギもパルストランスPTで利用することができる。つまり、損失となっていたコンデンサC1の蓄積エネルギを有効に利用することが可能になる。
【0077】
この構成を図17に示した実施形態5の構成に適用すると図34の構成になる。すなわち、ダイオードD11,D12の直列回路におけるダイオードD11のカソードとコンデンサC11,C12の直列回路におけるコンデンサC11側の一端との間にパルストランスPTの1次巻線を接続し、コンデンサC11,C12の直列回路にダイオードZ1を介してギャップGを接続しているのである。また、コンデンサC2にはギャップGとダイオードD12との直列回路が接続される。
【0078】
この構成では、実施形態5と同様にコンデンサC12の両端電圧と交流電源VsとコンデンサC2の両端電圧との加算電圧がギャップGに印加され、ギャップGが導通すると、交流電源Vs−ダイオードD11−パルストランスPTの1次巻線−ダイオードZ1−ギャップG−コンデンサC12−交流電源Vsの経路でパルストランスPTの1次巻線に電流を流してパルストランスPTの2次巻線に高電圧のパルスを発生させるのである。また、コンデンサC12は逆極性に充電されるが、その電荷はダイオードD11,D12およびパルストランスPTの1次巻線を通して放電されるから、損失にならずに有効利用が可能となる。他の構成および動作は実施形態5と同様である。
【0079】
(実施形態14)
本実施形態は、図35に示すように、図13に示した実施形態2の構成に図33を用いて説明した構成を適用したものである。つまり、整流回路5aの出力端間にパルストランスPTの1次巻線とコンデンサC1との直列回路、およびダイオードZ1とギャップGとの直列回路を接続しているものである。また、ギャップGには交流電源Vsと抵抗Z2とコンデンサC2との直列回路も接続される。この構成は、図33に示した構成で説明した通りの動作であって、交流電源VsとコンデンサC2の両端電圧との加算電圧でギャップGが導通すると、コンデンサC1の電荷がパルストランスPTの1次巻線−ダイオードZ1−ギャップGの経路で放出され、パルストランスPTの2次巻線に高電圧のパルスを出力することができる。また、パルストランスPTに蓄積されたエネルギによってコンデンサC1が逆極性に充電されるが、そのエネルギは整流回路5aを通してパルストランスPTの1次巻線に流れ、パルストランスPTで利用することができる。他の構成および同動作は実施形態2と同様である。
【0080】
(実施形態15)
本実施形態は、ギャップを高電圧で導通させた後に一定電圧を印加する機能を図36に示すように、チンメルマン(Zimmerman )回路と称する整流回路を用いて実現したものである。チンメルマン回路では、図37に示すようにコンデンサC31にダイオードD31のアノードを接続した直列回路と、コンデンサC32にダイオードD32のカソードを接続した直列回路とを、ダイオードD31のカソードにコンデンサC32が接続され、ダイオードD32のアノードにコンデンサC31が接続される形で並列接続してある。また、各直列回路のダイオードD31,D32とコンデンサC31,C32との接続点間に交流電源Vsを接続してある。さらに、ダイオードD33のカソードにコンデンサC33を接続した直列回路をダイオードD33のアノードをダイオードD31のカソードに接続する形で、コンデンサC31とダイオードD31との直列回路に並列接続してある。このような構成によって、各コンデンサC31,C32の両端電圧が交流電源Vsのピーク電圧まで充電されると、コンデンサC31の両端電圧と交流電源Vsの電圧とコンデンサC32の両端電圧との加算電圧がダイオードD33を介してコンデンサC33に印加され、コンデンサC33の両端電圧が交流電源Vsのピーク電圧の3倍の電圧に達するのである。
【0081】
図37の構成を基本構成として、図36に示すように、コンデンサC31,C32とダイオードD31,D32との接続点間に交流電源Vsと抵抗Z2との直列回路を接続し、また、ダイオードD33とコンデンサC33との直列回路だけではなく、ダイオードD34とコンデンサC34との直列回路もコンデンサC31とダイオードD31との直列回路に並列接続してある。ただし、ダイオードD33とコンデンサC33との直列回路は、ダイオードD33のカソードをコンデンサC33に接続してダイオードD33のアノードをダイオードD31のカソードに接続していたが、ダイオードD34とコンデンサC34との直列回路は、ダイオードD34のアノードをコンデンサC34に接続してダイオードD34のカソードをコンデンサC31(ダイオードD32のアノード)に接続してある。また、パルストランスPTの1次巻線とギャップGとの直列回路の一端をダイオードD33のカソードに接続し、他端をダイオードD34のアノードに接続してある。
【0082】
この構成では、コンデンサC33,C34の両端電圧はチンメルマン回路の上述した動作によって交流電源Vsのピーク電圧の3倍になる。また、コンデンサC31,C32の両端電圧は交流電源Vsのピーク電圧になるから、コンデンサC34−コンデンサC32−交流電源Vs−抵抗Z2−コンデンサC31−コンデンサC33の直列回路の両端電圧は、交流電源Vsのピーク電圧の5倍になる(つまり、上記直列回路でコンデンサC33,C34の両端電圧の極性に交流電源Vsの極性が一致するときに、コンデンサC31,C32の両端電圧の極性は逆極性になるから、交流電源Vsのピーク電圧の7倍の電圧から2倍の電圧を差し引いた電圧が上記直列回路の両端電圧になる)。この電圧をパルストランスPTの1次巻線を介してギャップGに印加し、ギャップGを導通させることができる。ここで、抵抗Z2を設けていることによってギャップGの導通時にパルストランスPTの1次巻線に高電圧が印加されないようにしてある。
【0083】
ギャップGが導通すると、端子電圧が交流電源Vsのピーク電圧の3倍になっているコンデンサC33,C34の両端電圧がギャップGを介してパルストランスPTの1次巻線に印加され、高電圧のパルスがパルストランスPTの2次巻線に出力される。したがって、本実施形態でも実施形態1と同様の機能を実現することができる。なお、ダイオードD33,D34が実施形態1におけるインピーダンス要素(ダイオード)Z1に相当するものである。
【0084】
(実施形態16)
本実施形態は、図38に示すように、図36に示した回路構成を変形したものである。つまり、コンデンサC33とダイオードD33との直列回路およびコンデンサC34とダイオードD34との直列回路を、コンデンサC31とダイオードD31との直列回路に並列接続するのではなく、それぞれダイオードD31,D32に並列接続しているものである。
【0085】
この構成では、コンデンサC33,C34の端子電圧はそれぞれ交流電源Vsのピーク電圧の2倍に達する。したがって、ギャップGが導通前にはコンデンサC34−交流電源Vs−コンデンサC33の直列回路によってギャップGには交流電源Vsのピーク電圧の5倍までの電圧が印加され、ギャップGの導通後にはコンデンサC31,C33の直列回路およびコンデンサC32,C34の直列回路によって交流電源Vsのピーク電圧の3倍の電圧がパルストランスPTの1次巻線に印加される。つまり、動作は実施形態15と同様になる。他の構成および動作は実施形態15と同様である。
【0086】
上述した各実施形態では、2端子の電圧応答形スイッチとしてギャップGを用いているが、SSSのような他の電圧応答形スイッチでも本発明の技術思想を適用することができる。
【0087】
【発明の効果】
各請求項の発明によれば、電圧応答形スイッチを導通させる電圧を印加するコンデンサと電圧応答形スイッチの導通後に電圧応答スイッチを介して負荷回路にパルス電圧を印加するコンデンサとを別に設けているから、電圧応答形スイッチのブレークダウン電圧にばらつきがあっても、負荷回路に印加する電圧は後者のコンデンサの両端電圧でほぼ決定され、負荷回路に印加するパルス電圧をほぼ一定電圧とすることができるという利点がある。しかも、電圧応答形スイッチを導通させる電圧を印加するコンデンサの両端電圧を含む電圧を電圧応答形スイッチに印加する経路内に負荷回路が挿入され、該経路内で負荷回路よりもインピーダンスが大きいインピーダンス要素を当該コンデンサに直列接続しているから、電圧応答形スイッチのブレークダウン電圧のような高電圧が負荷回路に印加されるのを防止することができ、負荷回路の耐圧を小さくすることができる。
【0088】
請求項1の発明は、交流電源を整流し比較的低い電圧を出力するn倍電圧整流回路よりなる第1の整流回路と、交流電源を整流し比較的高い電圧を出力するn倍電圧整流回路よりなる第2の整流回路と、各整流回路の出力端間にそれぞれ接続された第1および第2のコンデンサと、非導通時に第2のコンデンサの両端電圧を含む電圧が印加されると導通する電圧応答形スイッチとを備え、電圧応答形スイッチが導通すると第1のコンデンサの電荷を電圧応答形スイッチを通して負荷回路に流すものであり、n倍電圧整流回路を用いているから、特別なトリガ回路などが不要であり、回路構成が簡単であるという利点を有する。
【0089】
請求項3の発明のように、電圧応答形スイッチの非導通時に電圧応答形スイッチに第1および第2のコンデンサが直列的に接続され、第1のコンデンサの両端電圧の上限値が電圧応答形スイッチのブレークダウン電圧よりも低く、第1および第2のコンデンサの両端電圧の加算値が電圧応答形スイッチのブレークダウン電圧を越えるように設定されているものでは、第1および第2のコンデンサの耐圧を比較的低く設定しながらも電圧応答形スイッチのブレークダウン電圧を確保することができる。
【0090】
請求項4の発明のように、電圧応答形スイッチの導通時に電圧応答形スイッチに第1および第2のコンデンサが並列的に接続されるものでは、負荷回路に比較的大きな電流を流すことができ、エネルギの大きいパルスを発生させることが可能になる。
請求項5の発明のように、電圧応答形スイッチに第1のコンデンサが並列的に接続されるとともに、電圧応答形スイッチの非導通時に電圧応答形スイッチに交流電源と第2のコンデンサとが直列的に接続され、第1のコンデンサの両端電圧の上限値が電圧応答形スイッチのブレークダウン電圧よりも低く、交流電源のピーク値と第2のコンデンサの両端電圧との加算値が電圧応答形スイッチのブレークダウン電圧を越えるように設定されているものや、請求項6の発明のように、電圧応答形スイッチの非導通時に電圧応答形スイッチに交流電源と第1および第2のコンデンサとが直列的に接続され、第1のコンデンサの両端電圧の上限値が電圧応答形スイッチのブレークダウン電圧よりも低く、交流電源のピーク値と第1および第2のコンデンサの両端電圧との加算値が電圧応答形スイッチのブレークダウン電圧を越えるように設定されているものや、請求項9の発明のように、第1のコンデンサが複数個の分割コンデンサの直列回路であって、電圧応答形スイッチの非導通時に電圧応答形スイッチに交流電源と第1のコンデンサを構成する分割コンデンサの一部と第2のコンデンサとが直列的に接続され、第1のコンデンサの両端電圧の上限値が電圧応答形スイッチのブレークダウン電圧よりも低く、交流電源のピーク値と前記分割コンデンサの両端電圧と第2のコンデンサの両端電圧との加算値が電圧応答形スイッチのブレークダウン電圧を越えるように設定されているものでは、第2のコンデンサの両端電圧を比較的低く設定することができ、第2のコンデンサの耐圧を比較的小さくすることができる。
【0092】
請求項11の発明のように、第2のコンデンサとインピーダンス要素との直列回路に、第2のコンデンサから第1のコンデンサへの電荷移動を阻止する別のインピーダンス要素と第1のコンデンサとの直列回路を並列的に接続したものや、請求項12の発明のように、交流電源とインピーダンス要素と直列回路に、第2のコンデンサから第1のコンデンサへの電荷移動を阻止する別のインピーダンス要素と第1のコンデンサとの直列回路を並列的に接続したものでは、第2のコンデンサの電荷が第1のコンデンサの充電に用いられたりすることがなく、電圧応答形スイッチに無駄なく印加することができる。
【0093】
請求項15の発明のように、第1および第2のダイオードの直列回路と、第1および第2のコンデンサの直列回路とを並列接続し、第1および第2のダイオードの接続点と第1および第2のコンデンサの接続点との間に交流電源を接続し、第1および第2のコンデンサの直列回路の一端にインピーダンス要素を介して第1および第2のダイオードの接続点との間に第3のコンデンサを接続し、第1のインピーダンス要素と第3のコンデンサとの接続点と第1および第2のコンデンサの直列回路の他端との間に少なくとも電圧応答形スイッチを含む回路を接続し、電圧応答形スイッチが導通することにより形成される各コンデンサの放電経路のうちの少なくとも1つに負荷回路を挿入し、交流電源との接続部に電圧応答形スイッチへの印加電圧の上昇を遅延させる遅延回路を設けたものでは、放電灯点灯装置などに用いる際に交流電源の極性反転が瞬時に行なわれなくても交流電源がほぼピーク電圧に達してからパルス電圧を発生させることが可能になる。
【0094】
請求項17の発明のように、第1のコンデンサが負荷回路に放電電流を流す極性とは逆の極性の電圧を第1のコンデンサに充電させないバイパス回路が存在するパルス発生装置において、該パイパス回路内にインピーダンス要素を挿入したものでは、負荷回路がバイパス回路によって短絡されることがない。
請求項18の発明のように、第1のコンデンサが負荷回路に放電電流を流す極性とは逆の極性の電流を流す向きで第1のコンデンサと負荷回路との間に挿入した放電用のダイオードを付加したものでは、負荷回路が誘導性であって回生電流が流れる場合のように、第1のコンデンサに逆極性の電荷が充電されるような条件であっても、この電荷を放電用のダイオードを介して負荷回路に流すことができ、回生電流を無駄なく利用することができる。
【図面の簡単な説明】
【図1】基本構成1を示す概略回路図である。
【図2】基本構成2を示す概略回路図である。
【図3】基本構成3を示す概略回路図である。
【図4】基本構成4を示す概略回路図である。
【図5】負荷回路として用いるパルストランスを示す図である。
【図6】基本構成5を示す概略回路図である。
【図7】基本構成6を示す概略回路図である。
【図8】基本構成7を示す概略回路図である。
【図9】基本構成8を示す概略回路図である。
【図10】基本構成9を示す概略回路図である。
【図11】実施形態1を示す回路図である。
【図12】同上の動作説明図である。
【図13】実施形態2を示す回路図である。
【図14】実施形態3を示す回路図である。
【図15】実施形態4を示す回路図である。
【図16】同上の動作説明図である。
【図17】実施形態5を示す回路図である。
【図18】同上の動作説明図である。
【図19】実施形態6の概念を示す概略回路図である。
【図20】同上の回路図である。
【図21】同上の動作説明図である。
【図22】実施形態7を示す回路図である。
【図23】実施形態8を示す回路図である。
【図24】実施形態9に対する比較例の概念を示す概略回路図である。
【図25】実施形態9の概念を示す概略回路図である。
【図26】同上の回路図である。
【図27】同上の回路図である。
【図28】同上の回路図である。
【図29】実施形態10を示す回路図である。
【図30】実施形態11の概念を示す概略回路図である。
【図31】同上の回路図である。
【図32】実施形態12を示す回路図である。
【図33】実施形態13の概念を示す概略回路図である。
【図34】同上の回路図である。
【図35】実施形態14を示す回路図である。
【図36】実施形態15を示す回路図である。
【図37】同上の基本構成となるチンメルマン回路を示す回路図である。
【図38】実施形態16を示す回路図である。
【図39】従来例を示す概略回路図である。
【図40】同上の動作説明図である。
【符号の説明】
2 放電灯
3 イグナイタ
4 安定器
4a 電力変換回路
5a,5b 整流回路
5d 遅延回路
51 負荷回路
C1,C2 コンデンサ
C11,C12 コンデンサ
C31〜C34 コンデンサ
Cd1,Cd2 コンデンサ
D11,D12 ダイオード
D31〜D34 ダイオード
DL (放電用の)ダイオード
G ギャップ
PT パルストランス
PS 直流電源
Vs 交流電源
Z1,Z2 インピーダンス要素
Z21,Z22 インピーダンス要素(抵抗)
Zx インピーダンス要素

Claims (22)

  1. 交流電源を整流し比較的低い電圧を出力するn倍電圧整流回路よりなる第1の整流回路と、交流電源を整流し比較的高い電圧を出力するn倍電圧整流回路よりなる第2の整流回路と、各整流回路の出力端間にそれぞれ接続された第1および第2のコンデンサと、非導通時に第2のコンデンサの両端電圧を含む電圧が印加されると導通する電圧応答形スイッチと、第2のコンデンサの両端電圧を含む電圧を前記電圧応答形スイッチに印加する経路内に挿入された負荷回路と、該経路内で第2のコンデンサに直列接続され負荷回路よりもインピーダンスが十分に大きいインピーダンス要素とを備え、電圧応答形スイッチが導通すると第1のコンデンサの電荷を電圧応答形スイッチを通して負荷回路に流すことを特徴とするパルス発生装置。
  2. 前記電圧応答形スイッチに第1および第2のコンデンサが並列的に接続され、第1のコンデンサの両端電圧の上限値は電圧応答形スイッチのブレークダウン電圧よりも低く、第2のコンデンサの両端電圧は電圧応答形スイッチのブレークダウン電圧を越えるように設定されていることを特徴とする請求項1記載のパルス発生装置。
  3. 前記電圧応答形スイッチの非導通時に電圧応答形スイッチに第1および第2のコンデンサが直列的に接続され、第1のコンデンサの両端電圧の上限値は電圧応答形スイッチのブレークダウン電圧よりも低く、第1および第2のコンデンサの両端電圧の加算値は電圧応答形スイッチのブレークダウン電圧を越えるように設定されていることを特徴とする請求項1記載のパルス発生装置。
  4. 前記電圧応答形スイッチの導通時に電圧応答形スイッチに第1および第2のコンデンサが並列的に接続されることを特徴とする請求項3記載のパルス発生装置。
  5. 前記電圧応答形スイッチに第1のコンデンサが並列的に接続されるとともに、前記電圧応答形スイッチの非導通時に電圧応答形スイッチに交流電源と第2のコンデンサとが直列的に接続され、第1のコンデンサの両端電圧の上限値は電圧応答形スイッチのブレークダウン電圧よりも低く、交流電源のピーク値と第2のコンデンサの両端電圧との加算値は電圧応答形スイッチのブレークダウン電圧を越えるように設定されていることを特徴とする請求項1記載のパルス発生装置。
  6. 前記電圧応答形スイッチの非導通時に電圧応答形スイッチに交流電源と第1および第2のコンデンサとが直列的に接続され、第1のコンデンサの両端電圧の上限値は電圧応答形スイッチのブレークダウン電圧よりも低く、交流電源のピーク値と第1
    および第2のコンデンサの両端電圧との加算値は電圧応答形スイッチのブレークダウン電圧を越えるように設定されていることを特徴とする請求項1記載のパルス発生装置。
  7. 前記電圧応答形スイッチの導通時に電圧応答形スイッチに第1および第2のコンデンサが並列的に接続されることを特徴とする請求項6記載のパルス発生装置。
  8. 前記電圧応答形スイッチの導通時に交流電源から負荷回路へのエネルギの供給を阻止する手段を設けたことを特徴とする請求項5ないし請求項7のいずれか1項に記載のパルス発生装置。
  9. 第1のコンデンサは複数個の分割コンデンサの直列回路であって、前記電圧応答形スイッチの非導通時に電圧応答形スイッチに交流電源と第1のコンデンサを構成する分割コンデンサの一部と第2のコンデンサとが直列的に接続され、第1のコンデンサの両端電圧の上限値は電圧応答形スイッチのブレークダウン電圧よりも低く、交流電源のピーク値と前記分割コンデンサの両端電圧と第2のコンデンサの両端電圧との加算値は電圧応答形スイッチのブレークダウン電圧を越えるように設定されていることを特徴とする請求項1記載のパルス発生装置。
  10. 前記インピーダンス要素を交流電源に直列接続したことを特徴とする請求項5ないし請求項9のいずれか1項に記載のパルス発生装置。
  11. 第2のコンデンサとインピーダンス要素との直列回路に、第2のコンデンサから第1のコンデンサへの電荷移動を阻止する別のインピーダンス要素と第1のコンデンサとの直列回路を並列的に接続したことを特徴とする請求項1記載のパルス発生装置。
  12. 交流電源とインピーダンス要素との直列回路に、第2のコンデンサから第1のコンデンサへの電荷移動を阻止する別のインピーダンス要素と第1のコンデンサとの直列回路を並列的に接続したことを特徴とする請求項10記載のパルス発生装置。
  13. 上記別のインピーダンス要素は第1のコンデンサの放電電流を流す極性で第1のコンデンサに直列的に接続されたダイオードを含むことを特徴とする請求項11または請求項12記載のパルス発生装置。
  14. 第1および第2のダイオードの直列回路と、第1および第2のコンデンサの直列回路とを並列接続し、第1および第2のダイオードの接続点と第1および第2のコンデンサの接続点との間に交流電源を接続し、第1および第2のコンデンサの直列回路の一端にインピーダンス要素を介して第1および第2のダイオードの接続点との間に第3のコンデンサを接続し、第1のインピーダンス要素と第3のコンデンサとの接続点と第1および第2のコンデンサの直列回路の他端との間に少なくとも電圧応答形スイッチを含む回路を接続し、電圧応答形スイッチが導通することにより形成される各コンデンサの放電経路のうちの少なくとも1つであって第2のコンデンサの両端電圧を含む電圧を前記電圧応答形スイッチに印加する経路内に負荷回路を挿入し、該経路内で負荷回路よりもインピーダンスが十分に大きいインピーダンス要素を第2のコンデンサに直列接続したことを特徴とするパルス発生装置。
  15. 交流電源との接続部に電圧応答形スイッチへの印加電圧の上昇を遅延させる遅延回路を設けたことを特徴とする請求項14記載のパルス発生装置。
  16. 交流電源と第3のコンデンサとの間に電圧応答形スイッチへの印加電圧の上昇を遅延させる遅延回路を設けたことを特徴とする請求項14記載のパルス発生装置。
  17. 第1のコンデンサが負荷回路に放電電流を流す極性とは逆の極性の電圧を第1のコンデンサに充電させないバイパス回路が存在するパルス発生装置において、該パイパス回路内にインピーダンス要素を挿入したことを特徴とする請求項1ないし請求項16のいずれか1項に記載のパルス発生装置。
  18. 第1のコンデンサが負荷回路に放電電流を流す極性とは逆の極性の電流を流す向きで第1のコンデンサと負荷回路との間に挿入した放電用のダイオードを付加したことを特徴とする請求項1ないし請求項17のいずれか1項に記載のパルス発生装
    置。
  19. 第1および第2のコンデンサを交流電源を介して直列接続し、交流電源と第2のコンデンサとの直列回路の両端間に第1のダイオードを接続するとともに、交流電源と第1のコンデンサとの直列回路の両端間に第2のダイオードを接続し、第3のダイオードと第3のコンデンサとの直列回路を交流電源から第1および第3のダイオードと第3のコンデンサと第2のダイオードとの経路で第3のコンデンサを充電するように第1のコンデンサと第1のダイオードとの直列回路に並列接続し、第4のダイオードと第4のコンデンサとの直列回路を交流電源から第1のダイオードと第4のコンデンサと第4および第2のダイオードとの経路で第4のコンデンサを充電するように第2のコンデンサと第2のダイオードとの直列回路に並列接続し、第3のコンデンサおよび第3のダイオードの接続点と第4のコンデンサおよび第4のダイオードの接続点との間に負荷回路と電圧応答形スイッチとの直列回路を接続し、交流電源には少なくとも負荷回路よりもインピーダンスの大きいインピーダンス要素を直列接続したことを特徴とするパルス発生装置。
  20. 第1および第2のコンデンサを交流電源を介して直列接続し、交流電源と第2のコンデンサとの直列回路の両端間に第1のダイオードを接続するとともに、交流電源と第1のコンデンサとの直列回路の両端間に第2のダイオードを接続し、第3のダイオードと第3のコンデンサとの直列回路を交流電源から第2のコンデンサと第3のダイオードと第3のコンデンサとの経路で第3のコンデンサを充電するように第1のダイオードに並列接続し、第4のダイオードと第4のコンデンサとの直列回路を交流電源から第4のコンデンサと第4のダイオードと第1のコンデンサとの経路で第4のコンデンサを充電するように第2のダイオードに並列接続し、第3のコンデンサおよび第3のダイオードの接続点と第4のコンデンサおよび第4のダイオードの接続点との間に負荷回路と電圧応答形スイッチとの直列回路を接続し、交流電源には少なくとも負荷回路よりもインピーダンスの大きいインピーダンス要素を直列接続したことを特徴とするパルス発生装置。
  21. 負荷回路は少なくともパルストランスを含み、パルストランスの1次巻線と電圧応答形スイッチとが直列接続されていることを特徴とする請求項1ないし請求項20のいずれか1項に記載のパルス発生装置。
  22. 請求項1ないし請求項21のいずれか1項に記載のパルス発生装置をイグナイタとして用いたことを特徴とする放電灯点灯装置。
JP29605197A 1997-10-28 1997-10-28 パルス発生装置および放電灯点灯装置 Expired - Fee Related JP3743141B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP29605197A JP3743141B2 (ja) 1997-10-28 1997-10-28 パルス発生装置および放電灯点灯装置
US09/177,979 US6104147A (en) 1997-10-28 1998-10-22 Pulse generator and discharge lamp lighting device using same
DE19849738A DE19849738C2 (de) 1997-10-28 1998-10-28 Impulsgenerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29605197A JP3743141B2 (ja) 1997-10-28 1997-10-28 パルス発生装置および放電灯点灯装置

Publications (2)

Publication Number Publication Date
JPH11135278A JPH11135278A (ja) 1999-05-21
JP3743141B2 true JP3743141B2 (ja) 2006-02-08

Family

ID=17828474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29605197A Expired - Fee Related JP3743141B2 (ja) 1997-10-28 1997-10-28 パルス発生装置および放電灯点灯装置

Country Status (1)

Country Link
JP (1) JP3743141B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006302550A (ja) * 2005-04-18 2006-11-02 Iwasaki Electric Co Ltd 高圧放電灯点灯装置
JP2006339102A (ja) 2005-06-06 2006-12-14 Koito Mfg Co Ltd 放電灯点灯回路
CN107294420A (zh) * 2017-07-18 2017-10-24 浙江大维高新技术股份有限公司 脉冲等离子电源电路

Also Published As

Publication number Publication date
JPH11135278A (ja) 1999-05-21

Similar Documents

Publication Publication Date Title
US6104147A (en) Pulse generator and discharge lamp lighting device using same
US4499533A (en) Power supply apparatus
US3233148A (en) Discharge lamp ballasting circuit
US7449846B2 (en) Ballast for a gas discharge lamp and a method of controlling this ballast
Chan et al. Design of electronic ballast for short-arc xenon lamp with interleaved half-wave rectifier
JP3743141B2 (ja) パルス発生装置および放電灯点灯装置
US6777876B2 (en) Power-supply unit for microwave tube
JP2004063431A (ja) 除電装置
US5892327A (en) Circuit arrangement for operating a discharge lamp
CN109995264B (zh) 双向dc-ac变换器及其控制方法
US3354379A (en) Rectifier circuit with voltage multiplication
JP4836587B2 (ja) 高圧放電灯点灯装置
JP2006228676A (ja) 放電灯点灯装置
JP4259832B2 (ja) 直流電圧発生装置
JPH06349586A (ja) 放電灯点灯装置
JP4984062B2 (ja) 放電灯点灯装置
JPH0529087A (ja) 放電灯点灯装置
JP3743180B2 (ja) パルス発生装置および放電灯点灯装置
JPS6330052Y2 (ja)
SU1734176A1 (ru) Преобразователь переменного напр жени в посто нное
JPS6387176A (ja) 整流回路
JPH11329768A (ja) 放電灯点灯装置
JP3833500B2 (ja) 点火装置
JPH0710170B2 (ja) 直列共振コンバ−タ
JP2004342327A (ja) 放電灯点灯装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050812

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081125

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111125

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131125

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees