JP3737879B2 - グロープラグ - Google Patents

グロープラグ Download PDF

Info

Publication number
JP3737879B2
JP3737879B2 JP12300198A JP12300198A JP3737879B2 JP 3737879 B2 JP3737879 B2 JP 3737879B2 JP 12300198 A JP12300198 A JP 12300198A JP 12300198 A JP12300198 A JP 12300198A JP 3737879 B2 JP3737879 B2 JP 3737879B2
Authority
JP
Japan
Prior art keywords
sheath tube
glow plug
coil
metal shell
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12300198A
Other languages
English (en)
Other versions
JPH11294769A (ja
Inventor
智哲 熊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP12300198A priority Critical patent/JP3737879B2/ja
Priority to US09/290,894 priority patent/US6064039A/en
Priority to DE69934628T priority patent/DE69934628T2/de
Priority to EP99302933A priority patent/EP0950858B1/en
Publication of JPH11294769A publication Critical patent/JPH11294769A/ja
Application granted granted Critical
Publication of JP3737879B2 publication Critical patent/JP3737879B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Resistance Heating (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ディーゼルエンジン予熱用等に使用されるグロープラグに関する。
【0002】
【従来の技術】
上記のようなグロープラグは一般に、耐熱性金属で構成されたシーズチューブの内側に、抵抗発熱線により構成された発熱コイルを絶縁粉末とともに封入したシーズヒータを用いるものが知られている。そして、このシーズヒータに主体金具を取り付け、その外周面に形成されたねじ部により、先端の発熱部が燃焼室内に位置するように、ディーゼルエンジンのエンジンブロックに取り付けて使用される。この場合、ヒータ昇温性能に対しては、エンジンの始動性を向上させるためになるべく短時間で飽和温度に到達する、いわゆる速熱性が要求されることが多い。一法として、通電初期において発熱コイルに大電流を通じることにより昇温速度を高めることが考えられるが、コイル温度が過昇しやすくなり、コイルの断線やシーズチューブの溶損といったトラブルにつながる問題がある。
【0003】
そこで、例えば特開昭59−60125号公報には、発熱コイルよりも大きい正の抵抗温度係数を有する材料にて構成された制御コイルを、シーズチューブ内において該発熱コイルと直列に設け、速熱性を高めつつコイル温度の過昇も生じにくくしたグロープラグが開示されている。該構造のグロープラグにおいては、通電初期においては制御コイルの温度が低く電気抵抗値が小さいため、発熱コイルには比較的大きな電流が流れてこれを急速昇温させる。そして、発熱コイルの温度が上昇すると、その発熱により制御コイルが加熱されて電気抵抗値が増大し、発熱コイルへの通電電流値が減少する。これにより、ヒータの昇温特性は、通電初期に急速昇温した後、以降は制御コイルの働きにより通電電流が抑制されて温度が飽和する形となる。
【0004】
ところで、上記公報においては、発熱コイルと制御コイルとが近接し過ぎていると、制御コイルの抵抗値が急激に大きくなり過ぎて、発熱コイルに対する通電初期の大電流の供給時間が十分に確保されず、必ずしも良好な速熱性が達成されなくなるとの課題提起がなされている。また、これを解決するための具体的手段として、発熱コイルと制御コイルとの間に、巻線ピッチをPとして1.5P〜12P程度のコイル間ギャップを形成する構成が記載されている。該公報では、例えばシーズチューブ外径が5mm、巻線ピッチPが0.6mmの場合に、速熱性を確保するためには該ギャップを2mm以上確保すればよいとしている。
【0005】
ここで、上記公報においては、その第10図のε=4.38の昇温特性、すなわち通電初期において単調に温度を増加させた後、ピークを形成することなく温度が飽和する特性が、グロープラグとしては望ましい旨が記載されている。しかしながら、本発明者らの検討によれば、車両用ディーゼルエンジンのグロープラグの場合、上記のような昇温特性は必ずしも望ましいものとはいえないことが判明している。
【0006】
すなわち、車両等においてはグロープラグの電源としてバッテリーが使用される。この場合、グロープラグは、常に一定のバッテリー電圧(例えば12V)にて通電されるのではなく、通常はこれにオルタネータ等からの重畳電圧が加わり、バッテリー電圧よりも高圧側(例えば最大14V程度)に変動した形で通電されることのほうが多い。そして、このような高圧側への変動を伴う形で通電された場合、ヒータの昇温特性が上記のようなものであると、通電電圧レベルが高くなるほど飽和温度も高くなり、ヒータが過昇しやすい難点がある。これを防止するためには、通電初期にピーク温度となった後、そのピーク温度よりも低温にて飽和する昇温特性(以下、これを過昇防止型昇温特性という)とすることが望ましいのである。なお、付言すればこのような昇温特性は、上記公報においては、望ましくない例として示されている(公報第10図、ε=6.25の特性)。
【0007】
さて、上記のことを念頭において、前記特開昭59−60125号公報の開示内容を再検討してみると、例えばシーズチューブ外径が5mm、巻線ピッチPが0.6mmの場合、上記のような過昇防止型昇温特性を顕在化させるためには、その公報第7図から明らかな通り、前記コイル間ギャップを5mm以上のかなり大きな値に設定しなければならないことがわかる。また、コイル間ギャップがそれよりも少し大きい6mmを超えると、発熱コイルの温度が上昇し過ぎていることもわかる。これらは、上記グロープラグにおいては、コイル間ギャップの調整により、安定した過昇防止型昇温特性を得るのが非常に困難であることを意味している。
【0008】
そして、現在使用されているグロープラグにおいては、この点に鑑み、図9に示すように、シーズチューブ100の制御コイル102を収容する部分を、加熱コイル101を収容する部分よりも大径とし、該部分の熱容量を大きくすることで、制御コイル102の昇温が極端に急速に進まないようにして、上記のような過昇防止型昇温特性を実現するようにしている(例えば特開平3−99122号公報)。
【0009】
【発明が解決しようとする課題】
ところで、近年ではディーゼルエンジンの高性能化及び小型化に伴い、グロープラグのシーズヒータに対しても小型のものが要求されるようになっており、シーズチューブの主体金具からの突出部外径も、5mm未満の寸法に小径化する傾向にある。この場合、シーズチューブ100において、前記のように大径化される制御コイル102の収容部の外径を5mm未満に設定すると、加熱コイル101の収容部はそれよりもさらに径小となるため、該部分の機械的な強度が不足し、衝撃等が加わった場合に折損等を生じやすくなるほか、加熱コイルの外径が小さくなり過ぎて十分な発熱性能が得られなくなる不具合も生ずる。従って、小径のシーズヒータが望まれる場合には、そのシーズチューブ形態は、このような不具合を生じないように、加熱コイル及び制御コイルの各収容部の外径になるべく差を付けない、いわば単純な形態が望ましいといえる。また、シーズチューブの突出部をこのような単純形態とすることは、グロープラグを装着するエンジンヘッド側の設計の自由度を高める上でも有利に作用する。
【0010】
しかしながら、前記公報の開示内容を見る限り、制御コイルの収容部を径大としない公報第6図のような単純形状のシーズチューブを用いて、良好な過昇防止型昇温特性を実現することはほぼ絶望的と思われる。すなわち、シーズチューブを径小化することと、過昇防止型昇温特性を確保することとは、現状の技術常識からは両立が非常に難しい課題であり、現にシーズチューブの外径が5mm以下であり、かつ典型的な過昇防止型昇温特性を備えたシーズヒータを有するグロープラグは実現されてはいなかったのである。
【0011】
本発明の課題は、シーズヒータが典型的な過昇防止型昇温特性を示すとともに、シーズチューブ外径において5mm未満の小径化を図ることに成功したグロープラグを提供することにある。
【0012】
【課題を解決するための手段及び作用・効果】
上記課題を解決するために、本発明のグロープラグは、先端側が閉じたシーズチューブと、前記シーズチューブの先端を突出させた状態でその外側に配置される筒状の主体金具と、そのシーズチューブ内において軸線方向に配置された複数の抵抗線コイルとを備え、その抵抗線コイルは、前記シーズチューブの前記主体金具からの突出部内において、その先端側に配置される1つの発熱コイルと、その発熱コイルの後方側に隣接してこれと直列接続されるとともに、該発熱コイルからの発熱を受けることにより電気抵抗値を増大させ、発熱コイルに対する通電を制御する1つの制御コイルとからなり前記シーズチューブの前記突出部を、軸線方向においてほぼ一様な外径を有するものとして構成し、かつ、該突出部の表面の全体が前記主体金具外に露出してなり、その外径を3.0〜4.4mmとすることにより、前記シーズチューブの先端部表面における昇温特性が、通電初期にピーク温度TPを有して該ピーク温度TP以下で飽和するとともに、室温において通電電圧11Vにて前記昇温特性を測定したときに、そのピーク温度TPと通電開始から60秒後の温度TSとの差TP−TSが50〜200℃となるようにしたことを特徴とする。
【0013】
すなわち、グロープラグにおいて過昇防止型昇温特性を実現するためには、シーズチューブの制御コイルの収容部を径大化することが必須であるとの認識がほとんど常識化しており、シーズチューブ外径が5mm未満の径小ヒータにおいても例外ではないと考えられていた。しかしながら、本発明者らが鋭意検討した結果、発熱コイルと制御コイルとを収容するシーズチューブの突出部の外径を5mm未満に縮小する場合は、該外径を本発明特有の値、すなわち4.4mm以下の値に設定することで、該シーズチューブの突出部を軸線方向においてほぼ一様な外径を有するものとして構成しても、意外にも良好な過昇防止型昇温特性、すなわち通電初期にピーク温度TPを有して該ピーク温度TP以下で飽和する昇温特性が実現されることが明かとなり、本発明が完成したのである。
【0014】
その結果、上記現状の技術常識からは両立が極めて困難と見られていた、シーズチューブの径小化及び過昇防止型昇温特性の確保という2つの課題が同時に解決され、過昇を生じにくい長寿命のグロープラグが、高性能化及び小型化するディーゼルエンジン等のニーズに適合した小型サイズのものにおいても実現することとなったのである。また、シーズチューブを4.4mm以下に小径化することで、一層スムーズな昇温が可能となり、ひいては速熱性がさらに向上する効果も達成される。
【0015】
他方、シーズチューブの突出部において、加熱コイルの収容部は制御コイルの収容部とほぼ同寸法とされ、縮径されない。その結果、該部分の機械的な強度が十分に確保され、衝撃等が加わった場合に折損等が生じにくくなるほか、加熱コイルの外径も縮径されない分だけ十分に確保でき、良好な発熱性能が得られる。さらに、シーズチューブの突出部外形が単純化することから、グロープラグを装着するエンジンブロック側の設計の自由度を高める上でも有利に作用する。
【0016】
なお、シーズチューブの前記外径が3.0mm未満になると、発熱コイルの外径が小さくなり過ぎ、十分な発熱性能が得られなくなる。他方、4.4mmを超えると、本来の目的である過昇防止型昇温特性が実現されなくなる。なお、該外径は、より望ましくは3.5〜4.0mmとするのがよい。
【0017】
シーズチューブの上記外径を4.4mm未満にすることで、良好な過昇防止型昇温特性が実現される理由については、次のようなことが考えられる。すなわち、シーズチューブがこのように径小化することで、シーズチューブ表面からの熱の放散が進みやすくなる。その結果、発熱コイルから制御コイルへの熱移動が適度に抑制される結果、両コイル間の距離が多少小さくなっても、制御コイルが極端に急激に加熱されることがなくなり、安定した通電制御状態が得やすくなるものと考えられる。なお、シーズチューブの上記突出部は、外径がほぼ一様な円筒状に形成することができる(ただし、チューブ先端部が丸められている場合は、この丸め部を除いて一様な外径を有するように構成する)。
【0018】
制御コイルは、発熱コイルの後端に対し、該発熱コイルの巻線ピッチよりも大きいコイル間ギャップを隔てた形でこれに直結することができる。この場合、該コイル間ギャップの大きさは0.8〜3mmに調整するのがよい。コイル間ギャップの大きさが3mmを超えると、発熱コイルによる制御コイルの加熱が進みにくくなり、発熱コイルが過昇しやすくなる。他方、コイル間ギャップの大きさが0.8mm未満になると、制御コイルの抵抗値が急激に大きくなり過ぎて速熱性が確保されなかったり、飽和温度が低くなり過ぎて十分な発熱性能が得られなくなったりする場合がある。なお、本発明においてコイル間ギャップは、発熱コイルと制御コイルとの接続点から発熱コイルに沿って半巻分移動した位置と、同じく制御コイル側に半巻分移動した位置との間の、コイル軸線方向における距離として定義する。
【0019】
上記ギャップ量は、前記特開昭59−60125号公報に開示された、シーズチューブ外径5mmのグロープラグにおいて、過昇防止型昇温特性を得るのに必要なギャップ量(第7図:約5mm前後)に比較すると小さい値になっている。これは、前述の通り、シーズチューブが径小化してチューブ表面からの熱の放散が進みやすくなった結果、発熱コイルから制御コイルへの熱移動が抑制されていることを示唆している。従って、本発明のシーズチューブが径小のグロープラグにおいては、従来の径大のグロープラグと比較して、両コイル間の距離を多少近付けたほうが、良好な過昇防止型昇温特性を得る上では有利であるということができる。
【0020】
なお、上記コイル間ギャップの大きさは、より望ましくは1〜2mmに調整するのがよい。
【0021】
上記ピーク温度TPは、900〜1150℃となっているのがよい。ピーク温度TPが900℃未満になると、発熱が不十分となり、エンジン予熱等の機能が十分に果たされなくなる場合がある。他方、ピーク温度TPが1150℃を超えると、発熱が大きくなり過ぎ、発熱コイルの寿命低下を招く場合がある。なお、ピーク温度TPは、望ましくは950〜1050℃となっているのがよい。
【0022】
次に、上記グロープラグにおいては、室温において通電電圧11Vにて上記昇温特性を測定したときに、そのピーク温度TPと通電開始から60秒後の温度(以下、60秒後温度という)TSとの差TP−TSが50〜200℃となるようにする。TP−TSが50℃未満になると、通電電圧が高くなる方向に変動した場合、ヒータの過昇を招きやすくなる。他方、TP−TSが200℃を超えると飽和温度が低くなり過ぎ、必要な発熱性能が確保できなくなる。TP−TSは、望ましくは80〜150℃となっているのがよい。
【0023】
また、本発明のグロープラグは、速熱性の要求を満足するために、室温において通電電圧11Vにて昇温特性を測定したときに、ピーク温度TPが800℃以上であり、かつそのピーク温度TPに到達する途上において800℃に到達するまでの通電時間t800が8秒以下(望ましくは5秒以下)となっていることが望ましい。
【0024】
次に、本発明のグロープラグは、主体金具からの突出部において、シーズチューブの肉厚tが0.3〜0.75mmであり、かつ外径をD1としたときのt/D1の値が0.08〜0.2となっていることが望ましい。まず、肉厚tが0.3mm未満になるとシーズチューブの強度が不足し、取付けの際の落下等により大きな衝撃が加わった場合に、ヒータが破損しやすくなる。他方、本発明においては、シーズチューブの外径が4.4mm以下に制限されている関係上、肉厚tが0.75mmを超えるとシーズチューブ内径が小さくなり過ぎ、発熱コイルの径を十分に確保できなくなって、必要な発熱性能が得られなくなることがある。この場合、発熱コイルの径を無理に大きくしようとすると、シーズチューブ内面と発熱コイル及び制御コイルとの間で短絡を生じやすくなることはいうまでもない。なお、上記肉厚tは、望ましくは0.45〜0.6mmの範囲で調整されているのがよい。
【0025】
他方、シーズチューブの突出部の内径をD2、発熱コイル及び制御コイルの外径をd1としたときに、両者の半径差CG=(D2−d1)/2が、0.1〜0.8mmの範囲にて調整されていることが望ましい。CGが0.1mm未満になると、シーズチューブ内面と発熱コイル及び制御コイルとの間で短絡を生じやすくなるほか、発熱性能の劣化を招く場合もある。また、CGが0.8mmを超えると、例えばシーズチューブ内に発熱コイル及び制御コイルを絶縁材料(例えばマグネシア粉末)とともに封入し、さらに鍛造加工によりこれを縮径する際に、コイルがシーズチューブ内にて蛇行しやすくなり、同様に短絡を生じやすくなる。なお、CGの値は、望ましくは0.2〜0.6mmの範囲にて調整するのがよい。
【0026】
また、発熱コイル及び制御コイルの外径d1は、1.5〜3.0mmとするのがよい。該外径d1が1.5mm未満になると、必要な発熱性能が得られなくなる場合がある。他方、3.0mmを超えると、シーズチューブの外径が4.4mm以下に制限されている関係上、その肉厚tが小さくなり過ぎ、強度が不足する不具合につながる。また、上記コイルの外径d1とシーズチューブの内径D2との比d1/D2は0.5〜0.8の範囲で調整されているのがよい。d1/D2が0.8を超えると、発熱性能の低下を招く場合があるほか、シーズチューブ内面と発熱コイル及び制御コイルとの間で短絡を生じやすくなる。また、d1/D2が0.5未満になると、コイルがシーズチューブ内にて蛇行しやすくなり、同様に短絡を生じやすくなる。
【0027】
なお、シーズチューブは、例えばステンレス鋼、鉄基耐熱合金及びNi基耐熱合金のいずれかにより構成することができる。エンジン燃焼室内にて高温のガス流に直接さらされるシーズチューブをこれら材質にて構成することにより、その耐久性を向上させることができる。ステンレス鋼としては、各種オーステナイト系ステンレス鋼が、耐食性が特に良好であるので本発明に好適に使用できる。
【0028】
この場合、特に耐熱性が要求される場合にはNi基耐熱合金、例えばInconel601(Inconelは商標名)等のNi基超耐熱合金を好適に使用できる。また、高速インジェクション型ディーゼルエンジンのように、スワール流速の大きい環境下で使用する場合においては、高温ガス流による酸化消耗を抑制するため、オーステナイト系ステンレス鋼のうちでも特にNi含有量の高い組成を有するもの(例えばSUS310S)や、これと類似の組成を有するオーステナイト系耐熱鋼(例えばSUH309、SUH310、SUH330など)を好適に使用できる。
【0029】
また、発熱コイルの材質は、公知のグロープラグと同様の材質、例えば鉄−クロム系合金(例えば鉄を主体としてクロムを13〜30重量%含有する合金)、ニッケル−クロム合金(例えばニッケルを主体としてクロムを8〜22重量%含有する合金)等を使用できる。他方、制御コイルの材質としては、上記発熱コイルの材質よりも電気比抵抗の温度係数が大きい材質が用いられ、例えばコバルト−鉄合金(コバルトを主体として鉄を6〜18重量%程度含有するもの)が、耐久性に優れているので本発明に好適に使用できるが、このほか、ニッケルメッキ鉄線やニッケル線等も使用できる。
【0030】
そして、発熱コイルと制御コイルとは、適宜の材質、線径及びコイル長の選択により、発熱コイルの電気抵抗値をRH、同じく制御コイルの電気抵抗値をRCとして、室温での電気抵抗比(RH/RC)RTの値が1以上となり、かつ800℃での電気抵抗比(RH/RC)800の値が0.1〜0.4となるように調整するのがよい。(RH/RC)RTの値が1未満になると、ヒータの速熱性が十分に確保できなくなる場合がある。他方、(RH/RC)800の値が0.1未満になると、制御コイルによる通電制御が過剰となり、発熱コイルが十分に発熱できなくなる場合がある。また、(RH/RC)800が0.4を超えると、制御コイルによる通電制御効果が不十分となり、発熱コイルの過昇が生じやすくなる。
【0031】
次に、シーズチューブの主体金具からの突出部長さは24〜50mmとするのがよい。突出部長さが24mm未満になると、該突出部内における発熱コイルと制御コイルとの収容スペースが不十分となり、ひいては所期の昇温特性(あるいは発熱性能)を得るのに必要なコイル長を確保できなくなる場合がある。他方、該長さが50mmを超えると、シーズチューブ径が4.4mm以下と細径であるため、突出部の強度が不足し、衝撃等が加わった場合に折損等を生じやすくなる。なお、該突出長さは、望ましくは28〜40mmとするのがよい。
【0032】
なお、上記グロープラグにおいては、シーズチューブ内に配置された抵抗線コイル(発熱コイルと制御コイル)に対し、該シーズチューブに基端側から挿入された通電端子軸を介して通電を行うのが一般的である。この場合、その通電端子軸の先端を抵抗線コイルの後端に接続するとともに、その通電端子軸の先端を主体金具端面から突出して位置させることができる。例えば、シーズチューブの突出部に横方向の力が作用した場合、主体金具の開口内縁部との当接位置に強い曲げ力が集中しやすくなる。そこで、通電端子軸の先端を主体金具端面から突出させることで、シーズチューブの上記当接部分が補強され、曲げに対する強度が向上する。この場合、曲げ力が作用したときのシーズチューブへの力の集中位置は、むしろ通電端子軸の先端位置付近となるから、該位置からシーズチューブの先端までの長さを24〜50mm、望ましくは24〜42mmとするのがよい。
【0033】
次に、上記グロープラグにおいては、シーズチューブの外径が小さくなると、主体金具へのその組付け性が悪くなる場合がある。この場合、主体金具の、シーズチューブが配置される孔部の内径を、該シーズチューブの発熱コイル及び制御コイルを収容している部分よりも大径に形成し、シーズチューブの基端部を上記主体金具の孔部内径に対応する寸法となるように拡径し、その拡径部にて主体金具の孔部内にろう付け、溶接及び圧入のいずれかにより接合する構成とするこができる。シーズチューブの基端部を拡径して、この拡径部において主体金具に接合するようにすることで、上記組付け性を向上させることができる。
【0034】
【発明の実施の形態】
以下、本発明の実施の形態を図面に示す実施例に基づいて説明する。
図1は、本発明のグロープラグの一例を示す全体図及びその縦断面図である。該グロープラグ1は、シーズヒータ2と、その外側に配置された主体金具3とを備える。シーズヒータ2は、図2に示すように、先端側が閉じたシーズチューブ11の内側に、2つの抵抗線コイル、すなわち先端側に配置された発熱コイル21と、その後端に溶接等により直列接続された制御コイル23とが、絶縁材料としてのマグネシア粉末27とともに封入されている。
【0035】
図1に示すように、シーズチューブ11の、発熱コイル21及び制御コイル23を収容している本体部11aは、先端側が主体金具3から突出して突出部を形成している。この本体部11aは、外径D1がほぼ一様な円筒状(ただし、先端部は丸められている)に形成されており、該D1が3.0〜4.4mm(望ましくは3.5〜4.0mm)とされている。ここで、発熱コイル21はその先端においてシーズチューブ11と導通しているが、発熱コイル21及び制御コイル23の外周面とシーズチューブ11の内周面とは、マグネシア粉末27の介在により絶縁された状態となっている。
【0036】
図2において、発熱コイル21は、例えばその20℃での電気比抵抗ρ20が80〜180μΩ・cm、800℃での電気比抵抗をρ800として、ρ800/ρ20が0.9〜1.2程度の材料、具体的には鉄−クロム合金線あるいはニッケル−クロム合金線等により構成されている。そのコイルの線径kは0.15〜0.4mm、コイル長CL1は5〜12mm、コイル外径d1は1.5〜3.0mm、巻線ピッチPは0.2〜0.8mm、巻線ターン数Nは8〜15である。
【0037】
また、制御コイル23は、例えばその20℃での電気比抵抗ρ20が5〜25μΩ・cm、800℃での電気比抵抗をρ800として、ρ800/ρ20が7〜12程度の材料、具体的には鉄−クロム合金線あるいはニッケル−クロム合金線等により構成されている。そのコイルの線径kは0.17〜0.3mm、コイル長CL2は10〜32mm、コイル外径d1は1.5〜3.0mm、巻線ピッチPは0.2〜0.8mm、巻線ターン数Nは25〜40である。
【0038】
また、発熱コイル21と制御コイル23とは、発熱コイルの電気抵抗値をRH、同じく制御コイルの電気抵抗値をRCとして、室温での電気抵抗比(RH/RC)RTの値が1以上となり、かつ800℃での電気抵抗比(RH/RC)800の値が0.1〜0.4となるように調整されている。これら発熱コイル21及び制御コイル23の間には、発熱コイル21の巻線ピッチよりも大きいコイル間ギャップ25が形成されている。このコイル間ギャップ25の大きさJLは、0.8〜3mm、望ましくは1〜2mmの範囲で調整される。また、これを発熱コイル21の巻線ピッチPにて捉えた場合は、0.2〜0.8ピッチ(望ましくは0.3〜0.6ピッチ)の範囲で調整される。
【0039】
次に、シーズチューブ11は、前述の本体部11aと基端側においてこれよりも大径に形成された拡径部11bとを有している。そして、その本体部11aの肉厚tは0.3〜0.75mm(望ましくは0.45〜0.6mm)であり、かつt/D1の値が0.08〜0.2(望ましくは0.11〜0.17mm)となっている。また、本体部11aの内径をD2、発熱コイル21及び制御コイル23の外径をd1としたときの、それらの半径差CG=(D2−d1)/2の値は、0.1〜0.8mm(望ましくは0.2〜0.6mm)とされている。さらに、上記コイル21,23の外径d1と本体部11aの内径D2との比d1/D2は0.5〜0.8(望ましくは0.6〜0.7)とされている。
【0040】
シーズチューブ11には、基端側から棒状の通電端子軸13が挿入され、その先端が制御コイル23の後端に溶接等により接続されている。他方、図1に示すように、該通電端子軸13の後端部には雄ねじ部13aが形成されている。
【0041】
このようなシーズヒータ2の構造は、例えば次のようにして製造することができる。すなわち、図3(b)に示すように、最終寸法よりも加工代分だけ大径に形成されたシーズチューブ11’内に、発熱コイル及び制御コイルをマグネシア粉末とともに封入し、この状態でシーズチューブ11’に回転鍛造加工(スエージ加工)を施すことにより、本体部11aと拡径部11bとを形成する。
【0042】
上記スエージ加工は、例えば図3(a)に示すスエージングマシン70を用いて行うことができる。該スエージングマシン70においては、シーズチューブ11’を取り囲むように配置された複数のダイス73がそれぞれ対応するハンマ72によって支えられており、それらが回転主軸74内に配置されて一体的に回転させられる。この回転主軸74は、焼き入れ鋼等で構成された複数のローラ71を有するケージ75の内側で回転するようになっており、回転主軸74とともに回転しながらハンマ72がローラ71の位置にくると、ダイス73が圧縮され、ハンマ72が隣接するローラ71,71の間にくるとダイス73は遠心力によって開く。従って、回転主軸74の回転数を一定以上に上げれば、ダイス73による圧縮加工を何度も繰り返すことができる。
【0043】
次に、主体金具3は、図1に示すように軸方向の貫通孔4を有する筒状に形成され、ここにシーズヒータ2が、一方の開口端からシーズチューブ11の先端側を所定長突出させた状態で挿入・固定されている。該主体金具3の外周面には、グロープラグ1をディーゼルエンジンに取り付けるに際して、トルクレンチ等の工具を係合させるための六角断面形状の工具係合部9が形成されており、これに続く形で取付け用のねじ部7が形成されている。
【0044】
主体金具3の貫通孔4は、シーズチューブ11が突出する開口側に位置する大径部4bと、これに続く小径部4aとを備え、この小径部4aにシーズチューブ11bの基端側に形成された大径部11bが圧入され、固定されている。他方、貫通孔4の反対側の開口部には座ぐり部3aが形成され、ここに、通電端子軸13に外装されたゴム製のOリング15と絶縁ブッシュ(例えばナイロン製のもの)16とが嵌め込まれている。そして、そのさらに後方側において通電端子軸13には、絶縁ブッシュ16の脱落を防止するための押さえリング17が装着されている。該押さえリング17は、外周面に形成された加締め部17aにより通電端子軸13に固定されるとともに、通電端子軸13の対応する表面には、加締め結合力を高めるためのローレット部13bが形成されている。なお、19は、通電用のケーブルを通電端子軸13に固定するためのナットである。
【0045】
シーズチューブ11の、主体金具3からの突出長L2は24〜50mm(望ましくは28〜40mm)に調整されている。また、図2に示すように、通電端子軸13の先端位置は主体金具3の開口端面とほぼ一致している。
【0046】
以下、図1のグロープラグ1の各部の寸法等を具体的に例示する(図2も参照)。
・全長L1=145mm。
(発熱コイル21)
・材質:鉄−クロム合金(組成:Al=7.5重量%;Cr=26重量%;Fe=残部、ρ20=160μΩ・cm、ρ800/ρ20=1.0)。
・寸法:k=0.22mm、CL1=10mm、d1=1.7mm、P=1.0mm、N=10。コイル全体の20℃での電気抵抗値RHは1Ω。
(制御コイル23)
・材質:コバルト−鉄合金(組成:Fe=8重量%;Co=残部、ρ20=8μΩ・cm、ρ800/ρ20=9.8、800℃まで抵抗値は温度上昇とともに下に凸に上昇する)。
・寸法:k=0.2mm、CL2=15mm、d1=1.7mm、P=0.5mm、N=30。コイル全体の室温での電気抵抗値RCは0.33Ω。
【0047】
・(RH/RC)RT:3。
・(RH/RC)800:0.3。
(コイル間ギャップ25)
・JL:2mm。
【0048】
(シーズチューブ11)
・材質:SUS310S。
・寸法:D1=3.5mm、t=0.5mm、t/D1=0.14mm、CG=0.4mm、拡径部の外径D3=4.4mm、L2=36mm。
【0049】
(主体金具3)
・材質:機械構造用炭素鋼(S45C)。
・寸法:ねじ部7よりも先端側に位置する部分(以下、主要部5という)の長さL3=53mm、主要部5の外径D4=8.2mm、ねじ部7の長さL4=27mm、ねじ部7の外径D5=10mm。
【0050】
以下、図1のグロープラグ1の作用について説明する。
グロープラグ1は、主体金具3のねじ部7においてディーゼルエンジンのシリンダブロックに取り付けられる。これにより、発熱コイル21及び制御コイル23が収容されたシーズチューブ11の先端部は、エンジンの燃焼室(あるいは副燃焼室)内に位置決めされる。この状態で、通電端子軸13に車載のバッテリーを電源として電圧を印加すると、通電端子軸13→制御コイル23→発熱コイル21→シーズチューブ11→主体金具5→(エンジンブロックを介して接地)の経路にて通電される。
【0051】
これにより、グロープラグ1のシーズヒータ2は、通電初期においては制御コイル23の温度が低く電気抵抗値が小さいため、発熱コイル21には比較的大きな電流が流れてこれを急速昇温させる。そして、発熱コイル21の温度が上昇すると、その発熱により制御コイル23が加熱されて電気抵抗値が増大し、発熱コイル21への通電電流値が減少する。これにより、ヒータの昇温特性は、通電初期に急速昇温した後、以降は制御コイルの働きにより通電電流が抑制されて温度が飽和する形となる。
【0052】
そして、シーズチューブ11の本体部11aがほぼ一様な外径D1を有する円筒状とされ、かつD1が4.4mm以下の値に設定されていることで、前述の過昇防止型昇温特性、具体的にはピーク温度TPと60秒後温度TSとの差TP−TSが50〜200℃、ピーク温度TPが900〜1150℃、及び800℃に到達するまでの通電時間t800が8秒以下の、速熱性に優れた特性を安定して実現することが可能となる。
【0053】
さらに、シーズチューブ11の肉厚tが0.3〜0.75mmであり、かつ外径をD1としたときのt/D1の値が0.08〜0.2となっていることで、径小のヒータであるにもかかわらず所期の発熱性能が確保され、かつシーズチューブ11の強度も十分なものとなり、例えば取付け時に落下させたりした場合もヒータに破損が生じにくい。また、シーズチューブ11の本体部11aの内径と、発熱コイル21及び制御コイル23の外径との半径差CGが0.1〜0.8mmの範囲にて調整されていることで、シーズチューブ11の内面と各コイル21,23との間での短絡が生じにくくなり、製造歩留まりを向上させることができる。
【0054】
ここで、図2において、発熱コイル21のコイル長CL1とシーズチューブ11の本体部外径D1との比CL1/D1は1.6〜3.5(本実施例では約2.5)に設定するのがよい。すなわち、シーズチューブ11が小径であるため、従来の大径のシーズヒータと比較してチューブ表面からの熱の放散が活発に進むことから、CL1/D1が1.6未満ではコイル21による発熱帯の長さが不足して、十分な発熱性能が得られなくなるほか、制御コイルの加熱状態が不安定となり、良好な過昇防止型昇温特性も期待できなくなる場合がある。他方、CL1/D1が4を超えると、シーズチューブ先端部が最高発熱部分とならなくなる不具合が生ずる場合がある。
【0055】
図4に、図1のグロープラグ1の変形例を示す(共通の部材には同一の符号を付して説明を省略する)。このグロープラグ100においては、シーズチューブ11の基端側の拡径部11bが、図1のグロープラグ1よりも長く形成されており、シーズチューブ11の突出側において主体金具3の貫通孔4には、図1のような大径部4bが形成されず、ストレート形態となっている。そして、シーズチューブ11の拡径部11bは、貫通孔4に対してろう付けにより接合されている。
【0056】
また、貫通孔4の反対側の開口部には、図1と同様の座繰り部3aが形成されているが、ここには図1の絶縁ブッシュ16に代えてシールリング(例えばシリコンゴム製のもの)10と、ワッシャ状の第一絶縁リング(例えばベークライト等の耐熱樹脂製のもの)12が嵌め込まれる。そして、その状態にて、座ぐり部3aの開口周縁部に形成された筒状の突出部を第一絶縁リング14側に加締めて加締め部13bを形成し、さらにその後方側において通電端子軸13に対し、第二絶縁リング14(第一絶縁リング12と同材質・同形状)と押さえリング17とをこの順序で装着・固定した構造となっている。
【0057】
他方、図5に示すように、通電端子軸13の先端部は、主体金具5の対応する開口端部よりも所定長突出する形となっており、該通電端子軸13の先端からシーズチューブ11の先端までの長さL2’が24〜50mm(望ましくは24〜42mm)に調整されている。
【0058】
このグロープラグ100においては、図1にグロープラグ1にはない次のような効果が達成されている。すなわち、シーズチューブ11の主体金具3からの突出部内に通電端子軸13の先端部が入り込んでいる。これにより、シーズチューブ11は、横方向の力が作用したときに強い曲げ力が作用しやすい主体金具3の開口内縁部との当接部が、該通電端子軸13により補強される形となり、衝撃等が加わっても破損等が生じにくくなる。
【0059】
一方、図1のグロープラグ1は、次の点で図4のグロープラグ100より優れているといえる。まず、通電端子軸13の後端側を、絶縁ブッシュ16を介して加締めリング17で止める構造になっていることから、第一絶縁リング12とシールリング10とを加締め部3bで止め、さらに第二絶縁リング14と加締めリング17で補強した図4のグロープラグ100よりも部品点数が少なく、製造も容易である。また、図4のグロープラグ100では、内向きに突出した加締め部3bの内縁と通電端子軸13の外面との距離が比較的小さいので、水漏れ等による短絡を生じないよう、絶縁リング12,14間の気密性を配慮する必要がある。これに対し、図1のグロープラグ1では、絶縁ブッシュ16のフランジ部16aにより、主体金具3の開口内縁から通電端子軸13の外面までの距離が大きくなっており、かつ、絶縁ブッシュ16と主体金具3との隙間から通電端子軸13側に漏れ込もうとする水はOリング15により遮断されるので、短絡をより起こしにくい構造となっている。さらに、図4のグロープラグ100では、シーズチューブ11をろう付けにより主体金具3に接合する形となっていたので、ろう接時の熱影響によるシーズチューブ11の軟化を見越して強度設計を行う必要があるのに対し、図1のグロープラグ1では、シーズチューブ11は主体金具3に圧入結合されるので熱影響による軟化の心配がなく、加工による強度向上効果をより有効に活用できる利点がある。
【0060】
【実施例】
(実施例1)
図1のグロープラグを、以下に特記する条件を除いて、先に例示した寸法及び材質により各種作製した。まず、シーズチューブ11の本体部11aの外径D1のみを2.5〜5.0mmの各種値にて変化させ、これに合わせて発熱コイル21及び制御コイル23は外径d1のみ1.5〜2.5mmの範囲で適宜変化させた。また、制御コイル23の材質として、前記したコバルト−鉄合金製のものに代え、ニッケルメッキ鉄線(線径は同じ、メッキ厚さは約1μm)、及びニッケル線(線径は同じ)を用いたものを作製した。
【0061】
そして、これらグロープラグを室温中に保持し、通電電圧11Vにて通電したときの昇温特性曲線(温度−時間曲線)を、以下のようにして測定した。温度測定は、グロープラグ1を図10に示すような治具200に取り付けた状態で行った。該治具200は、縦長円柱状(外径23mm)の炭素鋼製のものであり、中心部に軸線方向のプラグ装着孔201が貫通形態で形成されている。図1に示すグロープラグ1は、先端側をプラグ装着孔201内に挿入し、該プラグ装着孔201の一方の端部側に形成された雌ねじ部201aに対してねじ部7を螺合させることにより、治具200に取り付けられる。治具200の各部の寸法は図面中に記載した通りである(単位:mm)。また、グロープラグ1のシーズチューブ11の先端部は、上記装着状態において治具200の端面より8mm突出するようになっている。
【0062】
そして、シーズチューブ11の突出部において、その先端から軸線方向に8mmまでの測定区間を設定し、その測定区間における最高温度位置を予め調べておくとともに、該位置に熱電対(Pt/Pt−Rh)を固定してシーズヒータ2に連続通電し、温度の時間変化を測定して昇温特性曲線を得た(以上の測定方法は、ISO7578(1986)に規定された方法に準拠するものである)。また、得られた昇温特性曲線から、前述の800℃到達時間(t800)、ピーク温度(TP )及び60秒後温度(TS)の値をそれぞれ算出した。以上の結果を表1に示す。
【0063】
【表1】
Figure 0003737879
【0064】
すなわち、本体部11aの外径D1が4.4mmを超える番号1のグロープラグではt800が大きく、速熱性が不足しているほか、60秒後温度(飽和温度を反映したものとなる)TSが低くTP−TSも50℃未満となっており、良好な過昇防止型昇温特性が得られていないことがわかる。これに対し、本体部11aの外径D1が3〜4.4mmの本発明のシーズヒータを使用したグロープラグ(番号2〜6、8〜10)では、t800が小さく速熱性に優れ、また過昇防止型昇温特性も良好であることがわかる。他方、本体部11aの外径D1が3mm未満のグロープラグでは、発熱コイルの寸法が小さいため、60秒後温度TSが低く、グロープラグの性能としては不十分であることがわかる。
【0065】
なお、図6は、番号5のグロープラグの昇温特性曲線を示している。また、図7は、番号1の比較例のグロープラグの昇温特性曲線を示している。
【0066】
(実施例2)
図1のグロープラグを、コイル間ギャップ長JLを0.5〜5mmにて変化させた他は、先に例示した寸法及び材質により各種作製した。そして、これらグロープラグに対し、実施例1と同様にして昇温特性曲線(温度−時間曲線)を測定し、t800、TP 及びTSの各値をそれぞれ算出した。以上の結果を表2に示す。
【0067】
【表2】
Figure 0003737879
【0068】
すなわち、JLを0.8〜3mmの範囲にて調整することで、速熱性及び過昇防止型昇温特性に特に優れたグロープラグが実現されていることがわかる。
【0069】
(実施例3)
図1のグロープラグを、以下に特記する条件を除いて、先に例示した寸法及び材質により各種作製した。すなわち、シーズチューブ11の本体部11aの外径D1を3.0〜4.4mmの範囲にて変化させた。また、本体部11aの肉厚tは0.25〜0.70mmの範囲で変化させた。また、発熱コイル21及び制御コイル23は外径d1のみ1.5〜3.0mmの範囲で変化させた。各グロープラグの、D1、t、d1の具体的な数値は、t/D1、D2(シーズチューブ内径)、CG(コイルとシーズチューブ内面との半径差)、d1/D2の各値とともに表3に示している。
【0070】
これら各グロープラグを各条件につき50個ずつ作製し、以下の各試験を行った。結果を表3に示す。
▲1▼ショート(短絡)発生確率
室温にて、まずグロープラグに対し電圧50Vのパルス電圧(パルス長0.1秒)を印加してグロープラグの抵抗値を測定し、測定値をR0とする。次いで電圧11Vにて30秒連続通電し、その後さらに同様のパルス電圧を印加してグロープラグの抵抗値を測定し、測定値をR1とする。加熱により、シーズチューブと発熱コイルないし制御コイルとの間に短絡が生じれば、実質的な通電コイル長が短くなるため、抵抗測定値R1は減少する。そして、R1のR0に対する減少率{(R0−R1)/R0}×100が10%以上となったものをショート発生と判断し、測定したグロープラグ50個中のショート発生個数がゼロのものを合格(○)、1個でもショートしたものは不合格(×)とした。
▲2▼強度評価(I)
各グロープラグをシーズチューブが下となり、かつコンクリート製の試験面からシーズチューブ先端までの初期距離が1cmとなるように鉛直に保持して落下させ、以降、上記距離を1cmずつ段階的に増加させながら落下を繰り返す。各落下後にシーズチューブに曲がりや折損等の破壊が生じたか否かを目視にて確認する。そして、破壊を生じない最大落下距離が5cm以上のものを優(◎)、3cm〜4cmまでのものを良(○)、2cm以下のものを不可(×)として判定した。
▲3▼強度評価(II)
各グロープラグの主体金具を、シーズチューブが水平となるようにチャックにて保持し、これを曲げ試験機にセットするとともに、側方に突き出すシーズチューブの先端から軸方向に沿って1mmの位置に曲げパンチの先端を当接させ、クロスヘッド速度1mm/分にて片持曲げ試験を行ったときの、最大曲げ荷重の値を曲げ強度値として測定した。シーズチューブ11の本体部11aの外径D1を3.5mmに固定し、肉厚tを変化させたときの強度値を、短絡発生確率とともにプロットしたグラフを図8に示す。
【0071】
【表3】
Figure 0003737879
【0072】
表3の結果から、以下のことがわかる。
(1)肉厚tが0.3mm以上、t/D1が0.08以上でシーズチューブの強度が十分となり、落下試験における破損が生じにくくなる。
(2)クリアランスCGが0.1mm〜0.8mmで、ショートを生じにくくなる。
【0073】
また、落下試験における破損を生じないためにはt/D1が0.08以上となることが必要であるが、図8の結果から、対応する強度値としては5kg以上が確保されていればよいことがわかる。なお、t/D1が0.2を超えると、ショート発生確率が急速に高くなっていることがわかる。
【図面の簡単な説明】
【図1】本発明のグロープラグの一例を示す全体図及び縦断面図。
【図2】そのシーズヒータの内部構造を示す断面図及びその要部拡大模式図。
【図3】スエージングマシンの概念と、スエージングの作用とを示す説明図。
【図4】図1のグロープラグの変形例を示す縦断面図。
【図5】そのシーズヒータの内部構造を示す断面図。
【図6】実施例1の番号5のグロープラグの昇温特性曲線。
【図7】実施例1の番号1のグロープラグの昇温特性曲線。
【図8】実施例3の曲げ強度試験結果をショート発生確率とともに示すグラフ。
【図9】従来のグロープラグの模式図。
【図10】グロープラグの温度測定に使用する治具の縦断面図。
【符号の説明】
1 グロープラグ
2 シーズヒータ
3 主体金具
7 ねじ部
11 シーズチューブ
11a 本体部
11b 拡径部
13 通電端子軸
21 発熱コイル
23 制御コイル

Claims (11)

  1. 先端側が閉じたシーズチューブと、前記シーズチューブの先端を突出させた状態でその外側に配置される筒状の主体金具と、そのシーズチューブ内において軸線方向に配置された複数の抵抗線コイルとを備え、その抵抗線コイルは、前記シーズチューブの前記主体金具からの突出部内において、その先端側に配置される1つの発熱コイルと、その発熱コイルの後方側に隣接してこれと直列接続されるとともに、該発熱コイルからの発熱を受けることにより電気抵抗値を増大させ、発熱コイルに対する通電を制御する1つの制御コイルとからなり、前記シーズチューブの前記突出部を、軸線方向においてほぼ一様な外径を有するものとして構成し、かつ、該突出部の表面の全体が前記主体金具外に露出してなり、その外径を3.0〜4.4mmとすることにより、前記シーズチューブの先端部表面における昇温特性が、通電初期にピーク温度TPを有して該ピーク温度TP以下で飽和するとともに、室温において通電電圧11Vにて前記昇温特性を測定したときに、そのピーク温度TPと通電開始から60秒後の温度TSとの差TP−TSが50〜200℃となるようにしたことを特徴とするグロープラグ。
  2. 前記制御コイルは前記発熱コイルの後端に対し、該発熱コイルの巻線ピッチよりも大きいコイル間ギャップを隔てた形でこれに直結されており、該コイル間ギャップの大きさが1〜3mmに調整されている請求項1記載のグロープラグ。
  3. 室温において通電電圧11Vにて前記昇温特性を測定したときに、前記ピーク温度TPが800℃以上であり、かつそのピーク温度TPに到達する途上において800℃に到達するまでの通電時間t800が8秒以下である請求項1又は2に記載のグロープラグ。
  4. 前記ピーク温度TPが900〜1150℃となっている請求項1ないし3のいずれかに記載のグロープラグ。
  5. 前記主体金具からの突出部において、前記シーズチューブの肉厚tが0.3〜0.75mmであり、かつ外径をD1としたときのt/D1の値が0.08〜0.2である請求項1ないし4のいずれかに記載のグロープラグ。
  6. 前記シーズチューブの前記突出部の内径をD2、前記発熱コイル及び前記制御コイルの外径をd1としたときに、両者の半径差CG=(D2−d1)/2が、0.1〜0.8mmの範囲にて調整されている請求項1ないし5のいずれかに記載のグロープラグ。
  7. 前記発熱コイル及び前記制御コイルの外径d1が1.5〜3.0mmとされ、かつ該外径d1と前記シーズチューブの前記突出部の内径D2との比d1/D2が0.5〜0.8の範囲で調整されている請求項1ないし6のいずれかに記載のグロープラグ。
  8. 前記シーズチューブは、ステンレス鋼、鉄基耐熱合金及びNi基耐熱合金のいずれかにて構成されている請求項1ないし7のいずれかに記載のグロープラグ。
  9. 前記シーズチューブの前記主体金具からの突出部長さが24〜50mmとされている請求項1ないし8のいずれかに記載のグロープラグ。
  10. 前記シーズチューブ内においてその基端側から挿入された通電端子軸の先端が前記抵抗線コイルの後端に接続され、その通電端子軸の先端が前記主体金具の端面から突出して位置するとともに、当該通電端子軸の先端から前記シーズチューブの先端までの長さが24〜50mmとされている請求項9記載のグロープラグ。
  11. 前記主体金具の、前記シーズチューブが配置される孔部の内径は、
    該シーズチューブの前記主体金具からの突出部よりも大径に形成されるとともに、前記シーズチューブの基端部は、前記主体金具の前記孔部の内径に対応する寸法となるように拡径されており、該拡径部にて前記主体金具の前記孔部内にろう付け、溶接及び圧入のいずれかにより接合されている請求項1ないし10のいずれかに記載のグロープラグ。
JP12300198A 1998-04-15 1998-04-15 グロープラグ Expired - Fee Related JP3737879B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP12300198A JP3737879B2 (ja) 1998-04-15 1998-04-15 グロープラグ
US09/290,894 US6064039A (en) 1998-04-15 1999-04-14 Glow plug with small-diameter sheath tube enclosing heating and control coils
DE69934628T DE69934628T2 (de) 1998-04-15 1999-04-15 Glühkerze
EP99302933A EP0950858B1 (en) 1998-04-15 1999-04-15 Glow plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12300198A JP3737879B2 (ja) 1998-04-15 1998-04-15 グロープラグ

Publications (2)

Publication Number Publication Date
JPH11294769A JPH11294769A (ja) 1999-10-29
JP3737879B2 true JP3737879B2 (ja) 2006-01-25

Family

ID=14849818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12300198A Expired - Fee Related JP3737879B2 (ja) 1998-04-15 1998-04-15 グロープラグ

Country Status (1)

Country Link
JP (1) JP3737879B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4632565B2 (ja) * 2001-03-09 2011-02-16 日本特殊陶業株式会社 セラミックヒーター装置及びその製造方法
JP4871193B2 (ja) * 2007-04-13 2012-02-08 日本特殊陶業株式会社 グロープラグ及びその製造方法
JP5170894B2 (ja) * 2009-01-15 2013-03-27 日本特殊陶業株式会社 グロープラグ用のヒータチューブの製造方法及びグロープラグ
JP5074534B2 (ja) * 2010-01-11 2012-11-14 日本特殊陶業株式会社 セラミックヒーター装置
JP2017083128A (ja) * 2015-10-30 2017-05-18 日本特殊陶業株式会社 グロープラグ及びグロープラグ制御装置
JP7004456B2 (ja) * 2018-04-02 2022-01-21 日本特殊陶業株式会社 ヒータの製造方法及びヒータ
JP6962852B2 (ja) * 2018-04-02 2021-11-05 日本特殊陶業株式会社 ヒータ

Also Published As

Publication number Publication date
JPH11294769A (ja) 1999-10-29

Similar Documents

Publication Publication Date Title
US6064039A (en) Glow plug with small-diameter sheath tube enclosing heating and control coils
US5852280A (en) Ceramic heater
JP3737880B2 (ja) グロープラグ
JP3737879B2 (ja) グロープラグ
EP2840314B1 (en) Glow plug
JP2005061828A (ja) グロープラグ
JP2000130752A (ja) グロープラグ
EP1448023B1 (en) Method for manufacturing sheathed heater and method for manufacturing glow plug
JP3736137B2 (ja) グロープラグの製造方法
JP4510588B2 (ja) グロープラグ
US7041938B2 (en) Glow plug, glow plug mounting structure, and glow plug manufacturing method
JP3551015B2 (ja) グロープラグ
JP2000220828A (ja) グロープラグ
JP4123668B2 (ja) グロープラグの製造方法
JP2014152961A (ja) グロープラグ
JP4200045B2 (ja) グロープラグ
JP3754529B2 (ja) 自己制御型セラミックヒータ
JP2001153359A (ja) グロープラグ
JP2002013736A (ja) グロープラグ
JP4192389B2 (ja) ディーゼルエンジン用グロープラグおよびその製造方法
JP2018185131A (ja) グロープラグ
JP2014059086A (ja) グロープラグの製造方法
JP5830369B2 (ja) グロープラグ
JP3589176B2 (ja) セラミックヒータ型グロープラグ
EP0902236B1 (en) Glow plug

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050610

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051028

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees