JP3724344B2 - 電動機制御装置 - Google Patents

電動機制御装置 Download PDF

Info

Publication number
JP3724344B2
JP3724344B2 JP2000197193A JP2000197193A JP3724344B2 JP 3724344 B2 JP3724344 B2 JP 3724344B2 JP 2000197193 A JP2000197193 A JP 2000197193A JP 2000197193 A JP2000197193 A JP 2000197193A JP 3724344 B2 JP3724344 B2 JP 3724344B2
Authority
JP
Japan
Prior art keywords
motor
voltage
circuit
inverter circuit
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000197193A
Other languages
English (en)
Other versions
JP2002017098A (ja
Inventor
哲也 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2000197193A priority Critical patent/JP3724344B2/ja
Publication of JP2002017098A publication Critical patent/JP2002017098A/ja
Application granted granted Critical
Publication of JP3724344B2 publication Critical patent/JP3724344B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電動機制御装置に係り、特に回生時の異常電圧保護機能を備えた電動機制御装置及びコンデンサの放電機能を備えた電動機制御装置に関する。
【0002】
【従来の技術】
一般に、電気自動車、電気−内燃機関ハイブリッド自動車等における直流−交流変換器(以下、インバータと呼ぶ)の直流電源端子には、通常並列に大容量コンデンサが接続され、サージ電圧の吸収や、電源インピーダンス低下による過渡的な大電流供給能力の向上が図られている。
【0003】
蓄電池等の直流電源からは、停車中の電力消費節減や保守作業時の安全のために、電源リレー等を介して、前記インバータ及びコンデンサに電源が供給される。そして、このようなインバータ及びコンデンサを過電圧から保護するために、例えば特開平10−262376号公報記載の放電回路が設けられている。
【0004】
この放電回路は、放電用抵抗器と放電制御スイッチング用半導体とが直列に接続された回路として、前記コンデンサ及び前記インバータと並列に設けることにより、過電圧からインバータやコンデンサを保護するための放電や電源リレーOFF後のコンデンサ電荷放電が行えるようになっている。
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来の電動機制御装置の放電回路においては、異常時の電圧上昇に伴う過剰エネルギーを単に放電用抵抗器で消費させるという構成になっていたため、放電回路に使用する放電抵抗器及び放電制御用スイッチング素子の耐電力を大きくする必要があり、小型化・コスト低減の障害になるという問題点があった。
【0006】
また従来の電動機制御装置においては、電源リレーオフ後、コンデンサの放電が終了するまでに長時間を必要とし、電源リレーオフ後直ちに保守作業を始められないという問題点があった。
【0007】
以上の問題点に鑑み、本発明の目的は、放電用抵抗器及び放電制御用スイッチング素子を用いることなく過電圧からインバータ及びコンデンサを保護することのできる電動機制御装置を提供することである。
【0008】
また本発明の目的は、小型軽量で低コストの電動機制御装置を提供することである。
さらに本発明の目的は、電源リレーオフ後、直ちに保守作業を開始できる電動機制御装置を提供することである。
【0009】
【課題を解決するための手段】
上記目的を達成するため請求項1記載の発明は、駆動状態及び回生状態の両状態が可能なように電動機を制御する電動機制御装置において、前記電動機が駆動状態のとき直流電源から電動機の駆動電流を供給するとともに、前記電動機が回生状態のときに前記電動機が発生する回生電流を整流して前記直流電源へ供給する駆動回路と、前記電動機が回生状態であることを検出し、回生状態である場合に前記電動機の端子電圧が所定値以上になった場合に前記駆動回路を制御して前記電動機に電流を流す制御手段と、を備えたことを要旨とする。
【0010】
上記目的を達成するため請求項2記載の発明は、請求項1記載の電動機制御装置において、前記電動機は永久磁石回転子を有する同期電動機であり、前記駆動回路はインバータ回路であり、前記制御手段は、前記回生状態である場合の前記電動機の端子電圧が所定値以上となった場合に、前記インバータ回路のスイッチング素子と前記誘導電動機の複数相とによる直列回路を形成することを要旨とする。
【0011】
上記目的を達成するため請求項3記載の発明は、請求項1記載の電動機制御装置において、前記電動機は誘導電動機であり、前記駆動回路はインバータ回路であり、前記制御手段は、前記回生状態である場合の前記電動機の端子電圧が所定値以上となった場合に、前記インバータ回路の複数のスイッチング素子と前記誘導電動機の複数相とによる直列回路を形成し、前記スイッチング素子の少なくとも一つをデューティ制御することを要旨とする。
【0012】
上記目的を達成するため請求項4記載の発明は、請求項3記載の電動機制御装置において、前記制御手段は、前記電動機の端子電圧の大きさに基づいて、デューティ比の異なる制御モードを切り替えることを要旨とする。
【0014】
【発明の効果】
請求項1記載の発明によれば、駆動状態及び回生状態の両状態が可能なように電動機を制御する電動機制御装置において、前記電動機が駆動状態のとき直流電源から電動機の駆動電流を供給するとともに、前記電動機が回生状態のときに前記電動機が発生する回生電流を整流して前記直流電源へ供給する駆動回路と、前記電動機が回生状態であることを検出し、回生状態である場合に前記電動機の端子電圧が所定値以上になった場合に前記駆動回路を制御して前記電動機に電流を流す制御手段と、を備えたことにより、回生状態で電動機の端子電圧が過電圧となった場合に駆動回路を制御して電動機に電流を流して過電圧を抑制することができるようになり、従来のような専用の放電回路を設けることなく異常電圧を抑制でき、電動機制御装置の小型化、低コスト化に寄与できるという効果がある。
【0015】
請求項2記載の発明によれば、請求項1記載の発明の効果に加えて、前記電動機は永久磁石回転子を有する同期電動機であり、前記駆動回路はインバータ回路であり、前記制御手段は、前記回生状態である場合の前記電動機の端子電圧が所定値以上となった場合に、前記インバータ回路のスイッチング素子と前記誘導電動機の複数相とによる直列回路を形成するようにしたので、同期電動機びインバータ回路の発熱を抑制しながら過電圧保護を行うことができるという効果がある。
【0016】
請求項3記載の発明によれば、請求項1記載の発明の効果に加えて、前記電動機は誘導電動機であり、前記駆動回路はインバータ回路であり、前記制御手段は、前記回生状態である場合の前記電動機の端子電圧が所定値以上となった場合に、前記インバータ回路の複数のスイッチング素子と前記誘導電動機の複数相とによる直列回路を形成し、前記スイッチング素子の少なくとも一つをデューティ制御するようにしたので、誘導電動機及びインバータ回路の発熱を抑制しながら過電圧保護を行うことができるという効果がある。
【0017】
請求項4記載の発明によれば、請求項3記載の発明の効果に加えて、前記制御手段は、前記電動機の端子電圧の大きさに基づいて、デューティ比の異なる制御モードを切り替えるようにしたので、インバータ回路の構成要素を安全動作領域内の安全性が高い領域で動作させることができ、電動機制御装置の信頼性を高く保持することができる。
【0019】
【発明の実施の形態】
次に図面を参照して、本発明の実施の形態を詳細に説明する。
〔第1の実施形態〕
図1は、本発明に係る電動機制御装置の第1の実施形態の構成を示すシステム構成図であり、説明の都合上、インバータ回路に直流電圧を供給するとともに回生電力で充電されるバッテリ等の高電圧電源及び制御対象の永久磁石回転子型同期電動機(モータ)を含んで図示している。
【0020】
図1において、電動機制御装置は、高電圧電源Vinからインバータ回路5への電流供給を制御する強電リレーJBと、インバータ回路5の電源入力側に並列に接続された大容量の電解コンデンサC1,C2と、強電リレーJBがオフとなったときにC1、C2の電荷を放電する放電抵抗RLと、電動機制御装置全体を制御するとともに特許請求の範囲記載の制御手段を兼ねるマイクロコンピュータ(以下、CPUと略す)1と、インバータ回路5の電源電圧又は回生電圧を検出する電圧検出回路2と、強電リレーJBを制御するリレー制御回路3と、高電圧電源Vinとインバータ回路5との間の電流方向及び電流値を検出する電流検出回路4と、高電圧電源Vinの直流電圧を交流3相電圧に変換してモータ6に供給すると共にモータ6が回生状態において発生する回生交流電流を整流して高電圧電源Vinを充電するインバータ回路5と、回転子の回転位置を検出する位置センサ8と、を備えている。
【0021】
強電リレーJBは、高電圧電源Vinからインバータ回路5への電流供給を制御するものであり、その接点は、高電圧電源Vinの正極とインバータ回路5の電源入力とを断続できるようになっている。また強電リレーJBのコイルの一端は12V電源Vignに接続され、他端はリレー制御回路3に接続され、リレー制御回路3が強電リレーJBの駆動電流を制御するようになっている。
【0022】
大容量の電解コンデンサC1、C2は、インバータ回路5の電源インピーダンスを低下させて、インバータ回路5の交流電流駆動能力を向上させるとともに、サージ電圧を吸収してインバータ回路5に加わる異常電圧のピーク値を下げる働きをする。本実施形態では、必ずしもC1,C2の並列接続である必要はなく、C1またはC2のいずれか一方の容量が必要容量を満たせば、他方は不要である。
【0023】
CPU1は、電圧検出回路2に接続された入力端子A1と、電流検出回路4に接続された入力端子A2と、インバータ回路5の各トランジスタQ1〜Q6をそれぞれ駆動する出力端子O1〜O6と、リレー制御回路3を駆動する出力端子O7を備えている。
【0024】
そしてCPU1は、特許請求の範囲に記載の制御手段を兼ねるものである。即ち、モータ6が負荷の駆動状態である場合、インバータ回路5を制御してモータ6の各相の巻線に電流を流して回転制御させるとともに、モータ6が負荷の回転エネルギーの回生状態である場合、回生電圧が所定値以上となる異常を検出すると、インバータ回路5を制御してモータ6に電流を流し回生エネルギーを消費させるように制御する。
【0025】
電圧検出回路2は、インバータ回路5の電源電圧を検出する回路であり、前記電源電圧を分圧する分圧抵抗R3、R4と、R4に並列接続された平滑コンデンサC3と、前記分圧された電圧をVccとGNDとの間に振幅制限するリミッタダイオードD7、D8とを備えて構成され、前記分圧された電圧をCPU1のA1端子へ入力している。
【0026】
リレー制御回路3は、CPU1の出力端子O7からの出力電流を強電リレーJBの駆動電流まで増幅するコンプリメンタリ接続されたトランジスタQ7、Q8を備えている。
【0027】
電流検出回路4は、コンデンサC1、C2の正極側とインバータ回路5の電源入力端子との間の電流の方向及びその電流値を検出する回路であり、ホール素子等を用いた電流センサIsenと、電流センサIsenが検出した電流を電圧に変換してCPU1のA2端子へ入力する演算増幅器ICと、演算増幅器ICに基準電圧を供給するVrefとを備えている。
【0028】
インバータ回路5は、モータ6のiu、iv、iwの各端子へそれぞれ電流を供給するトランジスタ(IGBT)Q1、Q3、Q5と、iu、iv、iwの各端子からそれぞれ電流を引き出すトランジスタ(IGBT)Q2、Q4、Q6と、iu、iv、iwの各端子とインバータ回路5の電源端子及び接地端子とを接続し回生時の交流電流を整流するフライバックダイオードD1〜D6と、により3相ブリッジとして構成され、Q1〜Q6のそれぞれのゲート端子は、それぞれCPU1の出力端子O1〜O6に接続されている。
【0029】
モータ6は、負荷を回転駆動するとともに、負荷の回転エネルギーを電気エネルギーとして回生可能なモータであり、永久磁石回転子型三相交流同期モータ、またはブラシレス3相DCモータが使用されている。具体的には、電気自動車用モータや、ハイブリッド車用のモータが相当する。
【0030】
位置センサ8は、光学式エンコーダや磁気式エンコーダ等を利用してモータ6の回転子の回転位置を検出するものである。この検出された回転位置は、CPU1に伝えられ、回転子の回転位置に応じた位相のコイルにインバータ回路5から駆動電流を流すことにより、モータ6の回転子が同期駆動される。
【0031】
次に、本第1実施形態の動作を説明する。
まず通常の駆動時には、高電圧電源Vinから供給される高電圧は強電リレーJBを介してコンデンサC1、C2を充電しているとともに、インバータ回路5の電源端子に供給されている。このため、電流検出回路4が検出する電流方向は、図1中の−方向(高電圧電源Vin、コンデンサC1,C2からインバータ回路5への方向)となり、モータ6から負荷を駆動する駆動状態である。このとき、位置センサ8が検出した回転位置に基づいてCPU1がu,v,wのいずれの位相を駆動すべきかを判断し、インバータ回路5のトランジスタQ1〜Q6を選択的に駆動する。こうして回転子の回転と駆動コイルにより形成される磁界の回転とが同期するようになっている。
【0032】
エネルギー回生の通常時、エネルギー回生状態におけるモータ6の端子iu,iv,iwに生じる3相交流電圧は、インバータ回路5のフライバックダイオードD1〜D6により、3相ブリッジ整流されて、コンデンサC1,C2及び高電圧電源Vinを充電する。このため、電流検出回路4が検出する電流方向は、図1中の+方向(インバータ回路5から高電圧電源Vinの方向)となる。
【0033】
エネルギー回生の異常電圧発生時、電圧検出回路2が異常に高い電圧を検出して、CPU1の端子A1に伝える。CPU1は、異常電圧による高電圧電源Vinへの充電を防止するために強電リレーJBをOFFさせるように、リレー制御回路3へ出力するとともに、異常電圧をモータ6により吸収させるべく、位置センサ8が検出した回転位置に応じて、Q2,Q4,Q6を選択的に導通させるように出力O2、O4、O6を出力する。例えば、いまu相に異常電圧が発生しているとすると、Q2を導通させることにより、iu→Q2→D4(またはD6)→iv(またはiw)の経路で電流が流れ、異常高電圧を発生させているエネルギーがモータ6のコイル抵抗により消費される。
【0034】
このとき、Q2、Q4、Q6は、単純に異常電圧が無くなるまでONさせてもよいし、あるDUTY比でON/OFFを繰り返すパルス駆動としても良い。パルス駆動する際には、スイッチング素子としての安全動作領域(ASO)の規格に基づいて、素子に加えられる電流、電圧を考慮して、1回当たりのON時間を規制すると良い。
【0035】
〔第2の実施形態〕
図2は、本発明に係る電動機制御装置の第2の実施形態の構成を示すシステム構成図であり、説明の都合上、インバータ回路に直流電圧を供給するとともに回生電力で充電されるバッテリ等の高電圧電源及び制御対象の誘導電動機(モータ)を含んで図示している。
【0036】
図2において、電動機制御装置は、高電圧電源Vinからインバータ回路5への電流供給を制御する強電リレーJBと、インバータ回路5の電源入力側に並列に接続された大容量の電解コンデンサC1、C2と、強電リレーJBがオフとなったときにC1、C2の電荷を放電する放電抵抗RLと、電動機制御装置全体を制御するとともに特許請求の範囲記載の制御手段を兼ねるマイクロコンピュータ(以下、CPUと略す)1と、インバータ回路5の電源電圧又は回生電圧を検出する電圧検出回路2と、強電リレーJBを制御するリレー制御回路3と、高電圧電源Vinとインバータ回路5との間の電流方向及び電流値を検出する電流検出回路4と、高電圧電源Vinの直流電圧を交流3相電圧に変換してモータ6に供給すると共にモータ6が回生状態において発生する回生交流電流を整流して高電圧電源Vinを充電するインバータ回路5とを備えている。
【0037】
強電リレーJBは、高電圧電源Vinからインバータ回路5への電流供給を制御するものであり、その接点は、高電圧電源Vinの正極とインバータ回路5の電源入力とを断続できるようになっている。また強電リレーJBのコイルの一端は12V電源Vignに接続され、他端はリレー制御回路3に接続され、リレー制御回路3が強電リレーJBの駆動電流を制御するようになっている。
【0038】
大容量の電解コンデンサC1、C2は、インバータ回路5の電源インピーダンスを低下させて、インバータ回路5の交流電流駆動能力を向上させるとともに、サージ電圧を吸収してインバータ回路5に加わる異常電圧のピーク値を下げる働きをする。
【0039】
CPU1は、電圧検出回路2に接続された入力端子A1と、電流検出回路4に接続された入力端子A2と、インバータ回路5の各トランジスタQ1〜Q6をそれぞれ駆動する出力端子O1〜O6と、リレー制御回路3を駆動する出力端子O7を備えている。
【0040】
そしてCPU1は、特許請求の範囲に記載の制御手段を兼ねるものである。即ち、モータ6が負荷の駆動状態である場合、インバータ回路5を制御してモータ6の各相の巻線に電流を流して回転制御させるとともに、モータ6が負荷の回転エネルギーの回生状態である場合、回生電圧が所定値以上となる異常を検出すると、インバータ回路5を制御してモータ6に電流を流し回生エネルギーを消費させるように制御する。
【0041】
電圧検出回路2は、インバータ回路5の電源電圧を検出する回路であり、前記電源電圧を分圧する分圧抵抗R3、R4と、R4に並列接続された平滑コンデンサC3と、前記分圧された電圧をVccとGNDとの間に振幅制限するリミッタダイオードD7、D8とを備えて構成され、前記分圧された電圧をCPU1のA1端子へ入力している。
【0042】
リレー制御回路3は、CPU1の出力端子O7からの出力電流を強電リレーJBの駆動電流まで増幅するコンプリメンタリ接続されたトランジスタQ7、Q8を備えている。
【0043】
電流検出回路4は、コンデンサC1、C2の正極側とインバータ回路5の電源入力端子との間の電流の方向及びその電流値を検出する回路であり、ホール素子等を用いた電流センサIsenと、電流センサIsenが検出した電流を電圧に変換してCPU11のA2端子へ入力する演算増幅器ICと、演算増幅器ICに基準電圧を供給するVrefとを備えている。
【0044】
インバータ回路5は、モータ6のiu、iv、iwの各端子へそれぞれ電流を供給するトランジスタ(IGBT)Q1、Q3、Q5と、iu、iv、iwの各端子からそれぞれ電流を引き出すトランジスタ(IGBT)Q2、Q4、Q6と、iu、iv、iwの各端子とインバータ回路5の電源端子及び接地端子とを接続し回生時の交流電流を整流するフライバックダイオードD1〜D6と、により3相ブリッジとして構成され、Q1〜Q6のそれぞれのゲート端子は、それぞれCPU1の出力端子O1〜O6に接続されている。
【0045】
モータ6は、エンジン起動用及び回生電力供給用のモータであり、三相交流誘導モータが使用されている。
【0046】
次に、本実施形態の動作を説明する。
通常制御では、まず、エンジン起動の為、モータから出力させるべきトルクの値(トルク指令)を実現する為に必要な電流成分Iqと、所定のモータ回転数に応じて定めた励磁電流成分Idとを用い、モータ電流指令値IsをCPU1で算出する。
【0047】
電流指令値Is=√(Id+Iq
この電流指令値の他にCPU1では、モータの回転角周波数Wr、モータ負荷によって定まるすべり周波数Wsを算出し、これらから各相の制御パターンを決定しインバータ回路5を制御している。
【0048】
一方、回生時にはモータ6で発生した三相交流電流を、インバータ回路5のフライバックダイオードD1〜D6にて直流変換し、バッテリである高電圧電源Vin及びコンデンサC1,C2へ還流させる。
【0049】
この際、例えば、下り坂で常に回生され、しかもバッテリが満充電であるような場合、過剰の回生エネルギーが発生しインバータ回路5の電源端子電圧が異常電圧となる可能性がある。
【0050】
本発明においては、エンジン起動時、回生時の異常電圧抑制の為、
(1)高電圧電源Vinからの線電流の流れる方向とCPUでの判断結果を照合し、電流異常有無を判断する。即ち、次に示す表1にて状態2,3の時に電流異常と判断する。
【0051】
【表1】
Figure 0003724344
(2)表1の状態4の時、即ちモータが回生状態にあり、モータから高電圧電源Vinへ電流が流れる時のみ、端子電圧を測定し、高電圧異常、低電圧異常の判断を行なう。ここで、低電圧Vign異常の時は、電源異常(低電圧)と判断する。
【0052】
(3)高電圧異常で、且つ、回生時の通常制御(モータで発生した三相交流電流を前述のインバータにて直接変換し、バッテリである高電圧電源Vin及び電解コンデンサC1,C2へ還流させる制御)を中止し、インバータ回路5のON・OFFパターンを、高電圧電源Vinからの線電流の流れる方向、発生電圧の大きさ、制御装置の判断結果から、高電圧電源Vin及び電解コンデンサC1,C2への還流を行なわず、モータ6を抵抗負荷として使用する異常電圧抑制制御への切り替えを行なう。
【0053】
(4)実際の異常電圧抑制制御の動作としては、電流成分Iqのみ印加するものとし更に、端子電圧の発生電圧の大きさから、発生エネルギーの量を推測し、異常電圧抑制制御1,2の切換を行なう。
【0054】
〔異常電圧抑制制御1〕
端子電圧に発生している電圧が既定値以上の時、例えばQ1をONままにし、Q4をON/OFF制御(PWM制御)することで、モータ6、インバータ回路5の発熱を抑制しつつ、過剰エネルギーをモータの抵抗分で消費させる。
【0055】
〔異常電圧抑制制御2〕
端子電圧に発生している電圧が規定値以下の時、Q1,Q4を規定時間ONままとし電圧を抑制する。
【0056】
尚、どちらの場合でも、端子電圧が正常復帰後は、通常制御へ戻ることとし、端子電圧が規定回数以上(例えば、3回以上)、NGの時は、電源異常(高電圧)として判断する。
【0057】
ここで、異常電圧抑制制御1,2の切り替えに使用する規定電圧、規定時間(制御時間)についての一例を示す。
【0058】
規定電圧設定は、インバータ回路5の各素子の耐圧、モータ6の最高使用電圧の何れかの低い方の電圧とインバータ回路5へ印加する高圧電源Vinの電圧値から設定する。
【0059】
例えば、素子の耐圧が150V、Vin=42V、モータの最高使用電圧300Vであれば、規定電圧は、ON/OFF時のノイズによる誤判断などを考慮し、Vth=Vin×2+(150−Vin×2)/2=117Vとする。
【0060】
次に、上記にて算出した電圧にて、Q1,Q4をONし、モータ6、駆動トランジスタQ1〜Q6が故障しない時間を実験より求めておくことで、制御時間(Q1,Q4共にONする時間)を設定する。
【0061】
また、前述の電圧より高い場合、素子の耐圧を上限に、印加されている電圧に応じてDUTYを可変することで発熱量を制御する(異常電圧抑制制御1)。
【0062】
例えば、制御時間=500μs、Ron=100mΩ、Vth=117Vとすれば、発生している電力P=(Vtn/Ron)×Ron×500μs=68.4Wと算出でき、発生電圧上昇に伴い、Q4をON/OFF制御し、一周期あたりの電力量を可変とし、P以上にならない様に制御することで発熱を抑制しつつ異常電圧を抑制できる。
【0063】
具体的には、ON/OFF周波数f=10KHz、Vth=150Vとすれば、(150/100mΩ)×100mΩ×T=68.4Wより、T=304μS T:印加時間総和 つまり、前述の500μsに対して印加時間を60.8%に低減すればよく、すなわち、1周期当たりの制御周期が100μsなので、DUTYを60.8%に低減することで実現することが可能となる。
【0064】
(∵印加回数は5回なので1周期では60.8μsとなる。つまり、DUTYは60.8%)
最後に、強電リレーJBをOFFした後、規定時間(τ=(C1+C2)×RL)たっても、端子電圧が規定電圧(ex.Vin×0.8)以上の時、Q1,Q4をONし素早く電荷を放電させることができる。
【0065】
次に、図3のフローチャートを参照して、本実施形態の動作を説明する。
まず、イグニッション(IGN)・スイッチがONされると(ステップ10、以下ステップをSと略す)、初期診断が行われ(S12)、初期診断が正常終了すると続いて強電リレーJBがONされ、コンデンサC1、C2に充電され、充電が完了するとインバータ回路5が動作可能となる(S14)。
【0066】
次いで、モータ6に対する通常制御が開始され(S16)、走行中か否かが判定される(S18)。走行中でなければ、停車中か(強電リレーがOFFでないか)否かが判定され(S20)、停車中であれば発進に備えてS16へ戻り通常制御を続ける。強電リレーJBがOFFであれば、強電リレーOFF後コンデンサC1、C2の端子電圧が規定値以下か否かを判定し(S22)、規定値以下であれば図外の終了処理へ移る。
【0067】
S22の判定で規定値以下でなければ、CPUからインバータ回路5のトランジスタQ1、Q4をONすることにより、モータ6の複数相の端子を直列接続してコンデンサC1、C2の電荷の放電経路を構成する(S24)。次いで、コンデンサの端子電圧が規定値まで下がったかどうかを判定し(S26)、下がっていなければS24へ戻る。規定値まで下がっていれば、放電完了として図外の終了処理へ移る。
【0068】
S18の判定で、走行中であれば、次いで電流方向はモータからバッテリ方向かが判定され(S28)、モータからバッテリ方向であれば、端子電圧は正常かどうかを判定し(S32)、正常であればS18へ移る。
【0069】
S28の判定で電流方向がモータからバッテリ方向でなければ、CPUは力行制御判断をしているかどうかを判定し(S30)、力行判断していればS18へ戻り、力行判断していなければ電流異常と判断して図外の電流異常処理をおこなう。
【0070】
S32の判定で端子電圧が正常でなければ、電源異常の種類は高電圧か否かを判定し(S34)、高電圧でなければ図外の低電圧の電源異常処理へ移る。
【0071】
S34の判定で電源異常の種類が高電圧であれば、通常制御を抜けられるか否かを判定し(S36)、抜けられなければ図外の高電圧の電源異常処理へ移る。
【0072】
S36の判定で通常制御を抜けられるならば、発生電圧は規定電圧(異常電圧制御1、2を切り換えるための判断値)以上か否かを判定し(S38)、規定電圧以上であれば異常電圧抑制制御1を行うために、ON/OFF制御するトランジスタをインバータ回路5のトランジスタQ1〜Q6から選択する(S40)。次いで選択した電源側トランジスタ(例えばQ1)をONし(S42)、規定時間接地側トランジスタ(例えばQ4)をDUTYを制御するPWM制御によりON・OFF制御し(S44)、S50へ移る。このDUTY制御時に、発生電圧に対して例えば図4に示すようなDUTY制御を行う。
【0073】
S38の判定で、発生電圧は規定電圧以上でなければ、異常電圧抑制制御2を行うために、ON/OFF制御するトランジスタをインバータ回路5のトランジスタQ1〜Q6から選択し(S46)、選択した電源側トランジスタ(例えばQ1)と接地側トランジスタ(例えばQ4)をONし(S48)、S50へ移る。
【0074】
S50では、端子電圧が正常値に戻ったか否かを判定し、正常値に戻っていれば、異常電圧抑制を終了し、通常制御へ移る。S50の判定で、端子電圧が正常値に戻っていなければ、規定回数(例えば3回)以上か否かを判定し(S52)、規定回数未満であればS38を繰り返す。規定回数であれば、図外の高電圧電源異常処理へ移る。
【0075】
以上説明したように、本発明によれば、駆動(力行)状態と回生状態を有する電動機(モータ)の電動機制御装置において、モータを制御するインバータ回路のON/OFFパターンを、電動機電源からの線電流の流れる方向、発生電圧の大きさ、マイクロコンピュータでの力行・回生判断結果から、通常制御とは別に設けた異常電圧抑制制御への切り替え判断を行ない、モータを抵抗負荷として使用することで、特別なエネルギー吸収回路を持つこと無く、異常電圧抑制が行なえ、小型化に寄与できることができる。
【0076】
又、発生した異常電圧の大きさから、発生エネルギーの量を推測し、単にモータの複数相を直列接続して異常電圧を吸収させるか、直列接続した複数相をインバータでDUTY制御しながらON/OFF制御するかを切り換えることにより、モータ及びインバータ回路の発熱低減も併せて図り、強電リレーOFF後、規定時間たっても端子電圧が規定電圧以上の時、通常制御とは別に設けた制御を行い、モータを抵抗負荷として素早く電荷を放電させることで、保守性をも向上させることができる。
【0077】
〔第3の実施形態〕
図5は、本発明に係る電動機制御装置の第3の実施形態の構成を示すシステム構成図であり、説明の都合上、インバータ回路に直流電圧を供給するとともに回生電力で充電されるバッテリ等の高電圧電源及び制御対象の誘導電動機(モータ)を含んで図示している。
【0078】
第3実施形態の構成を示す図5と、第2実施形態の構成を示す図2との相違は、図5において、電解コンデンサC1,C2の接続状態を並列と直列とに切り替えるスイッチSW1〜SW3と、エネルギー吸収回路7とが追加されていることである。その他の構成は、第2、第3実施形態ともに同じなので、重複する説明は省略する。
【0079】
エネルギー吸収回路7は、インバータ回路5の電源入力端子と接地との間に接続され、電源入力端子側に一端が接続されたエネルギー吸収抵抗R9と、エネルギー吸収抵抗R9の他端にコレクタが接続されエミッタが接地されたトランジスタQ9と、トランジスタQ9のベースにアノードが接続されカソードが前記電源入力端子に接続されたツェナーダイオードZD1と、トランジスタQ9のベースと接地間に接続された抵抗R10とにより構成されている。
【0080】
次に、本第3実施形態の動作を説明する。
エネルギー吸収回路7は、インバータ回路5の電源端子電圧をツェナーダイオードDZ1のツェナー電圧(以下、VZと略す)に制限する回路であり、通常時は、前記端子電圧はVZ以下であるので、ZD1に電流が流れずR10の両端の電圧は0であり、従ってトランジスタQ9はオフの状態である。異常時に前記端子電圧がVZを超え始めると、ツェナーダイオードZD1に電流が流れ始め、R10の電圧降下がトランジスタQ9のエミッタ−ベース間導通開始電圧を超えるとトランジスタQ9がONして、抵抗R9に電流が流れる。これにより異常電圧によるエネルギーを吸収させるものである。
【0081】
SW1〜SW3は、コンデンサC1、C2の接続状態を並列接続と直列接続とに切り替えるものであり、次に示す表2の動作パターンによる。
【0082】
【表2】
Figure 0003724344
第3の実施形態では、大容量の電解コンデンサの接続をSW1,2,3で、並列〜直列接続に変換できる様にすることで、異常電圧時の大容量コンデンサの耐圧アップに関し、素子そのものの耐圧を変更すること無く対応し、更に信頼性向上も図るものである。
【0083】
(1)通常動作
通常動作時には、大容量の電解コンデンサC1,C2は、並列接続されている。
【0084】
(2)残留電荷放電
強電リレーJBオフ後の残留電荷放電時には、SW1〜SW3を切り替えて、コンデンサC1,C2の2個をシリアルに結線しなおし、放電時間を1/2に短縮し、保守性を大きく改善する。
【0085】
(3)異常電圧抑制
電流方向がモータ6からバッテリである高電圧電源Vin方向で、端子電圧が規定値以上の時、特に大きさに影響のあるコンデンサを直列結線とすることで、個々のコンデンサーの耐圧アップをせずに耐圧を×2化することが出来、信頼性を向上させ、コンデンサの大型化を回避すると共に、エネルギー吸収回路の設定電圧(検知電圧)をも高く設定することで、エネルギー吸収抵抗の負荷率を軽減できる。これらにより信頼性向上・小型化を実現しつつ、異常電圧を抑制する。
【0086】
〔負荷率低減〕
次に、エネルギー吸収抵抗の負荷率低減の例を説明する。
例えば、異常発生電圧を90Vとし、これを45Vに抑制する場合、使用するエネルギー吸収抵抗R9の抵抗値を100Ωとした場合、必要な耐電力は、次の式により20.2Wとなる。
【0087】
P=(90−45)/R9=2025/R9=20.2W
一方、コンデンサC1,C2を直列接続して、耐圧向上により、75Vで抑制することになれば、
P=(90−75)/R9=225/R9=2.25W
となり、ほぼ1/9の耐電力となり、抵抗R9を小型化することができる。
【図面の簡単な説明】
【図1】本発明に係る電動機制御装置の第1の実施形態の構成を示すシステム構成図である。
【図2】本発明に係る電動機制御装置の第2の実施形態の構成を示すシステム構成図である。
【図3】第2実施形態における異常電圧抑制並びに残留電荷放電の動作を説明するフローチャートである。
【図4】第2実施形態における異常発生電圧とトランジスタ通電DUTYとの関係を示すグラフである。
【図5】本発明に係る電動機制御装置の第3の実施形態の構成を示すシステム構成図である。
【符号の説明】
1 マイクロコンピュータ
2 電圧検出回路
3 リレー制御回路
4 電流検出回路
5 インバータ回路
6 モータ
7 エネルギー吸収回路
8 位置センサ
Vin 高電圧電源(バッテリ)
Vign 12V電源
JB 強電リレー
C1,C2 電解コンデンサ
RL 放電抵抗
Q1〜Q6 パワートランジスタ(IGBT)
D1〜D6 フライバックダイオード
Q7,Q8 トランジスタ
D7,D8 ダイオード
R1〜R8 抵抗
Isen 電流センサー
Vref 基準電圧
IC 演算増幅器

Claims (4)

  1. 駆動状態及び回生状態の両状態が可能なように電動機を制御する電動機制御装置において、
    前記電動機が駆動状態のとき直流電源から電動機の駆動電流を供給するとともに、前記電動機が回生状態のときに前記電動機が発生する回生電流を整流して前記直流電源へ供給する駆動回路と、
    前記電動機が回生状態であることを検出し、回生状態である場合に前記電動機の端子電圧が所定値以上になった場合に前記駆動回路を制御して前記電動機に電流を流す制御手段と、
    を備えたことを特徴とする電動機制御装置。
  2. 前記電動機は永久磁石回転子を有する同期電動機であり、
    前記駆動回路はインバータ回路であり、
    前記制御手段は、前記回生状態である場合の前記電動機の端子電圧が所定値以上となった場合に、前記インバータ回路のスイッチング素子と前記誘導電動機の複数相とによる直列回路を形成することを特徴とする請求項1記載の電動機制御装置。
  3. 前記電動機は誘導電動機であり、
    前記駆動回路はインバータ回路であり、
    前記制御手段は、前記回生状態である場合の前記電動機の端子電圧が所定値以上となった場合に、前記インバータ回路の複数のスイッチング素子と前記誘導電動機の複数相とによる直列回路を形成し、前記スイッチング素子の少なくとも一つをデューティ制御することを特徴とする請求項1記載の電動機制御装置。
  4. 前記制御手段は、前記電動機の端子電圧の大きさに基づいて、デューティ比の異なる制御モードを切り替えることを特徴とする請求項3記載の電動機制御装置。
JP2000197193A 2000-06-29 2000-06-29 電動機制御装置 Expired - Fee Related JP3724344B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000197193A JP3724344B2 (ja) 2000-06-29 2000-06-29 電動機制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000197193A JP3724344B2 (ja) 2000-06-29 2000-06-29 電動機制御装置

Publications (2)

Publication Number Publication Date
JP2002017098A JP2002017098A (ja) 2002-01-18
JP3724344B2 true JP3724344B2 (ja) 2005-12-07

Family

ID=18695553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000197193A Expired - Fee Related JP3724344B2 (ja) 2000-06-29 2000-06-29 電動機制御装置

Country Status (1)

Country Link
JP (1) JP3724344B2 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4529390B2 (ja) * 2003-07-16 2010-08-25 ソニー株式会社 スイッチング型増幅器並びにその補正制御回路及び方法
JP4532875B2 (ja) 2003-10-14 2010-08-25 日立オートモティブシステムズ株式会社 電力変換装置
JP5168846B2 (ja) * 2006-08-10 2013-03-27 日産自動車株式会社 コンデンサの放電制御装置
JP4675299B2 (ja) * 2006-09-08 2011-04-20 三菱電機株式会社 車両用回転電機の制御装置
KR100887843B1 (ko) 2007-10-04 2009-03-09 현대자동차주식회사 하이브리드 차량용 인버터의 캐패시터 보호 방법
US7786708B2 (en) * 2007-10-05 2010-08-31 Pratt & Whitney Canada Corp. Starter/generator system with control to address a voltage rise
JP2010239736A (ja) * 2009-03-31 2010-10-21 Mitsubishi Electric Corp 電力変換装置
JP5404435B2 (ja) * 2010-01-13 2014-01-29 本田技研工業株式会社 電動車両の回生充電制御装置
JP5519398B2 (ja) * 2010-05-12 2014-06-11 株式会社デンソー 電力変換装置
JP5547559B2 (ja) 2010-06-16 2014-07-16 日立オートモティブシステムズ株式会社 電力変換装置
US8810052B2 (en) 2010-11-10 2014-08-19 Kokusan Denki Co., Ltd Control device for rotary electrical machine
JP5433608B2 (ja) 2011-03-03 2014-03-05 日立オートモティブシステムズ株式会社 電力変換装置
JP4898964B1 (ja) * 2011-03-28 2012-03-21 パナソニック株式会社 電動コンプレッサ
US9136782B2 (en) * 2013-07-02 2015-09-15 The Boeing Company Motor control for stability and power supply protection
CN105340163B (zh) * 2013-07-23 2017-12-08 爱信艾达株式会社 逆变器装置
CN104442412B (zh) * 2013-09-18 2018-01-19 通用电气公司 装置,移动运输设备,电动拖拉机,电动叉车以及相关方法
EP3051368B1 (en) * 2013-09-27 2021-02-03 Fuji Electric Co., Ltd. Drive device
EP3054578B1 (en) 2013-10-01 2019-05-15 Hitachi Automotive Systems, Ltd. Power conversion device
JP6337731B2 (ja) * 2014-10-06 2018-06-06 トヨタ自動車株式会社 モータ制御装置、及びモータ制御方法
JP6375845B2 (ja) * 2014-10-06 2018-08-22 トヨタ自動車株式会社 モータ制御装置、及びモータ制御方法
US10351002B2 (en) 2014-11-14 2019-07-16 Aisin Aw Co., Ltd. Inverter control device and vehicle control device
JP6169203B1 (ja) * 2016-02-16 2017-07-26 三菱電機株式会社 電動機制御装置および電動機制御方法
JP6915788B2 (ja) * 2016-05-17 2021-08-04 マイクロスペース株式会社 モータ駆動制御装置及び電動装置

Also Published As

Publication number Publication date
JP2002017098A (ja) 2002-01-18

Similar Documents

Publication Publication Date Title
JP3724344B2 (ja) 電動機制御装置
US7269535B2 (en) Fault diagnosing apparatus for vehicle and fault diagnosing method for vehicle
JP5567381B2 (ja) 電力変換装置
CN107458231B (zh) 驱动用于永磁同步马达的逆变电路的控制器和方法
US6917179B2 (en) Load driver and control method for safely driving DC load and computer-readable recording medium with program recorded thereon for allowing computer to execute the control
US7816805B2 (en) Power supply system with multiphase motor and multiphase inverter
KR101189237B1 (ko) 하이브리드 자동차의 충전장치 및 방법
US6486568B1 (en) Power system using a multi-functional power interface unit
JP3597591B2 (ja) モータの駆動装置
WO2011118259A1 (ja) 放電制御装置
JP2011010406A (ja) 車両用の電力変換装置およびそれを搭載する車両
US20090308675A1 (en) Generator driving device, hybrid vehicle, and control method for generator driving device
JP2013132197A (ja) 電力変換装置及び充電システム
US7898828B2 (en) Charger for an industrial truck
JP5557898B2 (ja) 負荷駆動装置
JP2009240039A (ja) 回転電機の制御装置
JP2004056934A (ja) 補助電源装置
JP5303295B2 (ja) 車両用電力変換装置および電動車両
JP3138596B2 (ja) 車両用電源装置
JP5529393B2 (ja) 発電電動機駆動装置に適用される蓄電装置の放電装置
JP2006304542A (ja) 電圧変換装置
JP2002335688A (ja) 電源回路
CN114389236A (zh) 功率转换装置
JP2013255297A (ja) 車両用インバータ装置
JPH0956167A (ja) 電動機制御装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050912

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130930

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees