JP3722189B2 - 記録ヘッド - Google Patents

記録ヘッド Download PDF

Info

Publication number
JP3722189B2
JP3722189B2 JP3930299A JP3930299A JP3722189B2 JP 3722189 B2 JP3722189 B2 JP 3722189B2 JP 3930299 A JP3930299 A JP 3930299A JP 3930299 A JP3930299 A JP 3930299A JP 3722189 B2 JP3722189 B2 JP 3722189B2
Authority
JP
Japan
Prior art keywords
temperature
recording head
change
detection element
temperature detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3930299A
Other languages
English (en)
Other versions
JP2000238266A (ja
Inventor
邦仁 佐藤
徹 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP3930299A priority Critical patent/JP3722189B2/ja
Publication of JP2000238266A publication Critical patent/JP2000238266A/ja
Application granted granted Critical
Publication of JP3722189B2 publication Critical patent/JP3722189B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、シリコン基板上に温度検知素子を搭載した記録ヘッドに関するものである。
【0002】
【従来の技術】
現在、大きく注目されている記録技術として、液体噴射記録方式がある。液体噴射記録方式は、普通紙への記録が可能であり、高品位記録、カラー化が容易であり、さらに静粛性に優れ、記録スピードと価格のバランスに優れているという特徴がある。さらに、構造が単純であるという利点も有している。
【0003】
一方、構造が単純であるといっても、現在でも記録ヘッドや液体の取り扱いに課題を残している。特に、液体を扱うことによる信頼性、耐久性の確保が課題となっている。信頼性、耐久性を損なう要因としては、液体による目詰まり、液体流路への気泡の混入、記録ヘッド材料の液体による劣化などが挙げられる。
【0004】
最近の液体噴射記録装置には、安価であっても写真画質に迫る高画質の画像を記録できるものも増えてきた。6色以上の多色インクを使用したり、1ヶ所にインクを重ね打ちするなどの工夫で色調表現を豊かにし、画像のざらざらした感じが少なくなった。このような液体噴射記録装置は、会社や広告等の専門業だけでなく、パーソナルコンピュータの普及に伴い一般家庭でも普通に使用されるようになった。例えば、家族の写真を入れてはがきを作るなどといったことが日常的に行われるようになった。このような用途では、人物の顔がかなり小さくなる場合もあり、少ないドットの集まりで表現しなければならない。このような場合、性能が低いと目の表情が変わってしまったり、肌にドットが目立って荒れた感じになってしまう。しかし最近の高機能化によって画質が向上し、このような用途にも十分利用可能になっている。
【0005】
液体噴射記録方式には、発熱素子によって液体を急激に加熱し、液体中に発生した気泡により液体を吐出させるサーマル(バブル)方式と、電圧を印加すると変形するセラミックを用いて液体を吐出させるピエゾ方式がある。特にサーマル方式では、液体に噴射エネルギーを加えるための発熱素子が比較的単純な薄膜プロセスで作成できることから、発熱素子と同一基板上に同一薄膜プロセスで作成された電子回路を搭載する構成が増えている。発熱素子のみならず、ドライバや、低電圧の論理機能素子などを、発熱素子を搭載した基板に集積化することも行われている。これによって、配線を簡略化し、駆動ICの負荷を低減し、さらには電気的接続のためのパッド数を削減してチップサイズを小さくすることができ、ノズルの高密度化や多ノズル化、およびコスト面で効果をあげている。このように発熱素子と同一基板上に駆動回路等を形成した構成は、例えば特開平9−254368号公報などに記載されている。
【0006】
液体噴射記録方式において記録に用いるインク等の液体は、温度が高くなると粘度が低下し、噴射滴量が多くなる。また逆に、温度が低くなると粘度が上昇して、噴射滴量が少なくなってしまう。そのため、温度変化があると噴射滴量が変化して記録された画像に劣化を生じる。特にサーマル方式の場合、液体を吐出させるために熱エネルギーを利用することから、記録中に自己昇温しやすい。このような問題に対して、例えば特開平5−31906号公報などに見られるように、温度変化が生じても噴射量を一定にする手法として、温度によりパルス幅を変更するという手法が提案されている。このほかにも、各種の昇温に対する対策が提案されている。
【0007】
このように、液体噴射記録方式においては温度管理が画質に影響するが、そのためには正確に温度を測定する必要がある。上述のようにサーマル方式では記録ヘッドにおいて発熱するため、記録ヘッドにおける温度を測定することが望ましい。そのため、記録ヘッドに精度のよい温度検知素子を設置して温度を検出する方法が一般的である。発熱素子を搭載した基板に温度検知素子を設けることにより、応答性の高い温度検知が可能である。
【0008】
図9は、従来の温度を検知するための回路構成の一例の説明図、図10は、同じく温度と出力電圧の関係の一例を示すグラフである。図中、51は記録ヘッド、52は温度検知素子、53はプルアップ抵抗である。従来は、記録ヘッド51を構成するシリコン基板上に温度検知素子52を形成し、その一方を接地する。そしてもう一方を外部に出力させ、温度検知素子の外部でプルアップ抵抗を接続し、その接続点における電圧を温度検知結果として取り出している。しかし、シリコン基板上に薄膜プロセスで作成された温度検知素子の温度変化率は一般的に低い。そのため、図9に示すような回路構成によって温度検知結果として取り出される電圧変化は、図10に示すように温度に対して小さく、電源や配線におけるノイズの影響による誤差が大きく、高精度の温度測定が困難であるという問題があった。温度変化率を改善するために、特別のプロセスを使用して温度検知素子を作成したり、複雑なアナログ回路を構成することも考えられるが、コスト的に不利である。
【0009】
【発明が解決しようとする課題】
本発明は、上述した事情に鑑みてなされたもので、シリコン基板上に特別のプロセスを必要としない温度検知素子を設けるとともに、非常に簡単な回路で温度の変化に対する出力電圧の応答を改善し、低コストで感度のよい温度の測定を行い、温度の変化に対する画質の変化を防止可能な記録ヘッドを提供することを目的とするものである。
【0010】
【課題を解決するための手段】
本発明の請求項1の発明は、上記課題を解決するために、記録ヘッドのシリコン基板上に、第1の温度検知素子と、その第1の温度検知素子に直列に接続された抵抗とからなる第1の直列回路、および、その抵抗と第1の温度検知素子の接続点が制御端子に接続された増幅手段と、増幅手段と直列に接続された第2の温度検知素子とからなる第2の直列回路を並列に電源端子間に挿入して形成し、増幅手段と第2の温度検知素子との接続点を出力とする。このような構成により、温度変化により第1の温度検知素子の抵抗値が変化すると、増幅手段の制御入力が変化し、増幅手段のオン抵抗又は出力電流が変化し、第2の温度検知素子の温度変化による抵抗値変化に対する出力変化量を大きくするように働く。
【0011】
前記抵抗は、例えば請求項2または請求項3に示すように、一方が電源端子のホット側に接続されたプルアップ抵抗、あるいは一方が電源端子のリターン側(接地)に接続されたプルダウン抵抗とすることができる。また、トランジスタなどの増幅手段として、好ましくは電界効果トランジスタ、さらに好ましくはnMOSトランジスタあるいはpMOSトランジスタを用いることができる。この場合、プルアップ抵抗あるいはプルダウン抵抗と第1の温度検知素子の接続点を電界効果トランジスタのゲート電極に接続し、電界効果トランジスタのドレインまたはソースに第2の温度検知素子を接続すればよい。
【0012】
このような構成によれば、第1の温度検知素子の温度による抵抗値の変化によって、増幅手段、例えばnMOSトランジスタあるいはpMOSトランジスタ等の電界効果トランジスタの制御端子であるゲート電圧が変化して、ソース−ドレイン間の電流が変化する。それとともに、そのソース−ドレイン間の電流が流れる第2の温度検知素子の抵抗値も温度によって変化する。このように両者の相互作用によって、温度に対する出力電圧の変化量を大きくすることができる。そのため、記録ヘッドの温度を精度よく検知することができる。また、外来ノイズやADコンバータなどの電圧を読み取る側における誤差の影響も少なくなり、より正確に液体の温度を検出することができる。また、構成が非常に簡単であり、回路のために必要とする面積も小さいので、低コストで印字品質に有利な記録ヘッドを提供可能である。
【0013】
【発明の実施の形態】
図1は、本発明の記録ヘッドの第1の実施の形態における温度を検知するための回路構成の一例の説明図、図2は、同じく温度検知素子の一例を示す断面図である。図中、11は第1の温度検知素子、12はプルアップ抵抗、13はnMOSトランジスタ、14は第2の温度検知素子、21はSi基板、22はN−拡散層、23はN+拡散層、24はLOCOS、25はBPSG、26は配線、27はPSGである。
【0014】
第1の温度検知素子11および第2の温度検知素子14は、例えば図2に示すような構造のN−(N型低濃度)拡散層をSi基板21内に作製して構成することができる。N−拡散層は、二重拡散構造(LDD(Lightly Doped Drain)構造)のMOSトランジスタに使用されている。N+拡散層でドレインを形成する際、ゲート近傍にN−拡散層を設け、ドレイン近傍の電界を小さくする。このような構成により、ホットエレクトロンによる閾値の電圧の変動を抑えることができ、また、ソース、ドレイン間の耐圧向上を図ることができる。
【0015】
N−拡散層22は、2〜3×1012/cm2 程度の濃度のPイオンを約180eVで注入して拡散させて形成することができる。また、N+拡散層23は4〜5×1015/cm2 程度の濃度のAsイオンを約40eVで注入して拡散させて形成することができる。通常のMOSトランジスタを作製する場合、ドレイン及びソースにこれと同等のN+拡散層を設けて、Al等の配線材にコンタクトを経由して接続する。図2ではN+拡散層23は、パッドからAl等の配線26で接続されている。図2を参照してわかる通り、支配的な抵抗成分は低濃度のN−拡散層22の部分である。この部分が温度により抵抗変化を起こし、PTC(Positive Temperature Coefficient thermistor)素子となる。なお、N−層22を設けなくても、N+層23だけでも十分PTC素子として使用可能である。この場合、シート抵抗が低い関係上、レイアウト面積が大きくなる。
【0016】
図2に示したN−拡散層22を用いた温度検知素子(標準品)の温度と抵抗値の関係は、温度T0(K)の時の抵抗値をR0,温度T1(K)の時の抵抗値をR1としたとき、R1=R0×exp(B×(T1−T0))で近似可能である。なお、直線で近似しても実質上は問題ない。図2に示すN−拡散層22の抵抗値の温度変化率は、30℃のときの抵抗値をR30とすれば、30℃→60℃でR30×0.55(%/℃)程度である。Si基板上に搭載する温度検知素子は、プロセス、材料上の制約から温度変化率がよくてもこの程度であり、温度変化率はかなり低い。そのため、従来のように図9に示すような回路により、温度変化を電圧変化として取り出すと、温度変化に対する電圧変化が少なく、ノイズの影響などによる読み取り誤差が大きくなる。
【0017】
これを改善するため、本発明では図1に示すような構成をとっている。すなわち、N−拡散層による第1の温度検知素子11および第2の温度検知素子14、ポリシリコンによるプルアップ抵抗12、Nチャネル・エンハンスメントトランジスタ(nMOSトランジスタ13)を、例えば温度検知素子11を形成した同じシリコン基板21上に形成する。このとき、CMOSやバイポーラプロセスのようにウエルは不要である。
【0018】
そして、第1の温度検知素子11の一方をプルアップ抵抗12に接続し、他方を接地する。また、プルアップ抵抗12の他方を電源ラインに接続する。そして、第1の温度検知素子11とプルアップ抵抗12の接続点をnMOSトランジスタ13のゲートに接続する。nMOSトランジスタ13のソースまたはドレインの一方が接地されるとともに、他方が第2の温度検知素子14に接続されている。また、第2の温度検知素子14の他方は電源ラインに接続されている。そして第2の温度検知素子14とnMOSトランジスタ13との接続点の電圧Vout2を温度検知結果として取り出す。
【0019】
このような構成において、温度検知素子は温度に対して正特性であるので、温度上昇で第1の温度検知素子11の抵抗値が上昇し、nMOSトランジスタ13のゲート電位が上がる。そのため、ゲート電位の上昇によって電流が増大する。第2の温度検知素子14も温度上昇によって抵抗値が増え、nMOSトランジスタ13における電流の増加でますます電圧Vout2は下がる。
【0020】
ここではnMOSトランジスタ13は飽和領域で動作させている。飽和領域の場合の近似式として、Ids:ドレイン→ソース電流、Vgs:ゲート−ソース間電圧、Vth:しきい値電圧としたとき、Ids=(Vgs−Vth)2 となる電流が流れる。飽和領域では、非飽和領域動作に比べてゲート電圧によるIds変化率が大きい。そのため、図1に示すように第1の温度検知素子11からのゲート電圧の変化によってドレイン→ソース電流Idsの変化を大きくし、出力電圧の変化をさらに大きくすることができる。
【0021】
具体例を示す。第1の温度検知素子11および第2の温度検知素子14は、図2に示すように幅w=64μm、長さa=128μm、b=9μmである。低濃度のN−拡散層22のシート抵抗R□≒5kΩであり、30℃での抵抗値R30=10kΩ、温度変化率はR30×0.55%/℃(PCT)である。プルアップ抵抗12は、ポリシリコン層(シート抵抗R□≒63.5Ω)で、30℃での抵抗値R30=10KΩ、温度変化率はR30×0.05%/℃(PCT)である。NチャネルE−MOSTr.(nMOSトランジスタ13)は、W=40μm、L=5μm、Vt=1V、プロセス係数20×10-6A/V2 、温度変化率(Ron)はR30×0.05%/℃(PCT)である。なお、W、Lは、nMOSトランジスタ13が飽和領域で動作するように設定している。
【0022】
図3は、本発明の記録ヘッドの第1の実施の形態における温度と出力電圧の関係の一例を示すグラフである。図中、破線で示した出力Vout2aの電圧変化のグラフは、nMOSトランジスタ13のプロセス係数が16×10-6A/V2 の場合を示している。また、実線で示した出力Vout2bの電圧変化のグラフは、nMOSトランジスタ13のプロセス係数が20×10-6A/V2 の場合を示している。なお、図10に示した従来の出力電圧の変化も一点鎖線によって示している。
【0023】
図3から分かるように、従来は20→60℃の温度変化によって出力電圧Vout1の変化は2.4636V→2.674Vで0.2104Vの上昇程度であった。しかし上述の具体例では、実線に示すように温度変化に従って出力電圧が変化し、20→60℃の温度変化によって出力電圧Vout2bの変化は、3.433V→2.421Vに下降している。このように、上述の具体例では20→60℃の温度変化によって−1.012Vの変化があり、従来の0.2104Vに比べて4.25倍の変化率を得ることができる。
【0024】
実際に使用する際には、温度検知素子のバラツキを補正する手段を設けておくとよい。補正手段としては、例えば、温度検知素子のバラツキの情報をヒューズROM等に書き込んでおき、使用するときに出力Vout2をROMの情報に従って補正し、正確な温度を計算することができる。
【0025】
図4は、本発明の記録ヘッドの第2の実施の形態における温度を検知するための回路構成の一例の説明図である。図中、15はプルダウン抵抗、16はpMOSトランジスタである。この第2の実施の形態では、第1の温度検知素子11および第2の温度検知素子14とともに、ポリシリコンによるプルダウン抵抗15と、Pチャネル・エンハンスメントトランジスタ(pMOSトランジスタ16)を、例えば温度検知素子11を形成した同じシリコン基板21上に形成する。なお、第1の温度検知素子11および第2の温度検知素子14は、上述の第1の実施の形態と同様、例えば図2に示すような構成である。
【0026】
第1の温度検知素子11の一方をプルダウン抵抗15に接続し、他方を電源ラインに接続する。また、プルダウン抵抗15の他方を接地する。そして、第1の温度検知素子11とプルダウン抵抗15の接続点をpMOSトランジスタ16のゲートに接続する。pMOSトランジスタ16のソースまたはドレインの一方が電源ラインに接続されるとともに、他方が第2の温度検知素子14に接続されている。また、第2の温度検知素子14の他方は接地されている。そして第2の温度検知素子14とpMOSトランジスタ16との接続点の電圧Vout2を温度検知結果として取り出す。
【0027】
このような構成において、温度検知素子は温度に対して正特性であるので、温度上昇で第1の温度検知素子11の抵抗値が上昇し、pMOSトランジスタ16のゲート電位が下がる。そのため、ゲート電位の低下によって電流が増大する。さらに第2の温度検知素子14も温度上昇によって抵抗値が増え、pMOSトランジスタ16における電流の増加とともに、ますます電圧Vout2は上昇する。そのため、温度の変化に対して電圧Vout2は大きく変動することになり、精度よく温度を検出することができる。なお、この場合もpMOSトランジスタ16は飽和領域で動作させるとよい。
【0028】
上述の第1および第2の実施の形態では、温度検知素子11および温度検知素子14として両方とも温度に対して正特性のものを用いているが、いずれか一方あるいは両方とも、温度に対して負特性のものを用いてもよい。この場合には、それらの特性に応じたMOSトランジスタを用いることになる。また、上述の各実施の形態では、増幅手段としてnMOSトランジスタ13あるいはpMOSトランジスタ16を用いたが、これらに限らず、電界効果トランジスタ、あるいはバイポーラトランジスタ、さらには増幅回路等によって構成することも可能である。
【0029】
次に、本発明の記録ヘッドを液体噴射記録装置に応用した例を述べる。図5は、本発明の記録ヘッドの応用例を示す液体噴射記録装置の一例の概略構成斜視図である。図中、31は被記録媒体、32は液体噴射記録ヘッド、33はキャリッジ、34はインクカートリッジ、35はガイド軸、36はガイドレール、37はフレキシブルケーブルである。ここでは、本発明の記録ヘッドを、液体の噴射によって記録を行う液体噴射記録装置における液体噴射記録ヘッドとして用いた例を示している。
【0030】
被記録媒体31は、例えば紙、ハガキ、布など、あらゆる記録可能な媒体で構成される。被記録媒体31は、搬送機構によって液体噴射記録ヘッド32と対向する位置に搬送される。
【0031】
液体噴射記録ヘッド32には、インクを噴射させるための発熱素子が設けられており、この発熱素子によって対向する被記録媒体31へインクを噴射し、記録を行う。液体噴射記録ヘッド32にはインクカートリッジ34が装着されており、噴射するインクはこのインクカートリッジ34から供給される。この液体噴射記録ヘッド32は、本発明の記録ヘッドであり、上述の第1の実施の形態あるいは第2の実施の形態で示したように、この液体噴射記録ヘッド32の温度を検知する回路が形成されている。
【0032】
液体噴射記録ヘッド32およびインクカートリッジ34はキャリッジ33に搭載されている。この例では、2組の液体噴射記録ヘッド32およびインクカートリッジ34がキャリッジ33に搭載されている。キャリッジ33は、被記録媒体31の搬送方向と直交する方向に延在するガイド軸35およびガイドレール36に沿って摺動可能に構成されている。
【0033】
矢印A方向から被記録媒体31が搬送される。液体噴射記録ヘッド32はキャリッジ33がガイド軸35およびガイドレール36に沿って摺動することによって、矢印Aの方向とはほぼ直交する方向に移動する。このとき、フレキシブルケーブル37を介して記録データや制御信号、それに電力が供給され、液体噴射記録ヘッド32に発熱素子が配列されている幅の帯状の領域に記録を行う。このような帯状領域ごとの記録動作を繰り返し行うことによって、被記録媒体31上に画像を形成する。
【0034】
また、例えば図1や図4に示したような温度を検知するための回路からの出力電圧Vout2がフレキシブルケーブル37を介して出力されており、少なくともこの出力電圧Vout2に従った温度管理を行うことが可能である。温度管理の方法については、一例を後で述べる。
【0035】
もちろん本発明の記録ヘッドは、このような構成の液体噴射記録装置に限らず、例えば被記録媒体の幅以上の幅を有する液体噴射記録ヘッドを有し、液体噴射記録ヘッドを移動させずに被記録媒体を移動させて記録を行う構成や、被記録媒体を停止させておいて液体噴射記録ヘッドのみが移動する構成など、各種の構成に対して応用することが可能である。
【0036】
図6は、本発明の記録ヘッドを構成する発熱素子基板に形成される発熱素子および駆動回路等の構成図である。図中、41は共通電極、42は発熱素子、43はドライバ素子、44はプリドライバ、45はNAND回路、46は16bitカウンタ、47は64bitラッチ、48は64bitシフトレジスタである。ここでは熱エネルギーによって液体を噴射するサーマル型の液体噴射記録ヘッド(例えば図5における液体噴射記録ヘッド32)の例を示している。なお、これらの回路のほかに、上述の図1や図4に示した温度を検知する回路が、同じ発熱素子基板上に形成される。
【0037】
この例では、64個の発熱素子42を搭載している。ここで、64個の発熱素子42と記述したが、厳密には64個分の発熱素子42の領域を持ったということである。つまり、発熱素子42を置く領域だけがあって実際には発熱素子42がなかったり、通常の印字には使用しない特性の異なる素子であったり、いわゆるダミー素子である場合も含んでいる。例えば、異なる色のインクを一つの基板を使用して印字を行なう場合、異なる色の境界に幾つかのダミー素子を設けることが多い。この明細書では、以上のことを踏まえて、発熱素子の配置可能数を発熱素子数と呼んでいる。
【0038】
図6では、64個の発熱素子42を4つずつ16個のブロックに分けて分割駆動する場合である。64個の発熱素子42の一端はすべて共通電極41を介して電源に接続されている。また、他端はそれぞれドライバ素子43に接続されている。ドライバ素子43は、例えばMOS−トランジスタなどで構成することができ、発熱素子42を駆動する。プリドライバ44は、対応する発熱素子42の駆動信号を昇圧してドライバ素子43の制御電極、例えばMOS−FETではゲート電極に入力する。NAND回路45には、16bitカウンタ46からのブロック分割駆動信号の1本と、ENABLE信号と、64bitラッチ47からのデータ信号が入力されており、対応する発熱素子42が選択され、印字すべきデータが存在し、さらにENABLE信号が入力されたとき、プリドライバ44へ駆動信号を出力する。
【0039】
16bitカウンタ46は、クロックをカウントしてブロック分割駆動信号を発生し、各ブロックに対応するNAND回路45に入力する。64bitラッチ47は、各発熱素子42に対応した印字データを保持する。64bitシフトレジスタ48は、シリアル入力された印字データを順次保持し、64bitラッチ47にパラレルに転送する。
【0040】
図7は、図6に示す構成における動作の一例を示すタイミングチャートである。最初の印字を行なう前に、予め各発熱素子42に対応した64個の印字データを64bitシフトレジスタ48にシリアルに入力する。その後、DRST信号で64bitラッチ47をリセットし、LCLK信号により64bitシフトレジスタ48内の全ての印字データを64bitラッチ47に転送してラッチさせる。64bitラッチ47は、印字データをそれぞれのNAND回路45に出力している。
【0041】
16bitカウンタ46は、BRST信号でリセットされ、BDIR信号で駆動順序が選択された後、BCLK信号をカウントしてブロック分割駆動信号を選択的に送出する。図7ではBDIR信号が‘L’で順方向印字、‘H’で逆方向印字を選択する。16bitカウンタ46は、まず最初のBCLK信号によりブロック1に対するブロック分割駆動信号を1〜4番目のNAND回路45に対して出力する。外部よりプレパルスおよびメインパルスを有するENABLE信号が入力されると、1〜4番目のNAND回路45のうち64bitラッチ47から印字データが出力されているもののみがENABLE信号に従った駆動信号を出力し、プリドライバ44を介してドライバ素子43が駆動される。これにより1〜4番目の発熱素子42のうち印字データが存在するものに電流が流れ、発熱素子42が発熱する。
【0042】
このときの駆動方法として、単一パルスによるシングルパルス駆動、あるいは、複数のパルスによるマルチパルス駆動を行うことができる。図7では、プレパルスおよびメインパルスによるダブルパルス駆動を行うものとした例を示している。プレパルスではインクは吐出されず、発熱素子42の発熱による昇温のみが行われ、次のメインパルスで発熱素子42の発熱によってインク中に気泡が発生し、インクが吐出されて印字が行なわれる。
【0043】
続いて16bitカウンタ46は次のBCLK信号をカウントしてブロック2に対するブロック分割駆動信号を5〜8番目のNAND回路45に対して出力し、5〜8番目の発熱素子42のうち印字データの存在するものが発熱して印字が行なわれる。以下、順にブロック16まで駆動して印字を行なう。この間に、次の64個分の印字データをシリアルに64bitシフトレジスタ48に入力する。
【0044】
16個のブロックの駆動が終了すると、BRST信号により16bitカウンタ46がリセットされ、BDIR信号により駆動方向が設定される。図7では逆方向の駆動が設定されている。また、DRST信号によって64bitラッチ47がリセットされ、LCLK信号によって64bitシフトレジスタ48内の印字データが64bitラッチ47にラッチされる。以後、16番目のブロックから順に駆動され、最後に1番目のブロックが駆動される。これら一連の動作を繰り返し、印字を行なう。
【0045】
上述のように液体噴射記録方式では、液体の温度により液体の粘度が変化し、噴射される液滴量が異なってくる。特に上述のようなサーマル方式では、発熱素子42の発熱によって、記録ヘッドは高温になりやすい。そのため、何らかの手段で温度により駆動方法を変更し、一定の温度で記録が行われるように制御する必要が生じる。温度を制御する一つの方法として、発熱素子42を駆動する際に与える駆動パルスの幅を変更する方法が考えられている。
【0046】
図8は、記録ヘッドの温度と駆動パルスの関係の一例の説明図である。例えば、発熱素子に与える駆動パルスとして図8(B)に示すようなプレパルスおよびメインパルスを与える方法がある。プレパルスでは液体の噴射を行わず、液体を加温する。そしてメインパルスによって、液体を噴射させる。このような駆動方式を用いる場合には、記録ヘッドの温度に従ってプレパルス幅を変化させることによって、液体の温度をほぼ一定に保つことができる。すなわち、記録ヘッドの温度が低い場合には、プレパルス幅を長くして発熱量を多くし、液体の温度を上げる。また、記録ヘッドの温度が高い場合には、それほど液体の温度を上げる必要がないので、プレパルス幅を短くして発熱量を少なくする。さらに記録ヘッドの温度が高く、プレパルス幅を0にしても発熱量が多い場合には、メインパルスの幅を短くしている。なお、ここでは全体の駆動時間を一定にするため、プレパルスとメインパルスの間の時間も変更している。
【0047】
ここではプレパルスとメインパルスによるダブルパルス駆動の場合の例を示したが、例えばシングルパルス駆動の場合にも、同様に温度に応じてパルス幅を変更し、液滴量の制御を行うことができる。もちろん、3以上のパルスを用いるマルチパルス駆動の場合も同様である。
【0048】
このような記録ヘッドの温度に応じた駆動制御を行うことによって、噴射される液滴量を一定に保ち、良好な画質を維持することができる。このとき、記録ヘッドの温度を精度よく測定することが必要である。本発明の記録ヘッドでは、図1や図4に示すような温度を測定するための回路が、液体を噴射する素子と同じシリコン基板上に形成されているので、液体の噴射に関係する素子のなるべく近くで、しかも精度よく温度を測定することができる。そのため、記録ヘッドの温度をほぼ一定に保つように制御することができ、記録される画質を均一に保つことができる。
【0049】
本発明の記録ヘッドに設けられている温度を測定する回路から出力される電圧をもとに温度を読み取る際には、回路の各素子で発生するバラツキを補正しておくことが望ましい。バラツキを補正する手段としては、例えば、機内に正確な温度検知素子を設けておき、この温度検知素子との初期値の差異で補正を行うことができる。
【0050】
あるいは、例えば図3に示した温度と出力電圧Vout2との関係を示すグラフにおいて、グラフを直線近似し、実質的に傾きが同じとして、オフセットで補正することも可能である。例えば図3に示したグラフでは、温度をxとしたとき、Vout2a=−0.0216x+4.1814、Vout2b=0.023x+3.8937として直線近似できる。このときのオフセットを補正することにより、素子のバラツキに対応することができる。
【0051】
さらには、機内のROMに、例えば各温度に対応する出力電圧Vout2の基準値を格納しておき、液体噴射記録装置の電源投入時に、そのときの温度に応じたROMの電圧値と実測値を比較して、この値をオフセットとして補正値とすることもできる。
【0052】
実際に液体噴射記録装置で記録を行う際には、まず電源投入時に上述のようなオフセット値を記憶する。温度を検出する際には、図1や図4に示す出力電圧Vout2を測定し、オフセット値を加えて実際の温度を算出する。そして、例えば前述したように温度に応じてパルス幅を変更する等の制御を行えばよい。
【0053】
なお、上述の説明では、本発明の記録ヘッドとして、熱エネルギーを用いて液体を噴射させて記録を行うサーマル型の液体噴射記録ヘッドに適用する例について説明したが、これに限らず、他の型の液体噴射記録ヘッドや、例えば熱転写型の記録ヘッドなど、各種の記録ヘッドへの応用が可能である。
【0054】
【発明の効果】
以上の説明から明らかなように、本発明によれば、シリコン基板の温度を、その基板に内蔵した温度検知素子を利用して精度よく検知可能である。このとき、温度検知素子の温度変化率が大きいので、外来ノイズや読み取り系(ADコンバータ等)における誤差の影響が少なくなり、より正確に液体の温度をモニタすることができる。また、構成が非常にコンパクトであるので低コストで印字品質に有利な液体噴射記録装置を提供可能であるという効果がある。
【図面の簡単な説明】
【図1】 本発明の記録ヘッドの第1の実施の形態における温度を検知するための回路構成の一例の説明図である。
【図2】 本発明の記録ヘッドの第1の実施の形態における温度を検知するための温度検知素子の一例を示す断面図である。
【図3】 本発明の記録ヘッドの第1の実施の形態における温度と出力電圧の関係の一例を示すグラフである。
【図4】 本発明の記録ヘッドの第2の実施の形態における温度を検知するための回路構成の一例の説明図である。
【図5】 本発明の記録ヘッドの応用例を示す液体噴射記録装置の一例の概略構成斜視図である。
【図6】 本発明の記録ヘッドを構成する発熱素子基板に形成される発熱素子および駆動回路等の構成図である。
【図7】 図6に示す構成における動作の一例を示すタイミングチャートである。
【図8】 記録ヘッドの温度と駆動パルスの関係の一例の説明図である。
【図9】 従来の温度を検知するための回路構成の一例の説明図である。
【図10】 従来の温度を検知するための回路構成の一例における温度と出力電圧の関係の一例を示すグラフである。
【符号の説明】
11…第1の温度検知素子、12…プルアップ抵抗、13…nMOSトランジスタ、14…第2の温度検知素子、21…Si基板、22…N−拡散層、23…N+拡散層、24…LOCOS、25…BPSG、26…配線、27…PSG、15…プルダウン抵抗、16…pMOSトランジスタ、31…被記録媒体、32…液体噴射記録ヘッド、33…キャリッジ、34…インクカートリッジ、35…ガイド軸、36…ガイドレール、37…フレキシブルケーブル、41…共通電極、42…発熱素子、43…ドライバ素子、44…プリドライバ、45…NAND回路、46…16bitカウンタ、47…64bitラッチ、48…64bitシフトレジスタ、51…記録ヘッド、52…温度検知素子、53…プルアップ抵抗。

Claims (7)

  1. 記録素子が搭載されたシリコン基板を有する記録ヘッドにおいて、前記シリコン基板上に、第1の温度検知素子と、該第1の温度検知素子に直列に接続された抵抗とからなる第1の直列回路、および、該抵抗と前記第1の温度検知素子の接続点が制御端子に接続された増幅手段と、増幅手段と直列に接続された第2の温度検知素子とからなる第2の直列回路を並列に電源端子間に挿入して形成されており、前記増幅手段と前記第2の温度検知素子との接続点を出力とする構成を備え、前記第1の温度検知素子の温度変化による抵抗値が変化すると、前記第2の温度検知素子の温度変化による抵抗値変化に対する出力変化量が大きくなるように構成したことを特徴とする記録ヘッド。
  2. 記録素子が搭載されたシリコン基板を有する記録ヘッドにおいて、前記シリコン基板上に、第1の温度検知素子と、該第1の温度検知素子に接続するプルアップ抵抗と、該プルアップ抵抗と前記第1の温度検知素子の接続点がゲートに接続された電界効果トランジスタと、該電界効果トランジスタのドレインまたはソースに接続された第2の温度検知素子が形成されており、前記電界効果トランジスタと前記第2の温度検知素子との接続点を出力とする構成を備え、前記第1の温度検知素子の温度変化による抵抗値が変化すると、前記第2の温度検知素子の温度変化による抵抗値変化に対する出力変化量が大きくなるように構成したことを特徴とする記録ヘッド。
  3. 記録素子が搭載されたシリコン基板を有する記録ヘッドにおいて、前記シリコン基板上に、第1の温度検知素子と、該第1の温度検知素子に接続するプルダウン抵抗と、該プルダウン抵抗と前記第1の温度検知素子の接続点がゲートに接続された電界効果トランジスタと、該電界効果トランジスタのドレインまたはソースに接続された第2の温度検知素子が形成されており、前記電界効果トランジスタと前記第2の温度検知素子との接続点を出力とする構成を備え、前記第1の温度検知素子の温度変化による抵抗値が変化すると、前記第2の温度検知素子の温度変化による抵抗値変化に対する出力変化量が大きくなるように構成したことを特徴とする記録ヘッド。
  4. 前記電界効果トランジスタはMOSトランジスタであり、飽和領域で動作することを特徴とする請求項2または請求項3に記載の記録ヘッド。
  5. 前記シリコン基板上には、前記記録素子として液体に熱エネルギーを印加するための複数の発熱素子を搭載していることを特徴とする請求項1ないし請求項4のいずれか1項に記載の記録ヘッド。
  6. 前記第1の温度検知素子および前記第2の温度検知素子は、n−低濃度拡散層で構成されていることを特徴とする請求項1ないし請求項5のいずれか1項に記載の記録ヘッド。
  7. 前記抵抗あるいは前記プルアップ抵抗または前記プルダウン抵抗は、ポリシリコン層で構成されていることを特徴とする請求項2ないし請求項6のいずれか1項に記載の記録ヘッド。
JP3930299A 1999-02-17 1999-02-17 記録ヘッド Expired - Fee Related JP3722189B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3930299A JP3722189B2 (ja) 1999-02-17 1999-02-17 記録ヘッド

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3930299A JP3722189B2 (ja) 1999-02-17 1999-02-17 記録ヘッド

Publications (2)

Publication Number Publication Date
JP2000238266A JP2000238266A (ja) 2000-09-05
JP3722189B2 true JP3722189B2 (ja) 2005-11-30

Family

ID=12549337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3930299A Expired - Fee Related JP3722189B2 (ja) 1999-02-17 1999-02-17 記録ヘッド

Country Status (1)

Country Link
JP (1) JP3722189B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114791751B (zh) * 2022-05-10 2024-02-23 京东方科技集团股份有限公司 一种温度信号采集电路、发光基板及显示装置

Also Published As

Publication number Publication date
JP2000238266A (ja) 2000-09-05

Similar Documents

Publication Publication Date Title
US10894403B2 (en) Semiconductor apparatus, liquid discharge head substrate, liquid discharge head, and liquid discharge apparatus
US9144978B2 (en) Printhead substrate and printing apparatus
US9108448B1 (en) Temperature control circuit for an inkjet printhead
US8451306B2 (en) Reference voltage generation circuit, drive device, print head, and image forming apparatus
JP6608269B2 (ja) 半導体装置及び記録装置
JP4183226B2 (ja) 記録ヘッド用基板、記録ヘッド、記録装置、および記録ヘッド用基板の検査方法
JP6827740B2 (ja) 半導体装置、液体吐出ヘッド用基板、液体吐出ヘッド、及び液体吐出装置
JP3722189B2 (ja) 記録ヘッド
JP6789729B2 (ja) 半導体装置、液体吐出ヘッド用基板、液体吐出ヘッド、及び液体吐出装置
US20080129782A1 (en) Element substrate, printhead, head cartridge, and printing apparatus
JP2008511474A (ja) インクジェットプリントヘッド
US7300124B2 (en) Recording head and recording apparatus using the same
TW200523122A (en) Printhead, printhead substrate, ink cartridge, and printing apparatus having printhead
US20130010033A1 (en) Driving circuit, liquid discharge substrate, and inkjet printhead
JP3327791B2 (ja) 記録ヘッド及びその記録ヘッドを用いた記録装置
JP4498905B2 (ja) 発光ユニット及び画像形成装置
JP3632329B2 (ja) 記録ヘッド
JP3599609B2 (ja) 記録ヘッド及びその記録ヘッドを用いた記録装置
JP2000243839A (ja) 半導体集積回路装置および記録装置
JP2000198200A (ja) 液体噴射記録装置
KR20060043136A (ko) 드라이버 장치 및 프린트 헤드
CN112428696A (zh) 热敏打印头用驱动器ic、以及热敏打印头
JP2000198198A (ja) 液体噴射記録装置
JP7460481B2 (ja) 多値出力駆動回路
JP2003226012A (ja) インクジェットプリンタヘッド

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050325

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20050608

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050824

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20050906

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090922

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees