JP3720571B2 - 回転電動機の加振力低減方法 - Google Patents

回転電動機の加振力低減方法 Download PDF

Info

Publication number
JP3720571B2
JP3720571B2 JP7229498A JP7229498A JP3720571B2 JP 3720571 B2 JP3720571 B2 JP 3720571B2 JP 7229498 A JP7229498 A JP 7229498A JP 7229498 A JP7229498 A JP 7229498A JP 3720571 B2 JP3720571 B2 JP 3720571B2
Authority
JP
Japan
Prior art keywords
winding
force
rotary motor
phase
rotary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7229498A
Other languages
English (en)
Other versions
JPH11275802A (ja
Inventor
義雄 吉桑
昭彦 今城
智明 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7229498A priority Critical patent/JP3720571B2/ja
Publication of JPH11275802A publication Critical patent/JPH11275802A/ja
Application granted granted Critical
Publication of JP3720571B2 publication Critical patent/JP3720571B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • F16C32/0457Details of the power supply to the electromagnets

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vibration Prevention Devices (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Motor Or Generator Frames (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、機械的な軸受を有し、固定子の中心と回転子の中心が静的偏心している電動機、発電機等の回転電動機に関し、静的偏心に起因して発生する偏心方向の加振力を低減することにより、回転電動機およびこれを搭載した機器の振動・騒音を低減することに関するものである。
【0002】
【従来の技術】
図9は特開平4−107318号公報に記載された「磁気軸受装置」において、機械的な軸受をもたない回転電動機の構成図である。図において、1は固定子、2は回転子、36a〜36hは上記固定子1に巻かれた8つの独立な巻線である。この装置は回転駆動装置としての機能と非接触軸受としての機能の両者を兼備している。
【0003】
次に、従来装置の回転駆動装置としての動作を簡単に説明する。8本の巻線36a〜36hのうち、まず4本の巻線36a〜36dに電流が供給され、それによる磁界が発生する。次に4本の巻線36e〜36hに電流が供給され、それによる磁界が発生する。後者の巻線36e〜36hの磁界による磁束分布は、前者の巻線36a〜36dの磁界による磁束分布を45度だけ回転させた状態に相当する。この繰り返しにより磁束を45度ずつ回転させて、回転子2を回転させる。
【0004】
従来装置の非接触軸受としての機能について簡単に説明する。巻線36a〜36dの4本が励起されているとき、巻線36aの電流値を大きくすれば紙面の上向きに吸引力が発生し、巻線36bの電流値を大きくすれば紙面の右向きに吸引力が発生し、巻線36cの電流値を大きくすれば紙面の下向きに吸引力が発生し、巻線36dの電流値を大きくすれば紙面の左向きに吸引力が発生する。
【0005】
また、巻線36e〜巻線36hの4本が励起されているときも同様に吸引力が発生する。したがって、回転子2の上下左右方向の変位が測定されれば、4つの吸引力を適当に調整することによって回転子2の上下左右方向の位置を制御することができる。
【0006】
図10は機械的な軸受を有する一般的な回転電動機の全体構造を示す構造図である。図において、1は固定子、2は回転子、3はシャフト、4は軸受、5はフレーム、6はブラケットである。シャフト3を支える軸受4は、フレーム5とブラケット6により固定されている。この組み込み状態において固定子1の中心軸と回転子2の中心軸とに若干のずれが生じることは避けられず、回転電動機には常に静的偏心が存在することになる。
【0007】
このため、各部品の寸法精度や組み込み精度を高めて静的偏心を小さくする努力がなされている。図11は図10における一般的な回転電動機の構成図であり、3相通電による4極の同期機について、軸に垂直な面での断面図を示している。
【0008】
図において、7a,7bはU相の巻線、8a,8bはV相の巻線、9a,9bはW相の巻線、10は永久磁石である。またO1は固定子1の中心、O2は回転子2の中心であり、O1→O2の方向が静的偏心方向となる。また回転子2による磁束について、磁束が極大となる部分を磁束中心として図のようにdで表す。
【0009】
回転子2における磁束中心dは永久磁石10を通り、その向きは図の矢印のように永久磁石10のS極に入りN極から出ていく向きであり、回転電動機は4極であるため4つの磁束中心dが存在する。
【0010】
各相を構成する2本の巻線7aと7b,8aと8b,9aと9bは互いに固定子の中心O1に対して対称な位置に配置されている。また回転子2の中心O2を通る基準軸をx軸としたとき、磁束中心dがx軸となす角度をθとする。
【0011】
図12は図11における回転電動機の回路構成および巻線の配線図である。図において、11は3相交流電源、12は3相交流電圧を整流するダイオード、13は整流出力を平滑して直流電圧を得る平滑コンデンサ、14〜19は直流電圧を所定周波数、所定電力の交流電力に変換するインバータを構成するトランジスタである。トランジスタ14〜19はスイッチの役目をしており、各々をs1,s2,s3,s4,s5,s6と表す。
【0012】
3相交流電源11より供給される交流電圧をダイオード12、平滑コンデンサ13により直流電圧にし、この直流電圧をトランジスタ14〜19によるインバータで交流電力に変換して同期機の各相の巻線7aと7b,8aと8b,9aと9bに供給することで同期機の駆動を実現している。
【0013】
図13は図12の回路による駆動パターンの例であり、日本冷凍空調学会論文集Vo1.14,No.2.1997「密閉型圧縮機の低騒音化、低振動化のための研究第3報」に記載のものに基づいている。s1〜s6は図12に示すトランジスタ14〜19であり、べ一ス駆動用電流信号が加えられてON状態になっている場合と、OFF状態の場合とを示している。
【0014】
横軸は回転子2の位置を電気角θeであらわしている。極対数が2の回転電動機では電気角θeと図11に示す機械角θの関係はθe=2θとなる。図13に示す回転電動機の駆動方法は、インバータを構成する各トランジスタ14〜19にべ一ス駆動用電流信号が120゜の区間で加えられて電圧形インバータ駆動されるため、120゜通電の中で前半の25゜および後半の35゜の範囲においてPWM駆動により電圧の印加時間と遮断時間の割合を調整し、印加電圧の大きさを調整している。
【0015】
この割合をduty比といい、PWM駆動における電圧の印加時間をa、遮断時間をbで表すと、duty比はa/(a+b)で表される。s1〜s6の切り換えにより、U相、V相、W相の各電圧は図13に示すようになる。s1〜s6の切り換えは、電気角θeが0゜〜360゜を一周期とし、その繰り返しとなる。
【0016】
s1〜s6のON,OFFの組み合わせモードが6通りあるため、6つのモードに分類し、0゜≦θe<60゜をモード1,60゜≦θe<120゜をモード2、120゜≦θe<180゜をモード3、180゜≦θe<240゜をモード4、240゜≦θe<300゜をモード5、300゜≦θe<360゜をモード6とする。
【0017】
例えばモード1ではs1とs5がON状態であり、図12においてトランジスタ14とトランジスタ18にべ一ス駆動電流信号が加えらてON状態になり、電流はトランジスタ14を通り、U相の端子を通り、U相の巻線7aと7bに流れ、次にV相の巻線8aと8bに流れ、V相の端子を通り、トランジスタ18を通って流れることになる。
【0018】
図13の駆動パターンではduty比は一定値α0であり、U相とV相、V相とW相、W相とU相の端子電圧は常に一定となり、巻線に流れる電流値も常に一定となる。後述するが、静的偏心している回転電動機では、静的偏心方向に加振力が発生し図13に示すようになる。回転電動機を搭載した機器の例としてロータリ圧縮機を示す。
【0019】
図14は日本冷凍協会論文集Vo1.10,No.3.1993「ロータリーコンプレッサーの低振動化研究」に記載された一般的な圧縮機の構成図である。図において、3はシャフト、4は軸受、37はシリンダ、38はシリンダヘッド、39は吸入管、40は吐出管、41は防振ゴムである。ステータ2により発生する回転磁界により回転子2が回転する。
【0020】
回転子2はシャフト3に固定されているためシャフト3が回転し、吸入管39からシリンダ37に吸入される冷媒を圧縮して吐出管40より圧縮した冷媒を吐出する。シャフト3は軸受4で支持されており、回転子2およびシャフト3は片持ち構造である。
【0021】
また、図15は三菱電機技報Vo1.68,No.5.1994「大型冷蔵庫用ツインメカ横置ロータリ圧縮機」に記載されたロータリ圧縮機の構成図である。回転子2は2本のシャフト3に固定され、シャフト3は軸受4で支持されている。軸受4は回転子2の両側にあり、回転子2およびシャフト3は両持ち構造である。
【0022】
【発明が解決しようとする課題】
図10に示す機械的な軸受を有する回転電動機では各部品の寸法精度や組み込み精度を高める努力がなされているが、静的偏心を完全になくすことは事実上不可能である。図11のように静的偏心した固定子1と回転子2の間の磁気吸引力Pの大きさは固定子1と回転子2の間の磁束密度Bの2乗に比例する。
【0023】
また、磁束密度Bは固定子1と回転子2の距離に反比例する。固定子1と回転子2の距離が最小になるのは静的偏心方向であるため、固定子1と回転子2の間の磁束密度Bは静的偏心方向が最も大きくなり、固定子1と回転子2の間に働く磁気吸引力Pの方向は静的偏心方向となる。
図13のような駆動パターンで巻線電流を一定として駆動する場合、静的偏心方向の力は回転子2の位置によって変動する。この回転電動機の極数は4であるため、回転子2が一回転する間に静的偏心方向の力は4回大きく変動し、回転数の4倍に相当する加振力が発生する。すなわち回転電動機では静的偏心により極数と回転数の積に相当する周波数の加振力が発生する。
【0024】
図16は図14に示すロータリ圧縮機と同じ構造の圧縮機について、ロータ・シャフト系の固有振動数を測定した結果である。固有振動数は454Hzにある。一方、この圧縮機用の回転電動機の極数は4、回転数は10〜120Hzであり、静的偏心が存在すると、極数と回転数の積に相当する40〜480Hzの加振力が発生する。この加振力は系の固有振動数と共振して振動が大きくなる。
【0025】
図17は静的偏心の小さい4極の回転電動機を回転数30,35,40,45,50,60Hzで駆動したときの半径方向の加振力を周波数分析し、回転数の1倍(1f)と回転数の4倍(4f)の周波数の加振力について示したものである。この系の固有振動数は約150Hzであり、加振力が少し大きくなっているが、静的偏心が完全に零であれば4fの周波数の半径方向の加振力は存在しない。
【0026】
図18は同じ回転電動機の偏心率を約30%として測定したものである。静的偏心が大きいため極数と回転数の積に相当する偏心方向の加振力(4f)が大きくなり、それが系の固有振動数と共振して、図17の場合と比較すると4fの周波数の偏心方向の加振力が極めて大きくなっている。
【0027】
ロータリ圧縮機用の回転電動機の大部分は図14に示すような片持ち構造であるため、固有振動数が500Hz以下と低い。また回転電動機の極数が4のものが多く、回転数も10〜120Hz前後と広範囲である。したがって静的偏心の影響で周波数が40〜480Hz前後の偏心方向の加振力が発生し、系の固有振動数と共振し、騒音が大きくなるという問題が生じる。
【0028】
図19は図15に示す圧縮機について、ロータ・シャフト系の固有振動数を測定した結果である。図15の回転子2およびシャフト3は両持ち構造であるため剛性が高く、固有振動数は約1.2KHzである。したがって静的偏心による加振力と共振することはなく、低騒音な圧縮機が得られる。しかし図15の両持ち構造の圧縮機は図14の片持ち構造の圧縮機よりかなりコストが高くなってしまう。
【0029】
本発明は上記のような問題を解消するためになされたもので、静的偏心が原因となり発生する極数と回転数の積に相当する周波数の加振力を低減し、低振動・低騒音な回転電動機およびこれを搭載する機器を得ることを目的とする。
また圧縮機等の回転電動機搭載機器において、静的偏心が原因となり発生する極数と回転数の積に相当する周波数の加振力を低減することにより、低振動・低騒音な機器を低コストで実現することを目的とする。
【0030】
【課題を解決するための手段】
この発明に係る回転電動機の加振力低減方法は、各相の複数個の巻線が固定子の中心に対して周方向に等間隔で配置され、前記各相の複数個の巻線が各相ごとにまとめられて各相間が結線された回転電動機において、前記回転電動機の固定子の中心と回転子の中心との静的偏心に起因して発生する偏心方向の加振力を、回転電動機にトルクを発生するために供給する巻線電流を制御して低減するものである。
【0031】
また、回転子の位置に対応した巻線電流の値を設定して供給し、回転電動機の極数と回転数の積に相当する周波数の偏心方向の加振力を低減するものである。
【0032】
また、回転電動機の駆動をパルス幅制御によるインバータにて行う際に、前記回転電動機の各相巻線に印加されるパルス幅変調電圧のオン/オフのデューティ比を制御して回転電動機に供給する巻線電流を制御し、静的偏心に起因して発生する偏心方向の加振力を低減するものである。
【0033】
また、デューティ比を回転子の位置によって調整するものである。
【0034】
また、静的偏心方向の力が大きいときには回転電動機に供給する巻線電流の値を大きくするように、静的偏心方向の力が小さいときには回転電動機に供給する前記巻線電流の値を小さくするようにデューティ比の調整により制御し、静的偏心に起因して発生する偏心方向の加振力を低減するものである。
【0035】
また、巻線への印加電圧として120°通電方式をとる回転電動機において、トルクを発生するための2つの巻線回路を含む回転電動機の各巻線回路に流す電流を個々のインバータにより制御して静的偏心方向の力を小さくし、静的偏心に起因して発生する偏心方向の加振力を低減するものである。
【0036】
また、巻線への印加電圧として120°通電方式をとる回転電動機において、トルクを発生するための2つの巻線回路を含む回転電動機の各巻線回路に流す電流を個々のインバータにより制御することで、各巻線に発生する磁束により働く磁気吸引力の方向を一定方向に制御するものである。
【0037】
また、巻線への印加電圧として120°通電方式をとる回転電動機において、トルクを発生するための2つの巻線回路を含み、この各巻線回路に流す電流を個々のインバータにより制御する回転電動機のシャフトに直結したローリングピストンでクランクシャフトが一回転するに冷媒を吸入、圧縮、吐出するサイクルを繰り返すロータリ圧縮機において、各巻線に発生する磁束により働く磁気吸引力の方向を一定方向に制御し、圧縮による一定方向の力の変動を打ち消すものである。
【0038】
【発明の実施の形態】
実施の形態1.
図1は、図11に示す3相通電による4極の同期機の磁束分布を示す模式図である。図において、Φiは巻線電流による磁束、Φmは永久磁石10による磁束を示している。回転子2の中の永久磁石10と固定子1の間の磁束の向きは逆になっているため、巻線電流による磁束Φiは永久磁石10による磁束Φmを打ち消す傾向にあるといえる。
【0039】
固定子1と回転子2の間の磁気吸引力Pの大きさは固定子1と回転子2の間の磁束密度Bの2乗に比例する。また磁束密度Bは磁束Φに比例する。磁束Φは巻線電流による磁束Φiと永久磁石10による磁束Φmの和と考えられる。すなわち、磁気吸引力P∝(Φi+Φm)^2となる。従って、静的偏心方向の磁気吸引力は巻線電流を制御することにより調整することができる。
【0040】
図2は、本発明の実施の形態による回転電動機の駆動パターンの例である。回路構成および巻線の配線は従来の図12と同様であり、回転子2の位置によってduty比を調整することにより巻線電流を制御する。duty比を大きくすると巻線電流が大きくなり、巻線電流による磁束Φiが大きくなる。ΦiとΦmの向きは逆であるため、(Φi+Φm)は小さくなる。従って磁気吸引力Pは小さくなる。
【0041】
図2に示す駆動パターンでは、図13における静的偏心方向の力が大きい場合、すなわち回転子2の磁束中心dが静的偏心方向に近い場合のduty比を大きくして、静的偏心方向の力を小さくしている。また静的偏心方向の力が小さい場合のduty比を小さくして、静的偏心方向の力を大きくしている。duty比αはPWM駆動範囲の25゜および35゜では一定として、α(120゜≦θe<145゜)<α(85゜≦θe<120゜)=α(145゜≦θe<180゜)<α0<α(0゜≦θe<25゜)=α(60゜≦θe<85゜)<α(25゜≦θe<60゜)とし、その繰り返しとしている。
【0042】
また、duty比αを変化させる割合は、回転電動機の出力トルク、巻線電流の大きさ、永久磁石10の形状や配置などに依存して決められる。また本実施の形態ではduty比αをPWM駆動範囲の25゜および35゜の区間で一定としたが、さらに細かく変化させてもよいし、あるいはduty比αを各モードで一定と設定してもよい。このようにして巻線電流を制御することにより、静的偏心方向の力は常に存在するが、その変動を小さく抑えることができ、加振力を低減できる。
【0043】
実施の形態2.
図3は、本発明の実施の形態による回転電動機の駆動回路の構成図および巻線の配線図である。駆動回路は6個の端子および12個のトランジスタを用いて2つの駆動回路が構成されるため、便宜上それら回路を図に示すように駆動回路A、駆動回路Bと表す。図において、20〜31はインバータIV1,IV2を構成するトランジスタであり、トランジスタ20〜25をそれぞれsla,s2a,s3a,s4a,s5a,s6a,トランジスタ26〜31をそれぞれs1b,s2b,s3b、s4b,s5b,s6bとする。
【0044】
駆動回路AのインバータIV1を構成するトランジスタ20〜25は端子Ua,Va,Waに接続され、図11における巻線7a,8a,9aに接続される。また,駆動回路BのインバータIV2を構成するトランジスタ26〜31は端子Ub,Vb,Wbに接続され、図11に示す巻線7b,8b,9bに接続される。例えばs1aとs5aおよびs1bとs5bがON状態のとき、駆動回路Aにおける電流はトランジスタ20を通り、端子Uaを通り、U相の巻線7aに流れ、次にV相の巻線8aに流れ、端子Vaを通り、トランジスタ24を通って流れる。
【0045】
また、駆動回路Bにおける電流はトランジスタ26を通り、端子Ubを通り、U相の巻線7bに流れ、次にV相の巻線8bに流れ、端子Vbを通り、トランジスタ30を通って流れる。この駆動回路A、駆動回路Bに流す電流を別々に制御することにより、静的偏心方向の磁気吸引力を調整する。
【0046】
図4は本実施の形態による回転電動機の磁束分布を示す模式図である。U相、V相に通電されるときは駆動回路Aの巻線7a、巻線8aおよび駆動回路Bの巻線7b、巻線8bに電流が流れる。磁束Φ1,Φ2,Φ3,Φ4は巻線電流による磁束Φiと永久磁石10による磁束Φmを合わせたものについて示している。
【0047】
例えば駆動回路Aを流れる電流値の方が駆動回路Bを流れる電流値より大きくした場合、巻線7aを流れる電流i(7a)、巻線8aを流れる電流i(8a)、巻線7bを流れる電流i(7b)、巻線8bを流れる電流i(8b)の大きさは、i(7a)=i(8a)>i(7b)=i(8b)となる。
【0048】
実施の形態1で述べたように、巻線電流が大きくなると磁束Φは小さくなる。したがって、Φ1<Φ2=Φ4<Φ3となる。固定子1と回転子2の間には磁束Φ1〜Φ4により図の矢印P1,P2,P3,P4の向きに磁気吸引力がはたらく。磁気吸引力P1は磁束Φ1とΦ2の大きさに依存し、磁気吸引力P2は磁束Φ2とΦ3の大きさに依存し、磁気吸引力P3は磁束Φ3とΦ4の大きさに依存し、磁気吸引力P4は磁束Φ1とΦ4の大きさに依存する。
【0049】
したがって上記の条件では、P1=P4<P2=P3となり、磁気吸引力P1とP4の合力であるP14方向の力と、磁気吸引力P2とP3の合力であるP23方向の力を調整できることになり、P23方向に力がはたらく。すなわち回路Aの電流値を回路Bの電流値より大きくすることにより、図のP23方向に力を発生させて静的偏心方向の力を低減することができる。
【0050】
U相,W相に通電されるときは同様にして図のP12方向の力とP34方向の力を調整できることになる。この場合、静的偏心方向の力を低減するためには磁束Φ2を大きく、また磁束Φ4を小さくするとよい。したがって駆動回路Aの電流値を小さく、駆動回路Bの電流値を大きくするとよい。
【0051】
また、V相,W相に通電されるときは図のP14とP23方向の力を調整でき、同様に駆動回路Aの電流値を小さく、駆動回路Bの電流値を大きくするとよいことになる。これらの方向は静的偏心方向とは一致していないが、このように回転子2の位置によって電流を制御することにより、振動を低減することが可能となる。
【0052】
図5は本発明の実施の形態2による回転電動機の駆動パターンの例である。図4のU相、V相に通電の場合は図5のモード1の場合に対応し、端子UaおよびVaの電圧を端子UbおよびVbの電圧より大きくするため、s1aとs5aのduty比を大きく、s1bとs5bのduty比を小さくする。図4のU相、W相に通電の場合は図5のモード2の場合に対応し、端子UbおよびWbの電圧を端子UaおよびWaの電圧より大きくするため、s1bとs6bのduty比を大きく、s1aとs6aのduty比を小さくする。
【0053】
また、図4のV相、W相に通電の場合は図5のモード3の場合に対応し、端子UbおよびWbの電圧を端子VaおよびWaの電圧より大きくするため、s2bとs6bのduty比を大きく、s2aとs6aのduty比を小さくする。この場合、電流制御は実施の形態1と同様に回転子2の位置によってduty比を調整することにより行う。このようにして巻線電流を制御することにより、静的偏心方向の力を低減することができる。
【0054】
実施の形態3.
図6は本実施の形態3による回転電動機の回路構成および巻線の配線図である。図3の場合と同様に6個の端子および12個のトランジスタを用いているが巻線の配線が異なり、図11に示した回転電動機において、巻線7a、巻線8b、巻線9bで駆動回路Cを、また巻線7b、巻線8a、巻線9aで駆動回路Dを構成している。この駆動回路C、駆動回路Dの電流をインバータIV1,IV2で別々に制御することにより、回転電動機搭載機器の低振動化を図る。
【0055】
図7は本実施の形態による回転電動機の磁束分布を示す模式図である。U相、V相に通電されるときは駆動回路Cの巻線7a、巻線8bおよび駆動回路Dの巻線7b、巻線8aに電流が流れる。この場合、実施の形態2と同様に、磁気吸引力P1とP2の合力であるP12方向の力と、磁気吸引力P3とP4の合力であるP34方向の力を調整できることになる。U相、W相に通電されるときは図のP14とP23方向の力を調整できる。
【0056】
また、V相、W相に通電されるときは図のP14とP23方向の力を調整できる。図8は回転電動機搭載機器であるロータリ圧縮機のシリンダ断面図である。図において、32はクランクシャフト、33はローリングピストン、34はべ一ン、35は圧縮部である。またO3はクランクシャフトの中心であり、固定子2の中心と同じ位置となる。Pcは圧縮部35によりクランクシャフト32に加えられる力で、クランクシャフト32の回転とともにPcの大きさは大きく変動し、その方向も若干変動する。
【0057】
また、Puv,Puw、Pvwは図6の回路構成において調整できる磁気吸引力の方向を示している。すなわち図6における駆動回路Cの電流値を小さく、駆動回路Dの電流値を大きくすることにより、U相、V相に通電されるときは図8のPuvの方向に力がはたらき、U相、W相に通電されるときはPuwの方向に力がはたらき、V相、W相に通電されるときはPuvの方向に力がはたらく。この場合、Puv,Puw、Pvwの方向は図8に示すように60゜の範囲内にあるため、一定方向の力を制御するのに有効である。
【0058】
ロータリ圧縮機では冷媒の圧縮によりほぼ一定方向の力の変動が生じ、振動が問題となりやすい。このような場合、図6に示す回路構成として駆動回路Cと駆動回路Dの電流を別々に制御することにより、一定方向の力を制御できるため低振動化が図れる。
【0059】
【発明の効果】
請求項1の発明によれば、各相の複数個の巻線が固定子の中心に対して周方向に等間隔で配置され、前記各相の複数個の巻線が各相ごとにまとめられて各相間が結線された回転電動機において、前記回転電動機の固定子の中心と回転子の中心との静的偏心に起因して発生する偏心方向の加振力を、回転電動機にトルクを発生するために供給する巻線電流を制御して低減することで、静的偏心が原因となり発生する偏心方向の加振力を低減し、低振動、低騒音で回転電動機を駆動できるという効果がある。
【0060】
請求項2の発明によれば、回転子の位置に対応した巻線電流の値を設定して供給し、回転電動機の極数と回転数の積に相当する周波数の偏心方向の加振力を低減することで、回転電動機の極数と回転数の積に相当する周波数の偏心方向の加振力を低減し、低振動、低騒音で回転電動機を駆動できるという効果がある。
【0061】
請求項3の発明によれば、回転電動機の駆動をパルス幅制御によるインバータにて行う際に、前記回転電動機の各相巻線に印加されるパルス幅変調電圧のオン/オフのデューティ比を制御して回転電動機に供給する巻線電流を制御し、静的偏心に起因して発生する偏心方向の加振力を低減することで、低振動、低騒音で回転電動機を駆動できるという効果がある。
【0062】
請求項4の発明によれば、デューティ比を回転子の位置によって調整することで、静的偏心方向の力の変動を小さく抑えることができ、静的偏心に起因して発生する偏心方向の加振力を低減することで、低振動、低騒音で回転電動機を駆動できるという効果がある。
【0063】
請求項5の発明によれば、静的偏心方向の力が大きいときには回転電動機に供給する巻線電流の値を大きくするように、静的偏心方向の力が小さいときには回転電動機に供給する前記巻線電流の値を小さくするようにデューティ比の調整により制御し、静的偏心に起因して発生する偏心方向の加振力を低減することで、低振動、低騒音で回転電動機を駆動できるという効果がある。
【0064】
請求項6の発明によれば、巻線への印加電圧として120°通電方式をとる回転電動機において、トルクを発生するための2つの巻線回路を含む回転電動機の各巻線回路に流す電流を個々のインバータにより制御して静的偏心方向の力を小さくし、静的偏心に起因して発生する偏心方向の加振力を低減することで、低振動、低騒音で回転電動機を駆動できるという効果がある。
【0065】
請求項7の発明によれば、巻線への印加電圧として120°通電方式をとる回転電動機において、トルクを発生するための2つの巻線回路を含む回転電動機の各巻線回路に流す電流を個々のインバータにより制御することで、各巻線に発生する磁束により働く磁気吸引力の方向を一定方向に制御することで、外部からの負荷による力を低減し、低振動、低騒音で回転電動機を駆動できるという効果がある。
【0066】
請求項8の発明によれば、巻線への印加電圧として120°通電方式をとる回転電動機において、トルクを発生するための2つの巻線回路を含み、この各巻線回路に流す電流を個々のインバータにより制御する回転電動機のシャフトに直結したローリングピストンでクランクシャフトが一回転するに冷媒を吸入、圧縮、吐出するサイクルを繰り返すロータリ圧縮機において、各巻線に発生する磁束により働く磁気吸引力の方向を一定方向に制御し、圧縮による一定方向の力の変動を打ち消すことで、低振動、低騒音でロータリ圧縮機を駆動できるという効果がある。
【図面の簡単な説明】
【図1】 3相通電による4極の同期機の磁束分布を示す模式図である。
【図2】 本発明の実施の形態1による回転電動機の駆動パターンを説明するための図である。
【図3】 本発明の実施の形態2による回転電動機の回路構成および巻線の配線図である。
【図4】 本発明の実施の形態2による回転電動機の磁束分布を示す模式図である。
【図5】 本発明の実施の形態2による回転章動機の駆動パターンを説明するための図である。
【図6】 本発明の実施の形態3による回転電動機の回路構成および巻線の配線図である。
【図7】 本発明の実施の形態3による回転電動機の磁束分布を示す模式図である。
【図8】 回転電動機搭載機器であるロータリ圧縮機のシリンダ断面図である。
【図9】 従来の技術である「磁気軸受装置」に記載された回転電動機の構成図である。
【図10】 一般的な回転電動機の全体構造を示す構造図である。
【図11】 一般的な回転電動機である3相通電による4極の同期機の断面図である。
【図12】 図11における回転電動機の回路構成および巻線の配線図である。
【図13】 図12の回路による一般的な駆動パターンを説明するための図である。
【図14】 一般的な片持ち構造の圧縮機の構成図である。
【図15】 両持ち構造の圧縮機の構成図である。
【図16】 図14に示す片持ちの圧縮機と同じ構造の圧縮機のロータ・シャフト系の固有振動数を示す図である。
【図17】 静的偏心の小さい回転電動機の半径方向の加振力を示す図である。
【図18】 偏心率が30%の回転電動機の半径方向の加振力を示す図である。
【図19】 図15に示す両持ちの圧縮機のロータ・シャフト系の固有振動数を示す図である。
【符号の説明】
1 固定子、2 回転子、3 シャフト、4 軸受、5 フレーム、6 ブラケット、7a,7b U相の巻線、8a,8b V相の巻線、9a,9b W相の巻線、10 永久磁石、11 3相交流電源、12 ダイオード、13 平滑コンデンサ、14〜19トランジスタ、20〜31トランジスタ、32クランクシャフト、33 ローリングピストン、34 べ一ン、35 圧縮部。

Claims (8)

  1. 各相の複数個の巻線が固定子の中心に対して周方向に等間隔で配置され、前記各相の複数個の巻線が各相ごとにまとめられて各相間が結線された回転電動機において、
    前記回転電動機の固定子の中心と回転子の中心との静的偏心に起因して発生する偏心方向の加振力を、回転電動機にトルクを発生するために供給する巻線電流を制御して低減することを特徴とする回転電動機の加振力低減方法。
  2. 回転子の位置に対応した巻線電流の値を設定して供給し、回転電動機の極数と回転数の積に相当する周波数の偏心方向の加振力を低減することを特徴とする請求項1に記載の回転電動機の加振力低減方法。
  3. 回転電動機の駆動をパルス幅制御によるインバータにて行う際に、前記回転電動機の各相巻線に印加されるパルス幅変調電圧のオン/オフのデューティ比を制御して回転電動機に供給する巻線電流を制御し、静的偏心に起因して発生する偏心方向の加振力を低減することを特徴とする請求項1に記載の回転電動機の加振力低減方法。
  4. デューティ比を回転子の位置によって調整することを特徴とする請求項3に記載の回転電動機の加振力低減方法。
  5. 静的偏心方向の力が大きいときには回転電動機に供給する巻線電流の値を大きくするように、静的偏心方向の力が小さいときには回転電動機に供給する前記巻線電流の値を小さくするようにデューティ比の調整により制御し、静的偏心に起因して発生する偏心方向の加振力を低減することを特徴とする請求項4に記載の回転電動機の加振力低減方法。
  6. 巻線への印加電圧として120°通電方式をとる回転電動機において、トルクを発生するための2つの巻線回路を含む回転電動機の各巻線回路に流す電流を個々のインバータにより制御して静的偏心方向の力を小さくし、静的偏心に起因して発生する偏心方向の加振力を低減することを特徴とする回転電動機の加振力低減方法。
  7. 巻線への印加電圧として120°通電方式をとる回転電動機において、トルクを発生するための2つの巻線回路を含む回転電動機の各巻線回路に流す電流を個々のインバータにより制御することで、各巻線に発生する磁束により働く磁気吸引力の方向を一定方向に制御することを特徴とする回転電動機の加振力低減方法。
  8. 巻線への印加電圧として120°通電方式をとる回転電動機において、トルクを発生するための2つの巻線回路を含み、この各巻線回路に流す電流を個々のインバータにより制御する回転電動機のシャフトに直結したローリングピストンでクランクシャフトが一回転するに冷媒を吸入、圧縮、吐出するサイクルを繰り返すロータリ圧縮機において、各巻線に発生する磁束により働く磁気吸引力の方向を一定方向に制御し、圧縮による一定方向の力の変動を打ち消すことを特徴とする回転電動機の加振力低減方法。
JP7229498A 1998-03-20 1998-03-20 回転電動機の加振力低減方法 Expired - Lifetime JP3720571B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7229498A JP3720571B2 (ja) 1998-03-20 1998-03-20 回転電動機の加振力低減方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7229498A JP3720571B2 (ja) 1998-03-20 1998-03-20 回転電動機の加振力低減方法

Publications (2)

Publication Number Publication Date
JPH11275802A JPH11275802A (ja) 1999-10-08
JP3720571B2 true JP3720571B2 (ja) 2005-11-30

Family

ID=13485113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7229498A Expired - Lifetime JP3720571B2 (ja) 1998-03-20 1998-03-20 回転電動機の加振力低減方法

Country Status (1)

Country Link
JP (1) JP3720571B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001248556A (ja) * 2000-03-02 2001-09-14 Mitsubishi Electric Corp 圧縮機
JP2009236120A (ja) * 2009-07-15 2009-10-15 Mitsubishi Electric Corp 圧縮機

Also Published As

Publication number Publication date
JPH11275802A (ja) 1999-10-08

Similar Documents

Publication Publication Date Title
JP3837986B2 (ja) 永久磁石形モータ、永久磁石形モータの制御方法、永久磁石形モータの制御装置、圧縮機、冷凍・空調装置。
KR100653434B1 (ko) 2상 무정류자 모터
US20030071533A1 (en) Self-starting synchronous motor and compressor using the same
JP2006223097A (ja) 永久磁石形モータ、永久磁石形モータの制御方法、永久磁石形モータの制御装置、圧縮機、冷凍・空調装置。
JP2008029114A (ja) クローポール型単相モータ,クローポール型単相モータシステム、及びクローポール型単相モータを備えた電動ポンプ,電動ファン、及び車両
JP2003032978A (ja) 回転電機
JP2008061485A (ja) 交流電源で自起動可能な永久磁石型モータ
CN116097549A (zh) 电动机、驱动装置、压缩机及空调机
JP3762981B2 (ja) 永久磁石式回転電機
JP2004056887A (ja) 単相又は2相自己始動式同期電動機及びこれを用いた圧縮機
US6508636B2 (en) Freon compressor
JP3720571B2 (ja) 回転電動機の加振力低減方法
JP3763462B2 (ja) 自己始動式同期電動機及びこれを用いた圧縮機
KR20150139736A (ko) 저전압 팬 구동용 4상 8/6 srm
EP2028747A1 (en) Two-phase DC brushless motor
JPH01157251A (ja) 車両用交流発電機
JP2001238417A (ja) 電気機械
JP4289003B2 (ja) ブラシレスdcモータの駆動方法及びその装置
WO2003043164A1 (en) Dynamo-electric machine
JPH05103453A (ja) 突極形ブラシレスdcモータ
JP2000217290A (ja) 電動機
JP2007166798A (ja) 回転電機、圧縮機、送風機、及び空気調和機
Wang et al. Control of high-speed sensorless PM brushless DC motors
JP2001037190A (ja) 自己始動形永久磁石付回転電機
Shuraiji The effect of static and dynamic eccentricities on the performance of flux reversal permanent magnet machine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050908

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term