JP3718859B2 - 誘導灯 - Google Patents
誘導灯 Download PDFInfo
- Publication number
- JP3718859B2 JP3718859B2 JP13340194A JP13340194A JP3718859B2 JP 3718859 B2 JP3718859 B2 JP 3718859B2 JP 13340194 A JP13340194 A JP 13340194A JP 13340194 A JP13340194 A JP 13340194A JP 3718859 B2 JP3718859 B2 JP 3718859B2
- Authority
- JP
- Japan
- Prior art keywords
- lighting
- time
- circuit
- power supply
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Circuit Arrangements For Discharge Lamps (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
- Illuminated Signs And Luminous Advertising (AREA)
Description
【産業上の利用分野】
本発明は、火災などの災害発生時に建物内から人を出口に安全に誘導するために用いられる誘導灯に関するものである。
【0002】
【従来の技術】
一般に、この種の誘導灯は建物内で非難口やその方向を示し、また非難経路に必要な照度を与えるように、建物の出口付近に設置することが義務づけられており、商用電源の通電・停電にかかわらず常時点灯するように構成されている。したがって、この種の誘導灯には、次の条件が要求される。すなわち、災害発生などの非常時によく目立って注意をひくこと(誘目性)、他のものとの区別して認識できること(視認性)、災害が発生していない通常時に反復して見ることによって非常口の位置を記憶させること(学習効果)が要求される。また、この種の誘導灯は商用電源の停電時には2次電池を電源として点灯するから、2次電池として寿命が長く信頼性の高いものが必要になる。とくに、災害発生時には、誘目性と視認性とが重要であって、一般には表示輝度を高めることで誘目性を向上させ、表示面の輝度分布のむらを少なくすることで視認性を向上させている。
【0003】
なお、学習効果を高めるには、表示面積を大きくすることが考えられるが、表示面積を大きくした場合、誘目性の確保に必要な表示輝度を得るには光源の光出力を大きくしなければならず、消費電力が増加することになる。消費電力が大きくなると、小容量の2次電池を用いる場合には点灯時間が短くなり、点灯時間を確保するように大容量の2次電池を用いると大型化とともに重量が増加するという問題が生じる。しかも、表示面積の大きさは、設置場所の意匠を損なわないように制約を受けるから、表示面積を大きくすることは誘導灯としては望ましくないのである。
【0004】
上述したように、誘目性、視認性、学習効果の要求を満たし、かつ消費電力を比較的小さくして2次電池を電源とした比較的長時間に亙る点灯を可能とする誘導灯として、図20に示す外観を有し、図21のような回路構成を有したものがあり、表示面の大きさや光源などの仕様としては表1に示すものがある。
【0005】
【表1】
【0006】
図21に示した回路について簡単に説明する。光源としては蛍光ランプのような熱陰極ランプLhを用いており、商用電源ACの通電時には安定器BLを介して熱陰極ランプLhに商用電源ACから給電し、同時に充電回路3′を通して2次電池Bを充電している。また、商用電源ACの通電と停電とは、リレーRyへの通電の有無によって検出しており、停電時にはリレーRyの接点r1 〜r4 を図示状態である常開側(白丸)から常閉側(黒丸)に切り換えることによって、2次電池Bを電源としてインバータ回路2′を駆動し、インバータ回路2′から熱陰極ランプLhに高周波電力を供給するようになっている。
【0007】
すなわち、商用電源ACが通電されているときには、点検用スイッチSW2 を介してリレーRyに通電されるから、リレーRyの各接点r1 〜r4 は常開側に接続され、消灯スイッチSW1 と安定器BLと点検用スイッチSW2 とリレーRyの接点r1 ,r2 とを通して熱陰極ランプLhに商用電源ACが供給される。また、リレーRyの接点r3 を介してスタータSが接続されていることによって、熱陰極ランプLhが商用電源ACからの給電に伴って始動する。消灯スイッチSW1 は、常時はオンであって建物内が無人であるときや外光が充分に入る場合などで誘導灯を消灯させてもよいときにオフにされる。また、点検用スイッチSW2 は常時はオンであって、2次電池Bやインバータ回路2′の動作確認の際にオフにされる。
【0008】
充電回路3′は、点検用スイッチSW2 を介して商用電源ACに接続され、商用電源ACをトランスTaで降圧した後にダイオードブリッジよりなる整流回路REで全波整流し、リレーRyの接点r4 を通して2次電池Bを充電する。2次電池Bに充電電流が流れている期間にはトランジスタQcをオンにし、発光ダイオードLEDcを点灯させるようになっている。
【0009】
一方、商用電源ACが停電すると、リレーRyに通電されなくなるから、接点r1 〜r4 は常閉側に接続される。すなわち、インバータ回路2′に対して接点r4 を通して2次電池Bから給電される。インバータ回路2′は、互いのエミッタを共通に接続した一対のトランジスタQa,Qbを備え、各トランジスタQa,Qbのコレクタは出力トランスTbの1次巻線n1 の各端にそれぞれ接続され、各トランジスタQa,Qbのベースは出力トランスTbの帰還巻線n3 の各端にそれぞれ接続される。また、出力トランスTbの1次巻線n1 はセンタタップを有し、2次電池Bは両トランジスタQa,Qbのエミッタと出力トランスTbの1次巻線n1 のセンタタップとの間に挿入される。この種の回路構成は、センタタップ方式と称する周知のものであって、両トランジスタQa,Qbが交互にオンになることによって、2次電池Bの出力である直流を高周波に変換するのである。ここで、各トランジスタQa,Qbが帰還巻線n3 の誘起電力でオン・オフされる自励式の構成となっているから、コンデンサCa、チョークコイルCHa、出力トランスTbの共振を利用して出力周波数が決定される。出力トランスTbの2次巻線n2 は予熱巻線を備え、リレーRyの接点r1 〜r3 を介して熱陰極ランプLhに接続される。したがって、商用電源ACの停電時には、2次電池Bを電源としてインバータ回路2′が駆動され、熱陰極ランプLhはインバータ回路2′からの昇圧された高周波電力で点灯するのである。
【0010】
【発明が解決しようとする課題】
ところで、一般に誘導灯の表示面Pは、図20に示すように、中央部と周部の輪郭線のみが白色であって、残りの大部分(斜線部)は無地の緑色に着色されている。すなわち、光源からの光の透過性は、白色部分では大きいが緑色部分では小さいものであるから、緑色部分の表示輝度を確保する場合に、緑色部分の面積が大きいと消費電力が大きくなるという問題が生じる。
【0011】
光源を変えずにこの問題を解決するには、緑色部分の面積を小さくすることが考えられる。すなわち、光源に対して表示面を相対的に小さくすれば、表示輝度が向上して誘目性が向上し、また表示輝度のむらが減少して視認性が高くなると考えられる。
しかしながら、光源に対して表示面を相対的に小さくすると、次のような問題が生じる。すなわち、表示面を小さくすると誘導灯が全体として小型化されることになるが、安定器BLとしては商用電源周波数に対応したチョークコイル型のものを用いているから、安定器BLによって小型化に制約がある。また、光源として熱陰極ランプLhを用いているから、熱陰極ランプLhの発熱によって誘導灯の内部温度が上昇し、回路部分や2次電池Bへの悪影響が生じる。とくに、2次電池Bは高温で使用すると劣化を早めることになる。しかも、誘導灯内の温度上昇によって熱陰極ランプLhの最冷点温度が上昇するから、熱陰極ランプLhの発光効率が低下し、輝度の確保のために供給電力を大きくしなければならないという問題も生じる。
【0012】
結局、誘目性および視認性を向上させるために表示面を光源に対して相対的に小型化しようとすると上述のような各種問題が生じるから、熱陰極ランプLhを光源に用いた誘導灯では、表示面の小型化ができないのである。
本発明は上記問題点に鑑みて為されたものであって、光源に対して表示面を相対的に小さくすることで誘目性や視認性を向上させ、かつ設置場所の意匠を損なわないようにしながらも、内部温度の上昇による2次電池の劣化や光源の発光効率の低下がなく、しかも低消費電力とした誘導灯を提供することを目的とするものである。
【0013】
【課題を解決するための手段】
請求項1の発明は、商用電源の通電時に充電される2次電池と、商用電源の通電時には商用電源から給電され商用電源の停電時には2次電池から給電される光源とを備え、光源として冷陰極ランプを用いた誘導灯において、点灯回路の無負荷状態を検出する無負荷検出手段と、商用電源の停電前における2次電池の充電時間が第1の所定時間以上であるときに充電条件が正常であると判定する充電判定手段と、商用電源の停電からの光源の点灯時間を計時する非常点灯計時手段と、充電判定手段により判断された充電条件が正常であり非常点灯計時手段により計時された停電から無負荷検出手段により点灯回路の無負荷が検出されるまでの時間が第2の所定時間内であるときに異常と判定する判定手段とを備えることを特徴とする。
請求項2の発明は、請求項1の発明において、商用電源を整流し直流を出力する直流電源回路と、直流電源により高周波電力を出力して光源を高周波点灯させる点灯回路と、商用電源の通電時には直流電源回路から点灯回路に給電させ商用電源の停電時には2次電池から点灯回路に給電させる電源切換回路とを備えることを特徴とする。
【0014】
請求項3の発明は、請求項1または請求項2の発明において、光源の光出力を検出する光センサと、光センサにより検出される点灯中の光出力が所定値以下に低下すると報知する報知手段とを備えることを特徴とする。
請求項4の発明は、請求項1または請求項2の発明において、少なくとも商用電源の通電時における光源の点灯時間を累積計時する点灯計時手段と、点灯計時手段により累積計時された点灯時間が所定時間に達すると報知する報知手段とを備えることを特徴とする。
【0015】
請求項5の発明は、請求項1または請求項2の発明において、少なくとも商用電源の通電時における光源の点灯時間を累積計時する点灯計時手段と、点灯計時手段により累積計時された点灯時間が所定時間に達するか無負荷検出手段により無負荷が検出されると報知する報知手段とを備えることを特徴とする。
【0016】
請求項6の発明は、請求項1または請求項2の発明において、前記無負荷検出手段により点灯回路の無負荷が検出されると点灯回路の動作を停止させる動作停止手段を備えることを特徴とする。
【0017】
請求項7の発明は、請求項6の発明において、点灯回路の動作停止後に電源切換回路により点灯回路への給電源が切り換えられると点灯回路を再始動するリセット手段を備えることを特徴とする。
【0018】
請求項8の発明は、請求項1または請求項2の発明において、商用電源の通電時における光源の交換後からの通算の点灯時間と停電時における点灯時間とを各別に計時する点灯計時手段と、通電時における点灯時間が所定時間に達すると光源の交換時期を報知する第1の報知手段と、停電時における点灯時間の減少率が既定値を越えると2次電池の交換時期を報知する第2の報知手段とを備えることを特徴とする。
【0019】
請求項9の発明は、請求項1または請求項2の発明において、複数個の光源を有し、商用電源の停電時に点灯させる光源の個数を商用電源の通電時よりも減らすとともに、停電時に点灯させる光源を停電毎に循環的に切り換える選択手段を備えることを特徴とする。
【0020】
【作用】
請求項1の発明の構成によれば、光源として冷陰極ランプを用いていることによって、光源からの発熱量を抑制することができ、小型化した場合でも熱的影響による2次電池の特性劣化や光源自体の温度上昇による発光輝度の低下を防止することができる。しかも、冷陰極ランプは熱陰極ランプに比較して一般に管径が小さいから、熱的影響が少なくこととあいまって誘導灯の小型化が可能になるのである。また、商用電源の停電前における2次電池の充電時間が第1の所定時間以上であるときに充電条件が正常であると判定し、かつ充分な充電時間が確保されているにもかかわらず、停電から無負荷までの時間が第2の所定時間内であるときに異常と判定するから、2次電池や光源の異常を検出することができる。
【0021】
請求項2の発明の構成によれば、直流電源より高周波電力を出力して光源を高周波点灯させる点灯回路を設け、商用電源の通電時には商用電源を整流し直流化した直流電源を点灯回路に供給し、商用電源の停電時には通電時に充電した2次電池から点灯回路に直流電源を供給する構成を採用したことによって、商用電源の通電時と停電時とにかかわらず光源を高周波点灯させるから、商用電源周波数用のチョークコイルよりなる大型の安定器が不要になり、全体として小型化が可能になる。
【0022】
請求項3の発明の構成によれば、光源の光出力が所定値以下に低下すると報知するから、冷陰極ランプのようにランプ電圧やランプ電流の変化では寿命を判定するのが難しい場合でも交換時期を報知することができるのである。しかも、光源の点灯状態で交換時期を報知するから、非常時に光源が点灯しないという不都合が生じる前に事前にランプ交換を促すことができるとともに、発注から入手までに比較的時間のかかる冷陰極ランプを点灯しなくなる前に用意することができるのである。
【0023】
請求項4の発明の構成によれば、少なくとも商用電源の通電時における光源の点灯時間を累積計時することで光源の寿命の目安を得ており、光源が寿命に至るまでに事前にランプ交換を促すことができる。すなわち、非常時に光源が点灯しないという不都合が生じないようにランプ交換を促すことができて信頼性が向上する。また、光源が寿命に近づくと寿命に至るまでに交換を促すから、あらかじめ予備の光源を在庫しておく必要がなく、在庫のためのスペースが不要であるとともに必要以上の光源を購入する必要もなく経済的である。
【0024】
請求項5の発明の構成によれば、光源の点灯時間によって光源の寿命の目安を与えているから、請求項4の発明と同様の作用が得られ、さらに点灯回路の無負荷を検出した場合も報知するから、光源の破損などによる無負荷状態を報知してランプ交換を促すことができる。
請求項6の発明の構成によれば、点灯回路の無負荷が検出されると点灯回路の動作を停止させるから、点灯回路が無負荷になっても電極部分に高電圧が印加されず、点灯回路の構成部品へのストレスやランプ交換の際の感電事故などを防止することができる。
【0026】
請求項7の発明の構成によれば、点灯回路の動作停止後に電源切換回路により点灯回路への給電源が切り換えられると点灯回路を再始動するから、光源の破損などに伴って点灯回路の動作が停止したときに、ランプ交換を行なった後に商用電源の入切による給電源の切り換えを行なうだけで点灯回路の停止状態を解除することができる。
【0027】
請求項8の発明の構成によれば、商用電源の通電時における光源の点灯時間を計時することにより光源の寿命を報知し、また商用電源の停電時における光源の点灯時間を計時するとともに停電時における点灯時間の減少率が既定値を越えると2次電池の交換時期を報知するから、光源の交換時期の報知だけではなく、2次電池の経時変化による特性劣化を検出して報知することができる。すなわち、2次電池は充放電を繰り返すと放電時間がしだいに短くなるから、停電時における点灯時間の減少傾向を把握して2次電池の交換を促すことができるのである。
【0028】
請求項9の発明の構成によれば、光源を複数個設けて商用電源の停電時には通電時よりも点灯灯数を減らす場合に、停電時に点灯させる光源を固定的に決めるのではなく停電毎に循環的に切り換えることで、非常点灯時における通算の点灯時間を各光源でほぼ均等化し、各光源の通算の点灯時間のばらつきを小さくすることができる。すなわち、通算の点灯時間がもっとも長い光源に合わせてランプ交換の時期を決める場合でも、各光源の通算の点灯時間に大幅なばらつきがないから、光源の寿命が充分に残っている状態で交換することによる無駄が少ないのである。
【0029】
【実施例】
(実施例1)
本実施例は、基本的には図1に示すように、商用電源ACを整流し直流を出力する直流電源回路1の出力と2次電池Bの出力との一方を、インバータ回路である点灯回路2の電源として電源切換回路4によって選択し、商用電源ACの通電時と停電時とにかかわらず点灯回路2から出力される高周波電力を光源に供給するように構成され、商用電源ACの通電時には充電回路3を通して2次電池Bに充電するようになっている。この構成によってチョークコイル型の安定器を不要とし、また光源として冷陰極ランプLcを用いることによって誘導灯の内部での発熱量を抑制している。
【0030】
すなわち、冷陰極ランプLcを光源に用いるとフィラメントの加熱に伴う発熱がないから、熱陰極ランプに比較して光源からの発熱量を大幅に低減することができ、しかも光源の管径を小さくすることができる。また、図3に示すように、冷陰極ランプLcは熱陰極ランプ(水銀蒸気圧規制方式)に対して周囲温度の上昇に対する発光効率の低下が少ないという特徴がある(図3の破線は冷陰極ランプ、実線は熱陰極ランプを示す)。ただし、熱陰極ランプでもアマルガム方式の場合には高温領域での発光効率の低下を改善できるのであるが、調光点灯させたときにアマルガムが過冷却状態となって光出力がさらに低下し、光出力の非常に少ない状態で安定するという問題が生じる。冷陰極ランプLcではこの種の問題が生じないのであり、周囲温度が高いときや調光点灯をさせるときでも効率よく点灯させることができるのである。
【0031】
したがって、光源に対して表示面を相対的に小さくし誘導灯を全体として小型化しても、2次電池Bへの熱的な影響が少なく、また光出力の低下も生じないのである。すなわち、誘導灯の小型化による弊害を生じさせることなく表示面積を小さくすることができ、相対的に表示輝度を高めて誘目性を向上させることができるのである。また、冷陰極ランプLcを用いることで管径を小さくすることができるから、誘導灯の内部に光源を配置する構成の場合に表示面と光源との相対距離を広げることになって表示面での輝度むらを抑制することができ、また、導光板の周面に対向させて光源を配置し導光板の表裏面を表示面とする構成の場合にも光源の管径が小さいことによって導光板に効率よく光を導入することができて表示輝度の向上につながるとともに光源の表面の多箇所から導光板に光が導入されることで表示面での輝度むらを抑制することができる。
【0032】
次に回路構成について具体的に説明する。図2に示すように、商用電源ACは、点検用スイッチSW2 およびノイズフィルタNFを介してダイオードブリッジよりなる整流回路REで全波整流され、さらに平滑用のコンデンサC1 により平滑された後に、DC−DCコンバータ10に入力される。すなわち、整流回路RE、コンデンサC1 、DC−DCコンバータ10により直流電源回路1が構成される。
【0033】
DC−DCコンバータ10はフォワード方式であり、トランスT1 の1次巻線n11にFETよりなるスイッチング素子Q1 を直列接続し、このスイッチング素子Q1 を集積回路よりなる制御回路11を用いて数十kHz以上の高周波でスイッチングする。スイッチング素子Q1 がスイッチングされると、トランスT1 の2次巻線n21に誘起電力が生じるから、この誘起電力をダイオードD1 ,D2 により整流し、チョークコイルCH1 および平滑用のコンデンサC2 によって平滑することで直流出力が得られるのである。ここに、スイッチング素子Q1 を高周波でスイッチングしているから、商用電源ACをトランスで降圧する場合よりもトランスT1 を小型化することができる。ダイオードD2 は還流用であり、トランスT1 の2次巻線n21に残っているエネルギを出力に送る。コンデンサC2 の両端電圧は抵抗R1 〜R4 とコンデンサC3 とシャントレギュレータRG1 とにより検出され、コンデンサC2 の両端電圧が所定値以上になるとフォトカプラの発光素子PT1 を点灯させる。このフォトカプラの受光素子PR1 は制御回路11に接続され、コンデンサC2 の両端電圧が所定値以上になると、スイッチング素子Q1 のオン期間を減少させてコンデンサC2 の両端電圧を下げるようにフィードバック制御する。すなわち、直流電源回路1の出力電圧は所定値以下に保たれる。ここに、制御回路11の電源はトランスT1 の巻線n31への誘起電力をダイオードD4 で整流し、コンデンサC4 で平滑することにより得ている。
【0034】
コンデンサC2 の両端電圧は、センタタップ方式の自励式インバータ回路である点灯回路2に印加される。点灯回路2は、トランジスタよりなる一対のスイッチング素子Q2 ,Q3 を備え、両スイッチング素子Q2 ,Q3 はエミッタ同士が共通接続されるとともにコンデンサC2 の負極に接続され、コレクタ同士の間には出力トランスT2 の1次巻線n12が接続される。出力トランスT2 は、帰還巻線n32を備え、帰還巻線n32の各端が各スイッチング素子Q2 ,Q3 のベースにそれぞれ接続される。また、両スイッチング素子Q2 ,Q3 のベースはトランジスタQ4 を介してコンデンサC2 の正極に接続される。さらに、コンデンサC2 の正極はチョークコイルCH2 を介して出力トランスT2 の1次巻線n21のセンタタップに接続される。出力トランスT2 の1次巻線n12の両端間にはコンデンサC5 が接続され、出力トランスT2 、チョークコイルCH2 、コンデンサC5 などによる共振回路が構成される。
【0035】
トランジスタQ4 がオンであるときに、一方のトランジスタQ2 がオンであるとすると、チョークコイルCH2 −1次巻線n12−トランジスタQ2 を通る経路で電流が流れ、帰還巻線n32にはトランジスタQ2 に対する順バイアス電流が誘起される。チョークコイルCH2 、出力トランスT2 、コンデンサC5 は上述のように共振回路を構成しているから、共振電流によってトランジスタQ2 がオフになる。トランジスタQ2 がオフになると、帰還巻線n32に誘起される電流の向きが反転してトランジスタQ3 がオンになる。その後、トランジスタQ3 もトランジスタQ2 と同様に共振電流によってオフになり、以後、トランジスタQ2 ,Q3 が交互にオン・オフするから出力トランスT2 の2次巻線n22に数十kHzの高電圧の高周波出力が発生するのである。この高周波出力は、限流用のコンデンサC6 を介して冷陰極ランプLcに供給される。
【0036】
ところで、点灯回路2に給電するには、上述のようにトランジスタQ4 をオンにする必要がある。このトランジスタQ4 のベースは、トランジスタQ5 のエミッタ−コレクタに直列接続された一対の抵抗R5 ,R6 の接続点に接続されており、トランジスタQ5 と抵抗R5 ,R6 との直列回路はコンデンサC2 の両端間に接続されている。また、トランジスタQ5 のベースは、抵抗R7 とダイオードD5 とフォトカプラの受光素子PR2 とを介してコンデンサC2 の正極に接続され、さらにトランジスタQ5 のベースは抵抗R8 を介してコンデンサC2 の負極に接続される。したがって、受光素子PR2 がオンになれば、トランジスタQ5 がオンになり、これによってトランジスタQ4 をオンにすることができる。フォトカプラの発光素子PT2 は、商用電源ACに消灯スイッチSW1 を介して接続された消灯検出回路12に設けられている。
【0037】
消灯検出回路12は、商用電源ACを整流するダイオードD6 および平滑用のコンデンサC7 を備え、フォトカプラの発光素子PT2 はこのコンデンサC7 に並列接続されている。したがって、消灯スイッチSW1 がオンであって商用電源ACが通電されていれば、発光素子PT2 が連続的に点灯し、点灯回路2にコンデンサC2 から給電することができるのである。一方、商用電源ACが停電したり消灯スイッチSW1 をオフにすれば、フォトカプラの発光素子PT2 が消灯することによって、コンデンサC2 から点灯回路2への給電が停止する。
【0038】
上述したトランスT1 には、さらに別の巻線n41も設けられ、スイッチング素子Q1 のスイッチングによる巻線n41への誘起電力は、ダイオードD7 ,D8 により整流され、チョークコイルCH3 および平滑用のコンデンサC9 によって平滑されることによって直流出力を発生する。この直流出力は充電回路3を通して2次電池Bに供給される。充電回路3は、コンデンサC9 の正極と2次電池Bの正極との間に挿入された抵抗R9 および逆流阻止用のダイオードD9 と、2次電池Bの正極にベースが接続されたトランジスタQ6 と、トランジスタQ6 のエミッタ−コレクタ間に直列接続された発光ダイオードLED1 とを備え、トランジスタQ6 と発光ダイオードLED1 との直列回路はコンデンサC9 に並列接続される。したがって、商用電源ACが通電中であって、2次電池Bに充電電流が流れている間には、抵抗R9 による電圧降下でトランジスタQ6 がオンになり、発光ダイオードLED1 が点灯して充電中であることを表示する。
【0039】
ここにおいて、2次電池Bは非常用電源回路13に対して電源として接続されている。非常用電源回路13は、コンデンサC9 の正極にダイオードD10を介してベースが接続されたトランジスタQ7 を備え、このトランジスタQ7 のエミッタ−コレクタを介して2次電池Bに接続された昇圧型のチョッパ回路を備える。昇圧型のチョッパ回路は、周知のようにチョークコイルCH4 とダイオードD11とコンデンサC11との直列回路と、ダイオードD11とコンデンサC11との直列回路に並列接続されたFETよりなるスイッチング素子Q11とを備えた構成を有する。このスイッチング素子Q11とチョークコイルCH4 との直列回路に対して、トランジスタQ7 のエミッタ−コレクタ間を介して2次電池Bが接続されるのである。また、コンデンサC11はコンデンサC2 と逆流阻止用のダイオードD12との直列回路に対して並列接続され、点灯回路2に対する電源として機能する。さらに、トランジスタQ7 とチョークコイルCH4 との接続点は、ダイオードD3 を介してダイオードD5 と抵抗R7 との接続点に接続される。
【0040】
したがって、商用電源ACの通電時には、コンデンサC9 の両端電圧は2次電池Bの両端電圧よりも高くダイオードD9 を通して電流が流れるから、トランジスタQ7 は逆バイアスされてオフに保たれる。すなわち、チョッパ回路は動作しない。一方、商用電源ACの停電時には直流電源回路1のスイッチング素子Q1 のスイッチング動作が停止するから、コンデンサC9 の両端電圧が低下する。その結果、ダイオードD9 に電流が流れなくなってトランジスタQ7 がオンになり、チョッパ回路に給電されることになる。すなわち、2次電池Bの両端電圧を昇圧したコンデンサC11の両端電圧を点灯回路2に印加することができる。また同時に、ダイオードD12を通してトランジスタQ5 をオンにして点灯回路2を動作可能にする。すなわち、商用電源ACが通電状態から停電状態に移行したとき点灯回路2は動作可能な状態に保たれ、かつコンデンサC2 からではなくコンデンサC11から給電されることになる。上記動作から明らかなように、電源切換回路4は、ダイオードD11,D12、トランジスタQ7 などで構成される。
【0041】
非常用電源回路13のスイッチング素子Q11のオン・オフは、集積回路よりなる制御回路14によって制御される。この制御回路14は冷陰極ランプLcのランプ電流に応じてスイッチング素子Q11のオンデューティを制御するように構成されている。すなわち、冷陰極ランプLcと出力トランスT2 の2次巻線n22との間に挿入された抵抗R12の両端電圧を検出することによってランプ電流を検出し、この電圧をダイオードD15で整流した後に抵抗R13,R14、コンデンサC13などで積分し、この積分値でスイッチング素子Q11のオンデューティを制御している。したがって、ランプ電流の変動を抑制するようにコンデンサC11の両端電圧を制御することができ、結果的に光出力の変動を抑制することができる。
【0042】
上記構成によって、商用電源ACの停電時にも商用電源ACの通電時と同様に点灯回路2を動作させて冷陰極ランプLcを点灯させることができる。ところで、商用電源ACの停電時における冷陰極ランプLcの点灯輝度は、商用電源ACの通電時に比較して低下させてもよい。これは、商用電源ACの停電時には周辺の照明が消灯するから、誘導灯の表示輝度が通電時よりも低下したとしても誘目性や視認性を損なうことがないからである。そこで、本実施例では商用電源ACの停電時には、冷陰極ランプLcの始動の際にのみ点灯回路2の電源となるコンデンサC11の両端電圧を高く設定して冷陰極ランプLcを容易に始動できるようにし、冷陰極ランプLcの点灯後には、点灯状態を維持しながらコンデンサC11の両端電圧を引き下げるようにしてある。具体的には、冷陰極ランプLcの点灯前にはランプ電流は流れないから、このときにはスイッチング素子Q11のオンデューティを大きくしてコンデンサC11の両端電圧を高くし、点灯後にはランプ電流が流れるから、スイッチング素子Q11のオンデューティを小さくしてコンデンサC11の両端電圧を引き下げるのである。このように、商用電源ACの停電時には、始動時以外は出力を低減させることによって、出力エネルギが限られている2次電池Bを用いながらも比較的長時間に亙って冷陰極ランプLcを点灯させることができるのである。
【0043】
上述したように、冷陰極ランプLcを光源として用いているから、熱陰極ランプを用いる場合に比較して発熱量を大幅に低減することができ、熱的な影響による電池寿命の短縮や表示輝度の低下を防止することができ、誘導灯を小型化することが可能になるのである。しかも、商用電源ACの通電時と停電時とにおいてともに高周波電力で点灯させているから、構成部品に小型のものを用いることができ、このことによっても小型化が可能になる。さらには、上述したように、商用電源ACの通電時には直流電源回路1の出力を安定化し、商用電源ACの停電時にはランプ電流の安定化によって光出力を安定化するから、常時、非常時のいずれについても、必要な表示輝度が安定的に得られるように制御することができる。しかも、非常時には冷陰極ランプLcの始動時にのみ点灯回路2に高電圧を与え、以後は点灯回路2に比較的低電圧を与えるから、誘目性、視認性を損なうことなく2次電池Bを有効に利用することができるのである。
【0044】
(実施例2)
実施例1では、冷陰極ランプLcを光源に用いたことによって熱陰極ランプのようにフィラメントが存在しない分、光源の寿命が長いのであるが、それでも蛍光体の劣化などによって光束が徐々に低下するから、誘目性や視認性を保つために表示輝度を所定範囲に保つ必要がある。とくに、冷陰極ランプLcでは、熱陰極ランプのように寿命末期におけるランプ電流の減少やランプ電圧の上昇が見られず、急激に寿命末期に至って点灯しなくなるから、ランプ電流やランプ電圧での寿命末期の判定は行なえないものである。また、冷陰極ランプLcは熱陰極ランプに比較すると普及率が低く、発注から入手までに時間がかかるのが現状であるから、寿命に至る兆候が検出された時点で発注するのが望ましい。そこで、本実施例では、図4に示すように、実施例1の構成に対して寿命に至る前に光束が低下するとランプ交換を促すための表示を行なう表示回路5を付加しているのである。
【0045】
表示回路5は、商用電源ACの通電時に動作し、コンデンサC2 の両端電圧を電源として3端子レギュレータRG2 により定電圧を得ている。表示回路5は、冷陰極ランプLcの近傍に配置されて冷陰極ランプLcの光出力を検出する光センサとしてのフォトトランジスタPH1 を備え、このフォトトランジスタPH1 と抵抗R15との直列回路により3端子レギュレータRG2 の出力電圧を分圧し、3端子レギュレータRG2 の出力電圧を一対の抵抗R16,R17で分圧した基準電圧とコンパレータCP1 により比較する。コンパレータCP1 は冷陰極ランプLcの光出力が低下してフォトトランジスタPH1 と抵抗R15との接続点の電位が基準電圧よりも低下すると、出力をHレベルにしトランジスタQ15をオンにする。トランジスタQ15のエミッタ−コレクタには発光ダイオードLED2 が直列接続され、トランジスタQ15のオンによって発光ダイオードLED2 が点灯する。すなわち、冷陰極ランプLcの光出力が所定値以下になると、発光ダイオードLED2 が点灯してランプ交換を促すのである。他の構成および動作については、実施例1と同様であるから説明を省略する。
【0046】
上述のようにして、冷陰極ランプLcが点灯しなくなる前に、ランプの輝度が低下してくると交換を促すから、商用電源ACの通電中に冷陰極ランプLcを交換しておくことで、停電時に冷陰極ランプLcの寿命によって点灯しなくなるのを防止することができ、非常時には誘導灯を確実に点灯させて安全性を確保することができるのである。
【0047】
(実施例3)
本実施例は、実施例2における表示回路5について周囲温度に応じて基準電圧を変化させるようにしたものである。すなわち、図3に示したように、冷陰極ランプLcは周囲温度の低下によって光出力が低下するから、周囲温度が低いときに、ランプ交換の時期ではないにもかかわらず光出力の低下によって発光ダイオードLED2 が点灯してしまうことがある。また、始動直後に比較すれば定常点灯時には出力光束が増加するから、始動直後に発光ダイオードLED2 が誤点灯することがある。そこで、本実施例では周囲温度に応じて基準電圧、すなわち交換時期と判断するための光出力の基準値を変更することで、この種の誤動作を防止しているのである。
【0048】
この目的を達成するために、図5に示すように、周囲温度を検出するサーミスタTH1 を設け、サーミスタTH1 と抵抗R18との直列回路と、抵抗R19,R20の直列回路とでそれぞれ3端子レギュレータRG2 の出力電圧を分圧し、分圧した両電圧を演算増幅器OP1 よりなる加算器により加算して基準電圧を得ている。この構成では、周囲温度が低下すると、サーミスタTH1 の抵抗が増加して演算増幅器OP1 に入力される電圧が低下し、基準電圧が低下することになる。したがって、周囲温度が低下すれば、低出力光束でも発光ダイオードLED2 は点灯しなくなる。一方、周囲温度が上昇すれば基準電圧も上昇する。ここで、周囲温度による基準電圧の変化特性は、冷陰極ランプLcの出力光束の温度特性に合わせて設定されることは言うまでもない。他の構成および動作は実施例2と同様である。
【0049】
なお、始動直後における低光束時に発光ダイオードLED2 を誤点灯させないようにするために、始動直後から安定に点灯するまでの時間程度は発光ダイオードLED2 の点灯を禁止するようにタイマ回路を付加してもよい。
(実施例4)
本実施例では、光源として用いる冷陰極ランプLcの交換時期の報知に加えて、冷陰極ランプLcが装着されていない場合や冷陰極ランプLcが割れた場合などにおいて点灯回路2が無負荷状態になって電極に高電圧が印加されることによる感電事故や点灯回路2の構成部品へのストレスなどを防止した誘導灯を開示する。すなわち、冷陰極ランプLcは管径が小さいから、熱陰極ランプに比較すると割れ易く、冷陰極ランプLcが割れると、両電極間が高電圧になるから感電などの事故が発生しやすくなる。そこで、本実施例では、この種の問題を解決できる構成を開示する。
【0050】
実施例2、実施例3では、ランプ交換時期を光出力の減少によって決定していたが、本実施例では、冷陰極ランプLcの通算の点灯時間によって交換時期を決めている。また、点灯回路2の無負荷状態をランプ電流が流れなくなることによって検出し、無負荷状態では点灯回路2の動作を停止させるように構成している。すなわち、図6に示すように、ランプ電流検出回路6でランプ電流が流れていることが検出されているときには冷陰極ランプLcが点灯していると判断し、冷陰極ランプLcの点灯時間を制御回路7で累積する。この累積時間が規定した時間に達すると、表示回路5を駆動してランプ交換時期を報知する。また、制御回路7ではランプ電流検出回路6でランプ電流が検出されなくなったときには、点灯回路2が無負荷状態であると判断し、点灯回路2の動作を停止させる。
【0051】
具体回路を図7に示す。直流電源回路1、点灯回路2、充電回路3は、実施例1と同様の構成を有し、図2に示した回路と同符号を付した部材は同様に機能する。なお、整流回路REの出力側の平滑用のコンデンサC1 は省略してある。電源切換回路4は、ダイオードD21と抵抗R21とを直列し、この直列回路をコンデンサC9 の両端間に接続し、さらにダイオードD21のカソードと抵抗R21との接続点にカソードを接続したダイオードD22のアノードをトランジスタQ21のベースに接続してある。このトランジスタQ21は、2次電池Bの正極と点灯回路2の入力端との間に接続されており、トランジスタQ21がオフであるときには直流電源回路1から点灯回路2に給電され、トランジスタQ21がオンになると2次電池BからトランジスタQ21を通して点灯回路2に給電されるようになっている。
すなわち、商用電源ACが通電中であればコンデンサC9 の両端電圧は比較的高く、ダイオードD21および抵抗R21を通して電流が流れるから、抵抗R21の両端電圧は高くダイオードD22はオフになっている。このとき、トランジスタQ21はオフであって、ダイオードD9 を通して2次電池Bへの充電がなされる。一方、トランジスタQ21がオンになるのは、商用電源ACの停電によってコンデンサC9 の両端電圧が低下したときであって、コンデンサC9 の両端電圧が低下してダイオードD21がオフになると、ダイオードD22を通る経路でトランジスタQ21に2次電池Bの出力による順バイアス電流が流れ、トランジスタQ21がオンになるのである。トランジスタQ21がオンになれば、2次電池Bから点灯回路2への給電路が導通し、このとき商用電源ACは停電しているから、直流電源回路1の出力も停止している。なお、本実施例では、2次電池Bの出力は点灯回路2に対してチョッパ回路を通すことなく直接給電されている。
【0052】
ところで、ランプ電流は、実施例2と同様にして、出力トランスT2 の2次巻線n22と冷陰極ランプLcとの間に挿入された抵抗R12の両端電圧として検出される。抵抗R12の両端電圧は、ダイオードD15で整流された後、抵抗R13,R14およびコンデンサC13よりなる積分回路で平均化され、積分回路の出力でトランジスタQ12をオンオフするように構成されている。トランジスタQ12のコレクタには抵抗R23が接続され、トランジスタQ12のエミッタ−コレクタと抵抗R23との直列回路は点灯回路2の入力端間に接続される。さらに、トランジスタQ12のコレクタは、制御回路7の主構成要素であるプロセッサ15においてランプ電流の有無が入力される7番端子に接続される。
【0053】
したがって、ランプ電流が流れている期間には、トランジスタQ12がオンになってプロセッサ15の7番端子への入力はLレベルであるから、プロセッサ15では7番端子がLレベルである時間を検出して内蔵したタイマカウンタにより累積する。すなわち、冷陰極ランプLcの点灯時間を累積する。この時間が規定時間(たとえば、20000時間)に達すると、プロセッサ15の16番端子をHレベルにしてトランジスタQ16をオンにし、発光ダイオードLED3 を点灯させ、冷陰極ランプLcが寿命に近づいたことを報知するのである。
【0054】
一方、ランプ電流検出回路6によりランプ電流が検出されなくなると、7番端子への入力はHレベルになる。プロセッサ15の11番端子の出力は通常はHレベルであるが、7番端子への入力がHレベルになるとLレベルになってトランジスタQ17をオフにする。このトランジスタQ17のコレクタは、点灯回路2の入力端の正極に抵抗R24を介して接続されるとともに、点灯回路2の動作を制御するトランジスタQ18のベースに接続されている。トランジスタQ18のコレクタ−エミッタは、点灯回路2を構成するスイッチング素子Q2 ,Q3 のエミッタに接続されたチョークコイルCH5 と、スイッチング素子Q2 ,Q3 のベースとの間に挿入されている。したがって、プロセッサ15の11番端子の出力がLレベルになってトランジスタQ17がオフになると、トランジスタQ18がオンになってスイッチング素子Q2 ,Q3 のベース電位を引下げ、結果的にスイッチング素子Q2 ,Q3 をオフにするのである。その結果、点灯回路2は動作を停止し、冷陰極ランプLcへの給電が停止する。
【0055】
上述のようにして、冷陰極ランプLcの破損やリークがあると、ランプ電流が流れなくなることによって点灯回路2の無負荷状態と判断し、点灯回路2の動作を停止させるのである。また、このときプロセッサ15の16番端子をHレベルにして発光ダイオードLED3 を点灯させ、ランプ交換を促すようにしてある。プロセッサ15についての上記動作をまとめると、図8のようになる。まず、電源を投入すると(S1)、最初の10秒間はランプ電流検出回路6の動作を受け付けないようにする(S2,S3)。これは、冷陰極ランプLcの点灯するまでの間に点灯回路2の動作が停止すると不都合だからである。電源の投入から10秒以内に冷陰極ランプLcが点灯すると、その後は、ランプ電流の有無を判断し(S4)、ランプ電流が流れている期間にはプロセッサ15に内蔵したタイマカウンタによりランプ電流の流れている時間を累積する(S5)。累積時間が20000時間に達すると(S6)、冷陰極ランプLcの寿命に近いものとして発光ダイオードLED3 を点灯させランプを交換させるように異常表示を行なう(S7)。また、ステップS4において電源投入から10秒が経過しないか、累積時間が20000時間に到達していない状態で、ランプ電流が流れないときには、点灯回路2の動作を停止させるとともに(S8)、発光ダイオードLED3 を点灯させて異常表示を行なう(S7)。発光ダイオードLED3 が点灯すれば、冷陰極ランプLcの寿命または故障であるから、ランプ交換を行なえばよいのである。
【0056】
なお、プロセッサ15において1番端子および2番端子は水晶振動子等の振動子を接続する端子であり、14番端子は接地端子、28番端子は正極側電源端子(たとえば、5V)である。また、プロセッサ15の内部クロックは400kHzに設定してある。他の構成および動作は実施例1と同様である。
(実施例5)
本実施例は、2次電池Bの充電時間を検出することによって、2次電池Bの充電不足を検出し、商用電源ACの停電時に冷陰極ランプLcが点灯しない場合に、2次電池Bの充電不足によるのか他の原因によるのかを判断して、2次電池Bの充電不足であるときには異常表示を行なわないようにした構成を開示する。2次電池Bが充電中か否かは、図9に示すように、充電回路3と2次電池Bとの間に挿入された充電検出回路8により検出される。充電検出回路8で充電が検出されている期間は制御回路7により累積計時され、制御回路7では充電時間の長短に応じて表示回路5に異常表示を行なうか否かを判断する。
【0057】
具体的には、図10に示すように、電源切換回路4におけるダイオードD9 に代えてフォトカプラの発光素子としての発光ダイオードPT3 を用いているのであって、フォトカプラの受光素子であるフォトトランジスタPR3 は抵抗R25と直列接続され、抵抗R25とフォトトランジスタPR3 との直列回路は、点灯回路2の入力端間に接続される。また、抵抗R25とフォトトランジスタPR3 との接続点はプロセッサ15の10番端子に接続される。
【0058】
2次電池Bへの充電電流が流れていれば、発光ダイオードPT3 は点灯し、フォトトランジスタPR3 はオンになるから、プロセッサ15の10番端子はLレベルになる。また、商用電源ACの停電時には発光ダイオードPT3 は消灯するからプロセッサ15の10番端子はHレベルになる。そこで、プロセッサ15では10番端子がHレベルになるまでLレベルである期間を計時し、10番端子がHレベルになった時点からランプ電流検出回路6によりランプ電流が検出されている時間を計時する。すなわち、商用電源ACの停電後に冷陰極ランプLcが点灯している時間を計時するのである。この時間が、所定時間(たとえば25分)以内であるときに、10番端子がLレベルであった期間が2次電池Bの満充電に要する時間(たとえば24時間)以上継続していたか否かを判定し、10番端子がHレベルになる前に連続してLレベルであった期間が上記時間を越えているときには、冷陰極ランプLcの異常(無負荷等)によって点灯しないものとして16番端子をHレベルにし、発光ダイオードLED3 を点灯させるのである。一方、商用電源ACの停電からランプ電流が流れていた期間が上記所定時間に満たない場合でも、10番端子がLレベルであった期間が満充電に要する時間よりも短かったときには、冷陰極ランプLcは正常であるが2次電池Bの充電が不足していたものとして発光ダイオードLED3 は点灯させないようにする。商用電源ACの停電からランプ電流が流れる期間が上記所定時間を越えているときには、冷陰極ランプLcは正常であると判断して発光ダイオードLED3 を点灯させないのはもちろんのことである。
【0059】
プロセッサ15の上記動作をまとめると、図11のようになる。図11における右半分について図8に示した実施例4と同符号を付した処理は同じである。本実施例では、上述したように、2次電池Bの充電時間を計時し(S9)、また充電電流の停止によって商用電源ACの停電を検出する(S10)。停電を検出するとランプ電流を検出できる時間を計測し、この時間が25分以内であるときには(S11)、2次電池Bの充電時間が24時間を越えているか否かを判定する(S12)。両条件が満たされたときには、冷陰極ランプLcの異常とみなして表示回路5により異常表示を行なう。また、ステップS11,S12のいずれかの条件が満たされなければ、冷陰極ランプLcは正常であるものと判断して、異常表示は行なわないようにする(S13)。図11ではランプ電流についての処理と、充電時間についての処理とを並列的に記述しているが、実際には交互に処理を行なうなどの方法で逐次的に両処理を行なうことが可能である。他の構成および動作は実施例4と同様であるから説明を省略する。
【0060】
(実施例6)
本実施例は、実施例2の構成においてプロセッサ15の動作を変更したものである。すなわち、プロセッサ15は図12に示すように動作することによって、ランプ交換後に電源を再投入したときに点灯回路2を確実に始動して冷陰極ランプLcを点灯させ、またランプ電流の通電の累積時間をリセットして、新たな冷陰極ランプLcについて点灯時間を計時するようにし、また同時に表示回路5に対して発光ダイオードLED3 を消灯させるように指示を与えるのである。
【0061】
このような一連の処理を行なうために、図8に示した処理に対して、ステップS9〜S11の動作をプロセッサ15の動作として付加している。すなわち、点灯回路2の動作停止の後に、商用電源ACを切って(消灯スイッチSW1 を操作する)冷陰極ランプLcを交換し、次に商用電源ACを再投入すると、プロセッサ15の10番端子は、短時間だけHレベルになった後に、充電検出回路8の発光ダイオードPT3 に電流が流れることによってLレベルになる。このようなモード変化を検出すると(S9)、プロセッサ15は11番端子をHレベルにして点灯回路2の動作を再開させる(S10)。また、ランプ電流の通電時間に関する累積計時をリセットし、交換した冷陰極ランプLcについての通電時間の計時を開始し、同時に、16番端子をLレベルにして発光ダイオードLED3 を消灯させる(S11)。
【0062】
以上のようにして、ランプ交換の際に新しい冷陰極ランプLcを確実に始動させ、通電時間をリセットするとともに、異常表示をリセットする一連の処理を行なうことができるのである。他の処理については実施例5と同様であるから説明を省略する。
(実施例7)
本実施例では、2次電池Bの交換時期を報知するようにした例を示す。すなわち、2次電池Bを電源として点灯させたときに、点灯開始から一定時間後の電池電圧に基づいて2次電池Bの経時変化を検出することで、2次電池Bの放電時間の短縮を報知し、商用電源ACの停電時における点灯時間が短くなる前に2次電池Bの交換を促すのである。
【0063】
本実施例は、実施例5の構成について、図13に示すように、電池電圧検出回路9を付加し、電池電圧検出回路9の出力に基づいてプロセッサ15が表示回路5の表示状態を切り換えるようにしてある。電池電圧検出回路9はプロセッサ15に内蔵され、図14に示すように、プロセッサ15の9番端子に印加された2次電池Bの電圧を検出する。すなわち、プロセッサ15に内蔵された電池電圧検出回路9は、2次電池Bを電源として点灯回路2が動作を開始してから一定時間後の9番端子への印加電圧を記憶し、この電圧を基準値(たとえば、上記一定時間経過前の電圧)と比較し、その差が所定のしきい値を越えているときには2次電池Bの特性が劣化したと判断するのである。また、表示回路5では2次電池Bの異常については、冷陰極ランプLcの表示とは別の発光ダイオードLED4 を用いて表示する。この発光ダイオードLED4 は、プロセッサ15の18番端子がHレベルになるとトランジスタQ19を介して点灯するように制御される。他の構成は、実施例5と同様である。
【0064】
次に、本実施例のプロセッサ15の動作を図15に基づいて説明する。プロセッサ15は、電源が投入されると(S1)、ランプ電流検出回路6から7番端子への入力によってランプ電流の有無を判定し(S2)、ランプ電流が流れているときに充電検出回路8から10番端子への入力によって停電が検出されなければ(S3)、ランプ電流が流れている期間をプロセッサ15に内蔵したタイマカウンタにより正常点灯状態での点灯時間を累積経時する(S4)。この累積時間が20000時間に達すると(S5)、冷陰極ランプLcの寿命に近いものとして16番端子をHレベルにし発光ダイオードLED3 を点灯させてランプを交換させるように異常表示を行なう(S6)。一方、ステップS2においてランプ電流が検出されないときには、点灯回路2が無負荷であると判断して発光ダイオードLED3 を点灯させて異常表示を行なう(S6)。要するに、発光ダイオードLED3 が点灯すれば、冷陰極ランプLcの交換が促されることになる。
【0065】
ステップS3において充電検出回路8からの10番端子への入力によって停電が検出されたときには、非常点灯状態での点灯時間をプロセッサ15に内蔵された別のタイマカウンタにより計時する(S7)。また、停電検出から一定時間(25分よりも短い時間であって、2次電池Bにより冷陰極ランプLcが始動するのに要する程度の時間)後における9番端子への印加電圧を検出して記憶する(S8)。冷陰極ランプLcの点灯時間を計時しているタイマカウンタの計時時間が25分に満たずに冷陰極ランプLcが消灯した場合には(S9)、冷陰極ランプLcの異常と判断して発光ダイオードLED3 を点灯させる(S6)。タイマカウンタの計時時間が25分を越えたときには、停電検出から25分後の9番端子への印加電圧を検出し(S10)、先に記憶している電圧との差を求めて、この差が所定のしきい値以内か否かを判断する(S11)。ここで、両電圧の差が小さいときには2次電池Bの特性劣化はないものとし、両電圧の差がしきい値よりも大きいときには2次電池Bの特性が劣化したものとして、18番端子をHレベルにして発光ダイオードLED4 を点灯させ、2次電池Bが寿命であることを報知するのである(S12)。
【0066】
上述したように、冷陰極ランプLcが割れたりリークが生じたりすると無負荷状態を検出して異常を報知し、また冷陰極ランプLcの点灯時間を累積して冷陰極ランプLcの寿命前に報知することによって、冷陰極ランプLcの交換時期を報知することができるのである。さらに、2次電池Bの放電時における電圧変化に基づいて2次電池Bの寿命を検出して報知することにより2次電池Bの交換を促すことができ、2次電池Bの劣化による表示輝度の低下や非常点灯時間の低減を防止し、誘導灯の動作の信頼性を向上させることができる。
【0067】
なお、本実施例では、商用電源ACからの給電による正常点灯状態での冷陰極ランプLcの点灯時間のみを累積して冷陰極ランプLcの寿命の目安としているが、2次電池Bによる非常点灯状態は正常点灯状態に比較して充分に短いから、冷陰極ランプLcの寿命判断を行なう際に非常点灯状態での点灯時間を省略しても大きな誤差は生じない。また、本実施例では、異常時における点灯回路2の動作を停止させる処理を省略しているが、発光ダイオードLED2 の点灯とともに点灯回路2の動作を停止させるようにしてもよい。他の構成および動作は実施例5と同様である。さらに、本実施例では、2次電池Bの特性劣化による放電時間の短縮を検知して2次電池Bの交換時期を報知するために、非常点灯の開始から一定時間後の2次電池Bの電圧と基準値との差を用いていたが、非常点灯の際の点灯時間を非常点灯のたびに計時して記憶し、非常点灯の際の点灯時間同士を比較することによって、2次電池Bの交換時期を判断するようにしてもよい。
【0068】
(実施例8)
本実施例は、図16に示すように、複数本の冷陰極ランプLca,Lcbを用いる例を示す。複数本の冷陰極ランプLca,Lcbを用いる場合、商用電源ACが通電時には周囲が明るいからすべての冷陰極ランプLca,Lcbを点灯させて表示輝度を高め、商用電源ACの停電時には周囲が暗いから冷陰極ランプLca,Lcbの点灯灯数を低減させて表示輝度を下げるという動作が一般的である。いま、2本の冷陰極ランプLca,Lcbをそれぞれ個別の点灯回路2a,2bで点灯させるものとすると、図19に示すように、一方の点灯回路2aは上述した各実施例と同様に商用電源ACの通電時には直流電源回路1から給電され停電時には2次電池Bから給電されるようにし、他方の点灯回路2bは商用電源ACの通電時に直流電源回路1から給電され停電時には動作を停止するように構成することが考えられる。しかしながら、このような構成を採用すると、冷陰極ランプLcaは商用電源ACの通電時と停電時との両方で点灯するのに対して、冷陰極ランプLcbは商用電源ACの通電時にのみ点灯するから、両冷陰極ランプLca,Lcbが同じであっても冷陰極ランプLcaのほうが交換時期が早くなる。ここで、冷陰極ランプLca,Lcbの点灯時間を個別に計時すると回路構成が複雑になり、また両冷陰極ランプLca,Lcbの交換時期が異なると交換に手間がかかるから、寿命の短いほうに合わせてランプ交換時期を報知することが考えられるのであるが、他方は寿命が残されているから、上記報知に従って一括してすべての冷陰極ランプLca,Lcbを交換すると不経済になるという問題が生じる。
【0069】
そこで、本実施例では、図16に示すように、非常点灯時にどちらの冷陰極ランプLca,Lcbを点灯させるかを制御回路7で選択し(すなわち、動作させる点灯回路2a,2bを選択する)、非常点灯のたびに各冷陰極ランプLca,Lcbを交互に点灯させるのである。具体回路を図17に示す。直流電源回路1、充電回路3、電源切換回路4については実施例4と同様に構成され、各点灯回路2a,2bは実施例4の点灯回路2とそれぞれ同様に構成されている(図7に示した部材と同機能の部材には同符号に加えてa,bを添字として付してある)。図17ではランプ電流の通電時間を累積計時する構成は省略してあるが、実際には実施例4と同様の制御回路7を用いて点灯時間を計時し、ランプ交換時期を報知するようになっている。
【0070】
制御回路7には、コンデンサC2 の両端電圧に基づいて正常点灯と非常点灯とを識別し、非常点灯のたびに各点灯回路2a,2bの一方の動作を交互に停止させる選択回路16を付加してある。選択回路16は、直流電源回路1の出力端に設けたコンデンサC2 の両端電圧を分圧する一対の抵抗R26,R27と、分圧された電圧が既定値以下になるとオフになるツェナーダイオードZD1 と、ツェナーダイオードZD1 がオフになると出力をHレベルに立ち上げる反転回路NOT1 と、コンデンサC28および抵抗R28よりなる微分回路とを備え、商用電源ACの停電に伴ってコンデンサC2 の両端電圧が低下するたびに、微分回路によってフリップフロップFF1 へのトリガが入力されるようになっている。したがって、商用電源ACの停電毎にフリップフロップFF1 の出力は交互に反転することになる。そこで、このフリップフロップFF1 の非反転出力および反転出力とコンデンサC2 の正極電位との論理和をそれぞれオア回路ORa,ORbから出力し、各オア回路ORa,ORbの出力を反転回路NOTa,NOTbで反転させて各点灯回路2a,2bのトランジスタQ18a,Q18bのベースに入力することで、商用電源ACの停電時にはいずれか一方の点灯回路2a,2bのみを動作させ、かつ停電毎に動作する点灯回路2a,2bを交互に入れ替えることができるのである。
【0071】
図18を用いてさらに詳しく動作を説明すると、図18(a)のように商用電源ACの通電時には図18(b)のようにコンデンサC2 の正極電位は各オア回路ORa,ORbに対してHレベルになるから、各反転回路NOTa,NOTbへの入力はHレベルであって(図18(f)(i))、図18(g)(j)のように各点灯回路2a,2bのトランジスタQ18a, Q18bはオフになる。したがって、両点灯回路2a,2bが動作して両冷陰極ランプLca,Lcbが点灯する(図18(g)(j)のオン期間に、対応する点灯回路2a,2bは停止する)。一方、商用電源ACの停電時には(図18(a))、コンデンサC2 の正極電位はオア回路ORa,ORbに対してLレベルになるが(図18(b))、図18(c)のように反転回路NOTaの出力が立ち上がり、図18(d)のように微分回路からトリガが出力される。フリップフロップFF1 の非反転出力(図18(e))と反転出力(図18(h))との一方はHレベルであるから、Hレベルに対応したほうの点灯回路2a,2bが動作して一方の冷陰極ランプLca,Lcbが点灯する。その後、商用電源ACが通電され、再び停電すると、フリップフロップFF1 にトリガが入力されて非反転出力と反転出力とのレベルが反転するから、前回に動作していた点灯回路2a,2bとは異なる点灯回路2a,2bが動作する(前回は点灯回路2aが動作したとすれば、今回は点灯回路2bが動作する)。このようにして、商用電源ACの停電毎に動作する点灯回路2a,2bが交互に入れ替わるのである。
【0072】
上述したように、非常点灯時には一方の冷陰極ランプLca,Lcbしか点灯しないのであるが、非常点灯毎に点灯する冷陰極ランプLca,Lcbを入れ替えるから、両冷陰極ランプLca,Lcbの通算の点灯時間に大きな差が生じることがなく、ランプ交換時期の報知時に両冷陰極ランプLca,Lcbを同時に交換しても両冷陰極ランプLca,Lcbを同程度の寿命で交換することができ、一方の冷陰極ランプLca,Lcbに充分な寿命を残した状態で交換するという不都合が生じないのである。他の構成および動作は実施例4と同様である。
【0073】
【発明の効果】
請求項1の発明は、光源として冷陰極ランプを用いているので、光源からの発熱量を抑制することができ、小型化した場合でも熱的影響による2次電池の特性劣化や光源自体の温度上昇による発光輝度の低下を防止することができるという利点がある。しかも、冷陰極ランプは熱陰極ランプに比較して一般に管径が小さいから、熱的影響が少なくこととあいまって誘導灯の小型化が可能になるという利点を有する。また、商用電源の停電前における2次電池の充電時間が第1の所定時間以上であるときに充電条件が正常であると判定し、かつ充分な充電時間が確保されているにもかかわらず、停電から無負荷までの時間が第2の所定時間内であるときに異常と判定するから、2次電池や光源の異常を検出することができるという利点がある。
【0074】
請求項2の発明は、直流電源より高周波電力を出力して光源を高周波点灯させる点灯回路を設け、商用電源の通電時には商用電源を整流し直流化した直流電源を点灯回路に供給し、商用電源の停電時には通電時に充電した2次電池から点灯回路に直流電源を供給する構成を採用し、商用電源の通電時と停電時とにかかわらず光源を高周波点灯させるから、チョークコイルよりなる大型の安定器が不要になり、全体として小型化が可能になるという利点がある。
【0075】
請求項3の発明は、光源の光出力が所定値以下に低下すると報知するから、冷陰極ランプのようにランプ電圧やランプ電流の変化では寿命を判定するのが難しい場合でも交換時期を報知することができるという利点を有する。しかも、光源の点灯状態で交換時期を報知するから、非常時に光源が点灯しないという不都合が生じないようにランプ交換を促すことができるとともに、発注から入手までに比較的時間のかかる冷陰極ランプを点灯しなくなる前に用意することができるという効果がある。
【0076】
請求項4の発明は、少なくとも商用電源の通電時における光源の点灯時間を累積計時することで光源の寿命の目安を得ており、光源が寿命に至るまでに事前にランプ交換を促すことができるから、非常時に光源が点灯しないという不都合が生じないようにランプ交換を促すことができて信頼性が向上するという利点がある。また、光源が寿命に近づくと寿命に至るまでに交換を促すから、あらかじめ予備の光源を在庫しておく必要がなく、在庫のためのスペースが不要であるとともに必要以上の光源を購入する必要もなく経済的であるという効果もある。
【0077】
請求項5の発明は、光源の点灯時間によって光源の寿命の目安を与えているから、請求項4の発明と同様の効果に加えて、点灯回路の無負荷を検出した場合も報知することで光源の破損などによる無負荷状態を報知してランプ交換を促すことができるという利点がある。
請求項6の発明は、点灯回路の無負荷が検出されると点灯回路の動作を停止させるから、点灯回路が無負荷になっても電極部分に高電圧が印加されず、点灯回路の構成部品へのストレスやランプ交換の際の感電事故などを防止することができるという利点がある。
【0079】
請求項7の発明は、点灯回路の動作停止後に電源切換回路により点灯回路への給電源が切り換えられると点灯回路を再始動するから、光源の破損などに伴って点灯回路の動作が停止したときに、ランプ交換を行なった後に商用電源の入切による給電源の切り換えを行なうだけで点灯回路の停止状態を容易に解除することができるという利点がある。
【0080】
請求項8の発明は、商用電源の通電時における光源の点灯時間を計時することにより光源の寿命を報知し、また商用電源の停電時における光源の点灯時間を計時するとともに停電時における点灯時間の減少率が既定値を越えると2次電池の交換時期を報知するから、光源の交換時期の報知だけではなく、2次電池の経時変化による特性劣化を検出して報知することができるという効果がある。すなわち、2次電池は充放電を繰り返すと放電時間がしだいに短くなるから、停電時における点灯時間の減少傾向を把握して2次電池の交換を促すことができるという利点を有する。
【0081】
請求項9の発明は、光源を複数個設けて商用電源の停電時には通電時よりも点灯灯数を減らす場合に、停電時に点灯させる光源を固定的に決めるのではなく停電毎に循環的に切り換えることで、非常点灯時における通算の点灯時間を各光源でほぼ均等化し、各光源の通算の点灯時間のばらつきを小さくすることができるという利点がある。すなわち、通算の点灯時間がもっとも長い光源に合わせてランプ交換の時期を決める場合でも、各光源の通算の点灯時間に大幅なばらつきがないから、光源の寿命が充分に残っている状態で交換することによる無駄が少ないという利点を有する。
【図面の簡単な説明】
【図1】実施例1のブロック図である。
【図2】実施例1の回路図である。
【図3】冷陰極ランプと熱陰極ランプとの温度特性を示す動作説明図である。
【図4】実施例2の回路図である。
【図5】実施例3の回路図である。
【図6】実施例4のブロック図である。
【図7】実施例4の回路図である。
【図8】実施例4の動作説明図である。
【図9】実施例5のブロック図である。
【図10】実施例5の回路図である。
【図11】実施例5の動作説明図である。
【図12】実施例6の動作説明図である。
【図13】実施例7のブロック図である。
【図14】実施例7の回路図である。
【図15】実施例7の動作説明図である。
【図16】実施例8のブロック図である。
【図17】実施例8の回路図である。
【図18】実施例8の動作説明図である。
【図19】実施例8に対する比較例を示すブロック図である。
【図20】誘導灯の外観斜視図である。
【図21】従来例の回路図である。
【符号の説明】
1 直流電源回路
2 点灯回路
2a 点灯回路
2b 点灯回路
3 充電回路
4 電源切換回路
5 表示回路
6 ランプ電流検出回路
7 制御回路
8 充電検出回路
9 電池電圧検出回路
16 選択回路
AC 商用電源
B 2次電池
Lc 冷陰極ランプ
Claims (9)
- 商用電源の通電時に充電される2次電池と、商用電源の通電時には商用電源から給電され商用電源の停電時には2次電池から給電される光源とを備え、光源として冷陰極ランプを用いた誘導灯において、点灯回路の無負荷状態を検出する無負荷検出手段と、商用電源の停電前における2次電池の充電時間が第1の所定時間以上であるときに充電条件が正常であると判定する充電判定手段と、商用電源の停電からの光源の点灯時間を計時する非常点灯計時手段と、充電判定手段により判断された充電条件が正常であり非常点灯計時手段により計時された停電から無負荷検出手段により点灯回路の無負荷が検出されるまでの時間が第2の所定時間内であるときに異常と判定する判定手段とを備えることを特徴とする誘導灯。
- 商用電源を整流し直流を出力する直流電源回路と、直流電源により高周波電力を出力して光源を高周波点灯させる点灯回路と、商用電源の通電時には直流電源回路から点灯回路に給電させ商用電源の停電時には2次電池から点灯回路に給電させる電源切換回路とを備えることを特徴とする請求項1記載の誘導灯。
- 光源の光出力を検出する光センサと、光センサにより検出される点灯中の光出力が所定値以下に低下すると報知する報知手段とを備えることを特徴とする請求項1または請求項2記載の誘導灯。
- 少なくとも商用電源の通電時における光源の点灯時間を累積計時する点灯計時手段と、点灯計時手段により累積計時された点灯時間が所定時間に達すると報知する報知手段とを備えることを特徴とする請求項1または請求項2記載の誘導灯。
- 少なくとも商用電源の通電時における光源の点灯時間を累積計時する点灯計時手段と、点灯計時手段により累積計時された点灯時間が所定時間に達するか前記無負荷検出手段により無負荷が検出されると報知する報知手段とを備えることを特徴とする請求項1または請求項2記載の誘導灯。
- 前記無負荷検出手段により点灯回路の無負荷が検出されると点灯回路の動作を停止させる動作停止手段を備えることを特徴とする請求項1または請求項2または請求項5記載の誘導灯。
- 点灯回路の動作停止後に電源切換回路により点灯回路への給電源が切り換えられると点灯回路を再始動するリセット手段を備えることを特徴とする請求項6記載の誘導灯。
- 商用電源の通電時における光源の交換後からの通算の点灯時間と停電時における点灯時間とを各別に計時する点灯計時手段と、通電時における点灯時間が所定時間に達すると光源の交換時期を報知する第1の報知手段と、停電時における点灯時間の減少率が既定値を越えると2次電池の交換時期を報知する第2の報知手段とを備えることを特徴とする請求項1または請求項2記載の誘導灯。
- 複数個の光源を有し、商用電源の停電時に点灯させる光源の個数を商用電源の通電時よりも減らすとともに、停電時に点灯させる光源を停電毎に循環的に切り換える選択手段を備えることを特徴とする請求項1または請求項2記載の誘導灯。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13340194A JP3718859B2 (ja) | 1994-06-15 | 1994-06-15 | 誘導灯 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13340194A JP3718859B2 (ja) | 1994-06-15 | 1994-06-15 | 誘導灯 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH088073A JPH088073A (ja) | 1996-01-12 |
JP3718859B2 true JP3718859B2 (ja) | 2005-11-24 |
Family
ID=15103889
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13340194A Expired - Lifetime JP3718859B2 (ja) | 1994-06-15 | 1994-06-15 | 誘導灯 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3718859B2 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4683257B2 (ja) * | 2001-09-18 | 2011-05-18 | 東芝ライテック株式会社 | 誘導灯装置 |
JP5345013B2 (ja) * | 2009-07-31 | 2013-11-20 | エーイーテック株式会社 | 内照看板 |
JP2011091053A (ja) * | 2010-12-03 | 2011-05-06 | Toshiba Lighting & Technology Corp | 誘導灯装置 |
CN102684287A (zh) * | 2012-05-11 | 2012-09-19 | 中煤电气有限公司 | 用于煤矿井下的不间断应急照明与安全指示系统 |
-
1994
- 1994-06-15 JP JP13340194A patent/JP3718859B2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH088073A (ja) | 1996-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1471777B1 (en) | Discharge lamp lighting device and lighting apparatus | |
KR100303527B1 (ko) | 조명장치 | |
JP3718859B2 (ja) | 誘導灯 | |
JP2006185924A (ja) | 放電灯点灯装置 | |
JP2004259533A (ja) | 放電灯点灯装置 | |
JP4735521B2 (ja) | 放電灯点灯装置並びに照明器具 | |
JP2004234926A (ja) | 放電ランプ点灯装置 | |
JP4325671B2 (ja) | 照明装置 | |
KR970003170B1 (ko) | 전자식 안정기의 램프상태 감지회로와 이를 이용한 안정기 제어장치 및 전자식 안정기 | |
JP2005353382A (ja) | 蛍光ランプ点灯装置および照明制御システム | |
JP5351685B2 (ja) | 照明点灯装置および照明器具 | |
JP2007080740A (ja) | 放電灯点灯装置および照明装置 | |
JP4590991B2 (ja) | 放電灯点灯装置及び照明装置 | |
JP3832053B2 (ja) | 放電灯点灯装置 | |
JPH09289090A (ja) | 誘導灯 | |
JP3755194B2 (ja) | 放電灯点灯装置 | |
JP4802581B2 (ja) | 放電灯点灯装置および画像表示装置 | |
JP3033224B2 (ja) | 放電灯点灯装置 | |
JP4925304B2 (ja) | 放電灯点灯装置及びこれを用いた照明装置、液晶表示装置 | |
JPH0737692A (ja) | 非常灯点灯装置 | |
JP2007066628A (ja) | 放電ランプ点灯装置および照明器具 | |
JP3319894B2 (ja) | 放電灯点灯装置 | |
JP3840724B2 (ja) | 放電灯点灯装置 | |
JP4711127B2 (ja) | 放電灯点灯装置および照明装置 | |
JP2002043086A (ja) | 放電灯点灯装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040120 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040831 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041101 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050816 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050829 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080916 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090916 Year of fee payment: 4 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090916 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090916 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100916 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110916 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110916 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120916 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130916 Year of fee payment: 8 |
|
EXPY | Cancellation because of completion of term |