JP3700793B2 - 真空処理装置、真空処理装置の中で基板を処理する方法、及び、真空処理装置用のロック - Google Patents
真空処理装置、真空処理装置の中で基板を処理する方法、及び、真空処理装置用のロック Download PDFInfo
- Publication number
- JP3700793B2 JP3700793B2 JP00216395A JP216395A JP3700793B2 JP 3700793 B2 JP3700793 B2 JP 3700793B2 JP 00216395 A JP00216395 A JP 00216395A JP 216395 A JP216395 A JP 216395A JP 3700793 B2 JP3700793 B2 JP 3700793B2
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- lock
- chamber
- carrier
- transporting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/001—General methods for coating; Devices therefor
- C03C17/002—General methods for coating; Devices therefor for flat glass, e.g. float glass
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/50—Substrate holders
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/56—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/56—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
- C23C14/564—Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
- C23C14/566—Means for minimising impurities in the coating chamber such as dust, moisture, residual gases using a load-lock chamber
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Physical Vapour Deposition (AREA)
Description
【産業上の利用分野】
本発明は、フラットパネルディスプレイを処理するための自動化された装置に関し、より詳細には、生産量が高く汚染が最小限の状態で、ガラスパネルを真空中で取り扱い且つ処理するための方法及び装置に関する。
【0002】
【従来の技術】
フラットパネルディスプレイの製造は、インジウム−錫酸化物(ITO)及び金属を含む種々のフィルムを大きなガラスパネルに堆積させる工程を含んでいる。一般的には矩形状であるガラスパネルは、450mm×550mmあるいはそれ以上の寸法を有することができる。ITO及び金属は、堆積されるべき材料のターゲットからスパッタリングすることにより、ガラスパネルに堆積される。ITOの如き幾つかの場合においては、ターゲット材料は、スパッタリングチャンバの中で、酸素の如き気体と反応することができる。スパッタリングは一般に、基板を加熱する工程と、所望のフィルムを上記加熱された基板に堆積させる工程とを含んでいる。上記基板は、スパッタリングを行う前に、別のチャンバの中で予熱することができる。
【0003】
ガラスパネルにフィルムをスパッタリング堆積させるための製造装置は、基板ハンドリングが自動化され、生産量が高く、微粒子の汚染が最小限で、フロアスペースが小さく、信頼性が高いものでなければならない。フラットパネル型ディスプレイにスパッタリング堆積を行うためのある既存の装置は、いわゆる「インライン(”inline”」装置であり、このインライン装置においては、基板は、直線形状又はU字形状の経路に沿って、種々の処理チャンバを通って移動する。そのような装置の1つの欠点は、製造設備に大きなフロアスペースを必要とすることである。また、そのような装置の柔軟性は限られており、直列的な処理だけが可能であり、並行的な処理を行うことは全くできない。
【0004】
フラットパネル型ディスプレイのスパッタリング堆積を行うための他の既存の装置は、いわゆる「クラスタ・ツール(”cluster tool”)である。クラスタ・ツールにおいては、中央チャンバの周囲に複数のチャンバが設けられる。基板は、上記中央チャンバから選択された処理チャンバへ搬送される。既存の装置は、基板が水平な向きになるような形態を用いており、従って、微粒子による汚染が増大する。既存の装置はまた、生産量(スループット)が限定されている。
【0005】
フラットパネル型ディスプレイを製造するための既存の装置は総て、1又はそれ以上のの欠点を有しており、例えば、微粒子による汚染のために歩留が低下し、生産量が少なく、頻繁な清掃並びにターゲットの交換のために休止時間が長く、大きなパネルを処理する能力がなく、プロセスの監視が貧弱であり、広いフロアスペースを必要とし、大きなクリーンルームを必要とする。
【0006】
【発明が解決しようとする課題】
本発明の目的は、上述の欠点を解消し、フラットパネルディスプレイ用の基板を取り扱い且つ処理するための方法及び装置を提供することである。
【0007】
【課題を解決するための手段】
本発明の1つの特徴によれば、真空処理装置が提供される。この真空処理装置は、基板を装置の中へ装填するすなわち積み込むためのロードロックと、基板を処理するための複数の処理チャンバと、装置から基板を積み卸すためのアンロードロックと、上記ロードロック、各々の処理チャンバ、及びアンロードロックにゲート弁を介して接続される中央のバッファチャンバとを備えている。上記バッファチャンバは、垂直軸線の周囲で回転可能な回転テーブルを備えている。真空処理装置は更に、回転テーブルを垂直軸線の周囲で回転させるための回転手段と、基板が当該真空処理装置を通して搬送されて処理される際に該基板を垂直方向の向きで各々支持する2又はそれ以上の基板キャリアと、上記基板キャリアを上記ロードロック及び回転テーブルに向けておよびこれらの間で、また、上記回転テーブル及び選択された処理チャンバに向けておよびこれらの間で、更に、上記回転テーブル及びアンロードロックに向けておよびこれらの間で搬送するための搬送手段とを更に備えている。真空処理装置は更に、上記回転手段及び搬送手段を制御し、前記各々の基板キャリアが、選択された経路に従って真空処理装置を移動するようにする制御手段を備えている。
【0008】
上記回転テーブルは、該回転テーブルの垂直な回転軸線から距離Dだけ等しく隔置された第1及び第2の基板キャリア位置を有するのが好ましい。搬送手段は、ロードロックと回転テーブルの第1及び第2の基板キャリア位置との間で上記基板キャリアを移動させるための手段を備えている。搬送手段は更に、上記回転テーブル上の第1及び第2の基板キャリア位置と上記処理チャンバとの間で上記基板キャリアを移動させるための手段を備えている。搬送手段は更に、回転テーブル上の第1及び第2の基板キャリア位置と上記アンロードロックとの間で上記基板キャリアを移動させるための手段を備えている。
【0009】
ロードロックは、基板を保持するための保持手段を有するドアを備えている。上記ドアが閉止され且つ上記ロードロックが排気された後に、基板キャリアの1つが、ロードロックの中へ搬送され、上記基板は、上記保持手段から基板キャリア上へ搬送される。アンロードロックは、基板を保持するための手段を有するドアを備えている。基板及び基板キャリアは、回転テーブルからアンロードロックの中へ搬送され、上記基板は、基板キャリアから保持手段へ搬送され、上記基板キャリアは、アンロードロックが通気される前に、バッファチャンバへ戻される。その結果、基板キャリアが大気に露呈されることはなく、従って、基板キャリアへの堆積物による汚染は最小限にされる。
【0010】
ロードロック及びアンロードロックは各々、ロックチャンバを形成するケーシングと、ロックチャンバ及び中央のバッファチャンバに向けておよびこれらの間で基板キャリアを搬送するためのキャリア搬送アセンブリと、ドア、基板サポートアーム、及び、サポートアーム及び基板キャリアに向けておよびこれらの間で基板を搬送するための搬送機構を有するドアアセンブリと、サポートアームに向けてあるいは該サポートアームから基板が搬送される開位置とサポートアーム及び基板キャリアに向けておよびこれらの間で基板が搬送される閉位置との間で上記ドアアセンブリを直線的に移動させるための直線駆動機構とを備えている。
【0011】
典型例においては、基板は矩形又は方形のガラス基板である。基板キャリアは、基板が真空処理装置を通って搬送されて処理される際に、該基板の縁部を水平に対して約45°にした状態で、上記基板を垂直方向の向きで保持する。
【0012】
好ましい実施例においては、中央のバッファチャンバの周囲に6つの処理チャンバが設けられ、また、基板を真空処理装置を通して搬送するために6つの基板キャリアが使用される。処理チャンバは、3つのスパッタリングチャンバ、及び、3つの予熱チャンバを備えることができる。
【0013】
本発明の他の特徴によれば、真空処理装置の中で基板を処理するための方法が提供される。真空処理装置は、中央のバッファチャンバと、ロードロックと、アンロードロックと、上記バッファチャンバの周囲に設けられ且つ上記バッファチャンバに接続された2又はそれ以上の処理チャンバと、真空処理装置の中で基板を搬送するための2又はそれ以上の基板キャリアとを備える。本方法は、基板をロードロックの中へ装填し、ロードロックを排気する工程と、上記基板を上記基板キャリアの1つへ搬送する工程と、上記基板及び基板キャリアを上記ロードロックから上記バッファチャンバ内の回転テーブルの上へ搬送する工程と、上記回転テーブルを垂直な回転軸線の周囲で回転させ、選択された処理チャンバに整合させる工程と、上記基板及び基板キャリアを上記回転テーブルから上記選択された処理チャンバの中へ搬送する工程と、上記基板を上記選択された処理チャンバの中で処理する工程と、基板及び基板キャリアを上記選択された処理チャンバから回転テーブルの上へ搬送する工程と、上記回転テーブルを回転させてアンロードロックに整合させる工程と、基板及び基板キャリアを上記回転テーブルからアンロードロックの中へ搬送する工程と、アンロードロックを通気させ、上記基板をアンロードロックから取り出す工程とを備える。上記各工程は、2又はそれ以上の基板に関して時間多重的に繰り返され、2又はそれ以上の基板が、真空処理装置によって同時平行的に処理されるようにする。
【0014】
【実施例】
本発明をより良く理解するために、図面を参照して本発明の実施例を以下に詳細に説明する。
【0015】
本発明の一実施例による真空処理装置の配置が図1に示されている。この装置の概略的な断面図は図2に示されている。システム制御装置、動力分配制御機器、真空ポンプ用の制御機器等を収容し、本装置の一部を形成するキャビネットは、図面の理解を容易にするために図1及び図2から省略してある。本装置は、フラットパネル型ディスプレイ用の矩形又は方形のガラスパネルをハンドリングして処理するように設計されている。より詳細には、本装置は、そのようなガラスパネルにスパッタリング堆積を行うように設計されている。本装置は基本的には、インジウム−錫酸化物(ITO)フィルム及び金属フィルムのスパッタリング堆積を行うように設計されているが、そのようなフィルムに限定されるものではない。
【0016】
本発明の真空処理装置は、クラスタの形態を用いており、この形態においては、種々の処理ステーションが、中央のバッファチャンバの周囲に配置されている。図1及び図2に示すように、処理ステーション10、12、14、16、18、20は、中央のバッファチャンバ24の周囲に設けられている。処理チャンバは一般に、加熱チャンバ及びスパッタリング堆積チャンバを備えており、また、高周波エッチング(RF etch)又は高周波バイアス(RF bias)の如き追加の機能を含むことができる。基板は、ロードロック26を介して装置の中へ装填され、また、アンロードロック28を介して装置から取り出される。ロードロック26及びアンロードロック28は共に、バッファチャンバ24に接続されている。基板は、ロボット30によって、ロードカセット32からロードロック26の中へ装填される。基板は、ロボット30によって、アンロードロック28からアンロードカセット34へ積み卸しされる。
【0017】
基板は、装置の中でハンドリング及び処理を受けている間は常に、垂直方向(正確に90°ではなくわずかに傾けてもよい)の向きに保持される。その結果、微粒子による汚染は最小限にされる。基板は、時間多重式にハンドリング及び処理され、これにより、複数の基板を同時に処理することができる。2500オングストロームの厚みを有するITOフィルムに関して、1時間当たり100を越える基板の生産量を達成することができる。
【0018】
ロードロック26及びアンロードロック28は、それぞれゲート弁40、42を介して、中央のバッファチャンバ24に連通している。同様に、真空チャンバ10、12、14、16、18、20は、それぞれゲート弁50、52、54、56、58、60を介して、中央のバッファチャンバ24に連通している。ロードロック26、アンロードロック28、各々の処理チャンバ、及び中央のバッファチャンバ24は、別々の真空排気装置によって排気される。図1の例においては、ロードロック26及びアンロードロック28は、粗引き・ポンプすなわち一次ポンプ43、及び、クライオポンプ44、45によって、真空排気される。処理チャンバ10は、クライオポンプ46によって排気される。各々の処理チャンバ12、14、16、18、20は、ターボポンプ47及びフォアラインポンプ48によって排気される。バッファチャンバ24は、クライオポンプ49によって排気される。本発明の範囲内において種々の真空排気形態を用いることができることは理解されよう。例えば、特定の用途の要件に応じて、各々の処理チャンバを真空排気するために、ターボポンプあるいはクライオポンプを用いることができる。運転のいずれの時点においても、ゲート弁の1つだけが開き、従って、処理チャンバとロードロック及びアンロードロックとの間の隔離が確実に行われる。
【0019】
基板は、基板キャリア64に乗って装置を通って搬送される。各々の基板キャリア64は、基板66を垂直方向の向きにして支持する。基板キャリア64を以下に詳細に説明する。基板66を保持する基板キャリア64は、キャリア搬送アセンブリによって、個々のチャンバと垂直軸線72の周囲で回転するようにバッファチャンバ24の中に設けられた回転テーブル70との間で装置を通って搬送される。回転テーブル70は、該回転テーブル70が回転している間に基板キャリア64を保持する基板キャリア位置74、76を備えている。図2においては、空の基板キャリア64が位置76にあり、位置74は空である。回転テーブル70上の基板キャリア位置74、76は、垂直軸線72から等しい距離Dだけ隔置されている。距離Dは、基板キャリア位置74、76を処理チャンバ10、12、14、16、18、20の基板処理位置、並びに、ロードロック26及びアンロードロック28のそれぞれロード位置及びアンロード位置に確実に整合させるように選択される。この構成は、基板キャリア64が、基板キャリア位置76とロードロック26との間、及び、基板キャリア位置76と処理チャンバ14との間で、直線的な線に沿って搬送されることを許容する。同様に、基板キャリア64は、基板キャリア位置74と回転テーブル70との間、及び、基板キャリア位置74と処理チャンバ16との間でも、直線的な線に沿って搬送されることが可能である。回転テーブル70が180°回転すると、位置74及び76が反転する。回転テーブル70が、図2に示す向きから時計方向に90°だけ回転すると、基板キャリア位置76が処理チャンバ12、18と整合し、これにより、位置76にある基板キャリア64は、上記処理チャンバの方へあるいは該処理チャンバから搬送できる。同様に、位置74は、処理チャンバ10、20に整合され、位置74にある基板キャリア64は、上記処理チャンバの方へあるいは該処理チャンバから搬送できる。回転テーブル70を図2に示す向きから反時計方向に90°だけ回転させると、位置74、76が反転する。
【0020】
図2に示す回転テーブルの構造は、基板及び基板キャリアが、ロードロック26から回転テーブル70上の基板キャリア位置74、76の1つに搬送し、該位置からいずれかの選択された処理チャンバの中へ搬送することを可能とする。基板及び基板キャリアは、選択された処理チャンバの中での処理の後に、第2の処理チャンバ又はアンロードロック28へ搬送することができる。従って、本装置は、完全な柔軟性を有し、また、後述するように、幾つかの基板を同時に処理して高い生産量を達成することができる。
【0021】
第1の実施例においては、ロードロック26は、基板66用のホルダ82を有するドア80を備えている。同様に、アンロードロック28は、基板用のホルダ88を有するドア86を備えている。ロードロック26のドア80は、開位置にある状態で図2に示されており、アンロードロック28のドア86は、閉位置にある状態で図2に示されている。以下に説明するある実施例においては、ロードロック26及びアンロードロック28は、ドア80及び86を開位置と閉位置との間で動かすための往復枢動機構を備えており、上記開位置においては、基板66は、クリーンルームの壁部を90を介してアクセスすることができ、また、上記閉位置においては、基板66は、それぞれのロックの中にシールされる。他のドア構造を用いることができることは理解されよう。
【0022】
制御装置92が、ゲート弁、キャリア搬送アセンブリ、ロードロック及びアンロードロック、処理チャンバ、回転テーブル、並びに、本装置の他の総ての要素を本明細書に記載する作用に従って制御する。制御装置92は、作動シーケンス、プロセス情報等を記憶すると共に上述の要素を制御するためのコンピュータを備えるのが好ましい。
【0023】
ゲート弁40、42、50、52、54、56、58、60は、基板キャリア64及び基板66の通過を許容する細長いスリットを有している。ゲート弁は、高い生産量を達成するために、約0.5乃至0.7秒で作動する必要がある。そのようなゲート弁は、本明細書で参照する1994年1月11日出願の米国特許出願シリアル番号08/180,205号において、詳細に説明されている。
【0024】
次に、基板をハンドリング及び処理するための代表的なシーケンスを説明する。基板66は、ロボット30によって、ロードカセット32からロードロック26のドア80上のホルダ82まで搬送される。次に、ドア80が、シールされた閉位置へ枢動し、ロードロック26が所望の圧力レベルまで排気される。所望の圧力レベルに達すると、ゲート弁40が開き、基板キャリア64が回転テーブル70上の位置76からロードロック26へ搬送される。基板66は、ホルダ82からキャリア64上へ搬送され、該キャリア64は、ゲート弁40を介して、回転テーブル70へ搬送される。次に、ゲート弁40が閉じて回転テーブル70が回転し、これにより、位置76にある基板及び基板キャリア64が、例えば処理チャンバ12の如き選択された処理チャンバに整合される。次に、ゲート弁52が開き、基板及び基板キャリア64が、回転テーブル70から処理チャンバ12の中へ搬送される。ゲート弁52が閉じ、基板は処理チャンバ12の中で処理される。チャンバ12の中の処理は、基板を予熱する工程を含むことができる。ゲート弁52が閉じているので、上記基板が処理チャンバ12の中で処理されている間に、他の基板及び基板キャリアを動かすことができる。チャンバ12の中の処理が完了すると、ゲート弁52が開き、基板及び基板キャリア64は回転テーブル70上に搬送される。回転テーブル70は一般に、第2の選択された処理チャンバ、例えば処理チャンバ14、に整合するように回転される。ゲート弁54が開き、基板及び基板キャリア64は、回転テーブル70から処理チャンバ14の中へ搬送される。ゲート弁54が閉じ、基板はチャンバ14の中で処理を受ける。チャンバ14の中の処理は、ITOフィルム又は金属フィルムのスパッタリング堆積を行う工程を含むことができる。チャンバ14の中の処理が完了すると、ゲート弁54が開き、基板及び基板キャリア64は回転テーブル70上へ搬送される。ゲート弁54が閉じ、回転テーブル70は、アンロードロック28に整合するように回転される。ゲート弁42が開き、基板及び基板キャリア64はアンロードロック28の中へ搬送される。基板は、基板キャリア64からホルダ88へ搬送され、また、基板キャリア64は、回転テーブル70へ戻される。次に、ゲート弁42が閉じ、アンロードロック28は大気圧に通気される。最後に、ドア86が、ドア80に関して図示した位置に相当する位置まで開き、ロボット30が、基板をホルダ88からアンロードカセット34へ搬送する。
【0025】
単一の基板のハンドリング及び処理は上述の如くである。図1及び図2に示す実施例においては、装置は、6つの処理チャンバと、6つの基板キャリアとを備えている。回転テーブル70は、2つの基板キャリア位置74、76を有している。ある特別の実施例においては、処理チャンバ10、12は、基板を予熱するために使用され、また、チャンバ14、16、18、20は、基板をスパッタリング被覆するために用いられる。更に、処理チャンバ10、12、14、16、18、20、並びに、ロードロック26及びアンロードロック28は、各ゲート弁によってバッファチャンバ24から隔離されている。この構成は、複数の基板を多重時間式に同時にハンドリングして処理することを可能とし、従って、高い生産速度を達成する。例えば、ゲート弁54は、基板が処理チャンバ14の中で処理されている時間の間は、閉じている。この時間の間に、追加の基板をロードロックから他の処理チャンバへ搬送し、基板をある処理チャンバから他の処理チャンバへ搬送し、更に、基板を処理チャンバからアンロードロックへ搬送することができる。処理装置の完全サイクルの一例が、下の表1に示されている。この例においては、一回の完全サイクルにおいて4つの基板が処理される。表1においては、各々のステップが、特定の処理チャンバへの、あるいは、その処理チャンバからの、あるいはロードロックからの、あるいはアンロードロックへの基板の運動を表している。
【0026】
表 1
チャンバ20を出る
アンロードロック28へ
チャンバ12を出る
チャンバ20へ入る
ロードロック26から
チャンバ12へ入る
チャンバ18を出る
アンロードロック28へ
チャンバ10を出る
チャンバ18へ入る
ロードロック26から
チャンバ10へ入る
チャンバ16を出る
アンロードロック28へ
チャンバ12を出る
チャンバ16へ入る
ロードロック26から
チャンバ12へ入る
チャンバ14を出る
アンロードロック28へ
チャンバ10を出る
チャンバ14へ入る
ロードロック26から
チャンバ10へ入る
基板キャリア64、並びに、該基板キャリア64を搬送するためのキャリア搬送アセンブリの概略図が図3に示されている。キャリア搬送アセンブリは、図4にも示されている。基板キャリア64は、ステンレス鋼の如き金属プレートであるのが好ましく、各キャリア搬送アセンブリのローラに着座するための下縁部100と、基板66を支持するための上縁部102、104とを有している。使用に際しては、基板キャリア64の金属プレート及び基板66は、垂直方向の向きを有している。上縁部102、104は、直角を形成すると共に、基板66の縁部を収容するためのV字形状の溝を有している。好ましい実施例においては、基板キャリア64の溝付きの上縁部102、104は、水平に対して約45°をなして配列されている。基板66は、基板キャリア64によって、2つの縁部に沿って支持されている。基板キャリア64は更に、縁部102、104から下方へ伸長するU字形状のノッチ106を有している。ノッチ106は、ロードロック・ドア80のホルダ82、及び、アンロードロック・ドア86のホルダ88を収容する寸法になされている。基板66は、該基板が装置の中へ導入されている時に、ホルダ82によって基板キャリア64の上へ降下される。また、基板66は、処理が完了した後に、ホルダ88によって基板キャリア64から持ち上げられる。好ましい実施例においては、基板キャリア64は、寸法が450mm×550mmで厚みが1.1mmまでの矩形のガラス基板を受け入れるような寸法を有している。しかしながら、基板キャリア64が、別の寸法及び厚みを有する基板を受け入れるように設計することができることは理解されよう。
【0027】
基板66を支持しあるいは支持しない基板キャリア64が、キャリア搬送アセンブリの装置によって、図1及び図2に示す真空処理装置の中で搬送される。各々の処理チャンバ10、12、14、16、18、20、ロードロック26、及び、アンロードロック28は、キャリア搬送アセンブリを備えている。また、キャリア搬送アセンブリは、基板を位置74、76へあるいはこれら位置から搬送するための回転テーブル70上に設けられている。回転テーブル70上のキャリア搬送アセンブリは、上記回転テーブルと共に回転し、選択された処理チャンバのキャリア搬送アセンブリ、ロードロック又はアンロードロックに整合することができる。
【0028】
図3においては、キャリア搬送アセンブリ110は、バッファチャンバ24の中に位置することができ、また、キャリア搬送アセンブリ112は、ロードロック26、アンロードロック28、又は、処理チャンバ10、12、14、16、18、20の1つの中に位置することができる。バッファチャンバ24の中のキャリア搬送アセンブリ110は、処理チャンバ、ロードロック及びアンロードロックの中のキャリア搬送アセンブリから物理的に分離されており、その理由は、そのようなチャンバは、基板キャリア64がこれらチャンバの間を搬送されている時を除いて、それぞれのゲート弁によってバッファチャンバから隔離されているからである。また、バッファチャンバ24の中のキャリア搬送アセンブリ110の少なくとも一部は、回転テーブル(図4)に設けられて該回転テーブルと共に回転し、これにより、基板キャリア64は、選択された処理チャンバ、ロードロック26、あるいは、アンロードロック28に整合することができる。
【0029】
各々のキャリア搬送アセンブリ110及び112は、複数のローラ116を有している。基板キャリアの下縁部100は、ローラ116に着座している。キャリア搬送アセンブリ112のローラ116は、モータ120によって駆動され、また、キャリア搬送アセンブリ110のローラ116は、モータ122によって駆動される。基板キャリア64は、モータ120、122を付勢させることにより、いずれかの方向に搬送することができる。キャリア搬送アセンブリ110、112の間の間隔は十分に小さく、これにより、基板キャリア64は、一方のキャリア搬送アセンブリから他方のキャリア搬送アセンブリへ阻害されることなく円滑に搬送されることができる。キャリア搬送アセンブリ110は更に、基板キャリア64の前方及び後方の側部において直立する平行な側壁124(一方の側壁だけが図3に示されている)を備えている。平行な側壁124に設けられたガイド輪128が、基板キャリア64の前方及び後方の側部に当接している。ガイド輪128は、モータ122によって駆動される。従って、ガイド輪128は、基板キャリア64を垂直方向の向きに保持し、かつ基板キャリア64が装置を通して搬送されるのを助ける。同様に、キャリア搬送アセンブリ112は、駆動されるガイド輪128を有する直立した側壁126を備えている。
【0030】
基板キャリア64及びキャリア搬送アセンブリ110、112は、装置の中で基板がハンドリングされ且つ処理されている間全体を通じて、基板66を垂直方向の向きに保持する。従って、ハンドリング及び処理の間に基板が水平方向の向きに保持される装置に比較して、微粒子による汚染の可能性は大幅に減少される。基板を水平方向にして処理する装置においては、基板の上面に粒子が堆積し、従って、基板を汚染することがある。また、基板66は、その縁部が保持され、従って、ハンドリングの間に基板の表面が損傷を受ける可能性を最小限にする。最後に、基板66は、キャリア搬送アセンブリ110、112の上方に保持され、これにより、キャリア搬送アセンブリの可動部品からの粒子が基板を汚染する可能性を最小限にする。
【0031】
処理の間に、基板66は、基板キャリア64によって処理チャンバの1つの中で静止した状態に保持される。スパッタリングチャンバの中では、基板66に堆積される材料のコーティングが、少なくとも上縁部102、104付近の部分の基板キャリア64にも堆積される。上記コーティングは、基板キャリア64が複数の基板を担持するために使用される時間経過と共に形成される。基板キャリア64が、新しい基板が装置の中へ装填される度毎に大気に露出された場合には、上記コーティングは、窒素、酸素、水蒸気及び他の気体を吸収することになる。基板キャリア64が、新しい基板と共に処理チャンバへ戻ると、コーティングからのガスの発生が、処理チャンバを汚染する可能性がある。この問題を避けるために、基板キャリア64は、真空処理装置を使用している間は大気に全く露呈されない。特に、基板キャリア64は、基板がロードロック26の中へ装填されている時には、ゲート弁40が閉じている状態のバッファチャンバ24の中に位置する。ゲート弁40は、ロードロック26が真空排気された後にだけ開かれ、基板を受け入れるために基板キャリア64がロードロック内に搬送される。同様に、アンロードロック28は、基板キャリア64が基板をホルダ88へ搬送している時には、高真空に保持される。アンロードロックは、基板キャリア64がアンロードロック28から回転テーブル70へ搬送され且つゲート弁42が閉じた後にだけ、基板を取り出すために大気に通気される。従って、基板キャリア64には、後に処理チャンバの中で発生する恐れのある大気ガスを吸収する機会が与えられない。
【0032】
バッファチャンバ24及び回転テーブル70の概略的な断面図が図4に示されている。回転テーブル70は、垂直軸線72の周囲で回転するように、バッファチャンバ24の中に設けられている。回転テーブル70は、バッファチャンバ24の真空ケーシングの外方に位置し且つ回転型の真空フィードスルー144によって回転テーブル70に接続された回転テーブル・モータ142によって回転される。キャリア搬送アセンブリ150が、回転テーブル70の基板キャリア位置74に位置し、また、キャリア搬送アセンブリ152が、回転テーブル70の基板キャリア位置に位置している。各々のキャリア搬送アセンブリ150、152は、被動ローラ154及び被動ガイド輪156を備えており、該被動ローラおよび被動ガイド輪は、図3に関して上に説明したように、基板キャリア64を垂直方向の向きで支持し、基板キャリア64を所望の方向に搬送する。バッファチャンバ24の真空ケーシングの外部に設けられたモータ160が、回転型の真空フィードスルー及び直角の駆動アセンブリ162を介して、キャリア搬送アセンブリ152に接続されている。バッファチャンバ24の真空ケーシングの外部に設けられているモータ164が、
回転型の真空フィードスルー及び直角の駆動アセンブリ166を介して、キャリア搬送アセンブリ150に接続されている。キャリア搬送アセンブリ150、152は、回転テーブル70と共に回転し、上述のように、選択された処理チャンバ、ロードロック、又はアンロードロックに整合する。
【0033】
図2に示すように、処理チャンバ14、16、18、20は、スパッタ源14A、16A、18A、20Aをそれぞれ備えている。各々の処理チャンバの中では、基板キャリア及び基板が、スパッタ源に対して相対的に静止した状態で保持され、所望の組成及び所望の厚みを有するフィルムが、基板に堆積される。
【0034】
各々のスパッタ源14A、16A、18A、20Aを代表するスパッタ源の断面図が、図5に示されている。このスパッタ源は、450mm×550mmの矩形のガラスパネル全体に、±3%の厚みの均一性を有するフィルムを堆積させるようになされている。スパッタ源はまた、高い堆積速度を生じる約29%程度の高い収集効率を達成するように設計されている。スパッタ源は、ITOフィルム及び金属フィルムを堆積させるようになされているが、そのようなフィルムに限定されるものではない。
【0035】
スパッタ源は、同心円状の3つのターゲットリングを備えており、該ターゲットリングは、内側のターゲットリング200と、中間のターゲットリング202と、外側のターゲットリング204とを有している。ターゲットリング200、202、204の中心は軸線206上にある。ターゲットリングは、基板210に堆積される材料、あるいは、スパッタリングチャンバの中の気体と反応して基板に堆積される材料を形成する材料から製造される。従って、例えばITOが基板上に堆積されている時に、ターゲットリング200、202、204は、代表的には、インジウムが90%で錫が10%の比である、インジウム錫金属、あるいは、インジウム及び錫の酸化物を含む。450mm×550mmの矩形のガラスパネルのスパッタリングコーティングの例においては、内側ターゲットリング200は、195mmの直径及び50mmの幅を有し、中間ターゲットリング202は、431mmの直径及び50mmの幅を有し、外側ターゲットリング204は、692mmの直径及び50mmの幅を有している。
【0036】
電磁アセンブリ220が、内側ターゲットリング200付近に磁界を形成する。内側ターゲットリング200及び電磁アセンブリ220の拡大断面図が、図6に示されている。電磁アセンブリ220は、環状の巻線を有する電磁コイル222と、電磁コイル222によって発生される磁界を内側ターゲットリング200の領域に集中させるためのポールアセンブリとを備えている。ポールアセンブリは、環状の後方ポールピース224と、概ね円筒形のポールピース226、228と、隔置された環状のポールピース226、228とを備えており、これら環状のポールピースは、ターゲットリング付近の磁界を整形するためにターゲットリング200の直ぐ後方に設けられている。電磁コイル222は、導線234によって、電源(図示せず)に接続されている。
【0037】
電磁アセンブリ236、238は、中間ターゲットリング202及び外側ターゲットリング204のそれぞれの付近に磁界を発生する。電磁アセンブリ236、238は、電磁アセンブリ220と同様であるが、対応するターゲットリングの直径に相当する一連の大きな直径を有している。電磁アセンブリは、ターゲットリングの付近に約300ガウスの磁界を形成する。
【0038】
スパッタ源は更に、円形の形態を有すると共にターゲットリング200、202、204から隔置されたアノード240、242、244を備えている。プラズマ電源(図示せず)が、各々のターゲットリングと対応するアノードとの間に接続されている。これらのアノードは一般に接地され、ターゲットリングは一般に、約500ボルトで作動する。
【0039】
各々のターゲットリング200、202、204は水冷される。図6を参照すると、ポールピース226、228は、電磁コイル222とターゲットリング200との間に包囲された通路250、251を形成する。通路250、251は、環状の水通路リング252によって分離されている。冷却水は、入口254を介して通路250の中へ導入される。水通路リング252とターゲットリング200との間には小さなギャップすなわち隙間が存在する。冷却水は、上記ギャップを介して通路250から通路251へ半径方向に流れ、ターゲットリング200から熱を取り除く。上記水は、出口256を介して通路251から排出される。
【0040】
スパッタ源はまた、ターゲットリングと基板210との間に反応性のガスを導入するための反応性ガスディフューザを備えている。反応性ガスディフューザ260が、スパッタ源の中央に設けられており、また、環状の反応性ガスディフューザ262が、中間ターゲットリング202と外側ターゲットリング204との間に設けられている。反応性ガスディフューザ260は、反応性ガスを導入するための空所263を備えている。この空所263は、複数の穴264を有するプレートによって覆われており、上記複数の穴は、ガスを上記空所からスパッタ源と基板との間の領域に分散させる。反応性ガスディフューザ262は、同様な構造を有している。一例として、ITOの堆積の間に、酸素が基板の領域に導入される。
【0041】
ターゲットリング200、202、204と基板210との間に位置する基板シールド266が、基板キャリア上の堆積を制限する。矩形の基板に対しては、基板シールド266は、基板の寸法に相当する寸法を有する矩形の開口を備える。
【0042】
スパッタリング堆積チャンバは、1ミリトール乃至20ミリトールの範囲の圧力のアルゴンで作動される。各々のターゲットリング200、202、204の表面で交差する電界及び磁界が、アルゴン原子をイオン化する。アルゴンイオンが、ターゲットリングを衝撃し、各々のターゲットリングからターゲット材料の原子を侵食する。スパッタリングされたターゲット材料は、基板の表面にフィルムとして堆積される。反応スパッタリングの場合には、スパッタリングされたターゲット原子が、ターゲット表面あるいは基板上のガスと反応し、所望の分子を形成する。図5及び図6のスパッタ源においては、各々のターゲットリング200、202、204の電界及び磁界は、独立して制御することができる。各々のターゲットリングからのスパッタリング速度は、特定のターゲットリングへのスパッタリングパワーを調節することにより調節され、これにより、基板面全体にわたって均一な厚みのフィルムを形成することができる。
【0043】
図5及び図6に示し上に説明したスパッタ源の構造は、約±3%の均一性を有するフィルムを450mm×550mmの寸法を有する矩形の基板の表面上に堆積させることができる。基板210は、29%程度の収集効率を達成するために、約100mmだけターゲットリングから隔置される。上記均一性及び収集効率を得るために、外側ターゲットリング204の外径は、矩形の基板の対角線の寸法に概ね等しくするのが好ましい。この形態を用いた場合には、12キロワットの全パワーに設定されたインジウム及び錫の酸化物ターゲットを用いて、2,500オングストロームの厚みを有するITOフィルムを約46秒間で堆積させることができる。
【0044】
スパッタ源の第2の実施例(図示せず)は、スパッタリングターゲットの背後の回転マグネトロン場を利用する。このマグネトロン場は、概ね心臓型(カーディオイド型)の形状を有しており、その幾何学的形状及び磁界は、スパッタリングターゲットを均一に侵食するように選定される。好ましいターゲットは、約6.35mm(0.25インチ)の厚み、及び、約825.5mm(32.50インチ)の直径を有している。この汎用型のスパッタ源は、1991年2月26日にアンダーソン外(Anderson et al)に発行された米国特許第4,995,958号、及び、1993年10月12日にデマレー外(Demaray et al)に発行された米国特許第5,252,194号に開示されている。
【0045】
処理チャンバ10、12(図2)に対応する予熱チャンバの単純化した断面図が、図7に示されている。基板66を保持する基板キャリア64が、処理チャンバ10の中に位置している。ヒータは、石英ランプとすることのできる管状のランプ300から成る列を備えている。ランプ300は、上記列の中において互いに平行に設けられている。ランプ列は、基板66を均一に加熱するに十分な大きさを有している。加熱チャンバ10、12においては、ランプ300は、基板66を直接照射する。一般に、ヒータは、各々のスパッタリング堆積チャンバにおいても使用され、スパッタリング堆積の間に基板の温度を維持する。スパッタリングチャンバの中において、ヒータは、基板よりスパッタ源とは反対側に設けられ、基板の裏側を加熱する。スパッタリングチャンバの中においては、ランプ300と基板との間にモリブデン(Mo)シールドが使用され、ランプをスパッタリング堆積から遮蔽している。モリブデンシールドは、上記ランプによって加熱され、該シールドは、基板66の裏側を加熱する。上記シールドはまた、温度の均一性を改善するために、銅又はグラファイト(石墨)から形成することもできる。ガラス基板は一般に、それ以前に堆積された材料の温度特性に応じて、250°C及び450°Cの間の温度まで加熱される。
【0046】
本装置に採用することのできる他のオプションは、いわゆるRFエッチング又はRFバイアスである。RFエッチングは、分離したRFエッチングチャンバの中において基板にRF場を与える工程を含む。RF電圧が、基板と概ね同じ寸法を有すると共に該基板に近接して隔置された導電性プレートに付与される。RF場は、チャンバの中のアルゴン原子のイオン化、並びに、基板表面の衝撃を生じさせる。RFバイアスの場合には、導電性プレートが、スパッタリング堆積チャンバの中の基板の裏側に近接して隔置される。導電性プレートに付与されたRF電圧は、基板上にDCバイアスを生じさせる。このDCバイアスは、基板に堆積されているイオンを加速させる。
【0047】
ロードロック26及びアンロードロック28の作用を図8乃至図10を参照して説明する。最初に、図10に示すように、基板66をロードロック・ドア80に置き、ホルダ82によって支持する。好ましい実施例においては、ホルダ82は、基板66の縁部を収容するためのV字形状の溝を有するホイールすなわち輪を備えている。次に図8を参照すると、基板の基板キャリア64への搬送が示されている。ホルダ82は、基板66が基板キャリア64の真上に来るまで、ドアから離れる方向に(図8の紙面に直交して)外方へ伸長する。次に、基板キャリア64は垂直方向に上昇され、基板66をホルダ82から持ち上げる。次に、ホルダ82はドアまで後退し、基板キャリア64は、基板66を縁部102、104で支持した状態で、ローラ116の元の位置へ降下される。これにより、基板キャリア64及び基板66は、上述の如く真空処理装置の中へ搬送される準備が整う。アンロードロック28に同様の機構を用いて、基板キャリア64からドア86のホルダ88まで基板66を搬送する。
【0048】
ロードロック26及びアンロードロック28用のドア開放機構の例を図9及び図10を参照して説明する。このドア開放機構を設ける目的は、ロックの1つの中で基板がシールされる閉位置から、例えば、クリーンルームを介して装置へ又は装置から基板を搬送する開位置へ移動することである。図9においては、アンロードロック・ドア86が、閉位置と開位置との間の中間位置にある状態で示されている。ドア86は、アーム370、372によって支持されており、これらアームは、それぞれのドア86の頂部の中央及び底部の中央に接続されている。アーム370は、軸線374の周囲で枢動する。アーム370、372が軸線374の周囲で枢動すると、ドア86は、軸線378の周囲で90°回転し、これにより、所望の運動を生じさせる。他のドア開放機構は、本発明の範囲内で用いることができることは理解されよう。
【0049】
上述の真空処理装置用のロードロック及びアンロードロックの好ましい実施例が、図11乃至図14に示されている。ロードロック400が、ゲート弁50を介して、バッファチャンバ24(図1及び図2)に接続されている。アンロードロック402が、ゲート弁42を介して、バッファチャンバ24に接続されている。上述の装置においては、ロードロック400が、ロードロック26と置き換わり、また、アンロードロック402が、アンロードロック28と置き換わっている。
【0050】
ロードロック400は、真空密なケーシング404と、ドアアセンブリ406と、直線駆動機構407とを備えている。アンロードロック402は、真空密なケーシング408と、ドアアセンブリ410と、直線駆動機構411とを備えている。一般に、アンロードロック402は、ロードロック400と鏡像関係にある。従って、以下においては、アンロードロック402だけを詳細に説明する。
【0051】
アンロードロック402のドアアセンブリ410は、ケーシング408の開口418を封止するためのドア416を備えている。ドアアセンブリ410は更に、基板サポートアーム420と、該基板サポートアーム420を制御するための搬送機構422とを備えている。ドアアセンブリ410は、図12に実線で示す開位置と図12に破線で示す閉位置との間で運動可能である。図11を参照すると、ドアアセンブリ406は、閉位置にある状態で示されており、また、ドアアセンブリ410は、開位置にある状態で示されている。ドアアセンブリ410は、直線駆動機構411によって、開位置と閉位置との間で移動する。ドアアセンブリ410及び直線駆動機構411は、ケーシング408に取り付けられた構造部材430によって支持されている。直線駆動機構411は、直線駆動モータ432と、直線駆動ベルト434と、アイドルローラ436とを備えている。キャリッジ438が、ドアアセンブリ410及び駆動ベルト434に取り付けられており、これにより、ドアアセンブリは、直線駆動モータ432が励起された時に、ガイドロッド437、439に沿って、開位置と閉位置との間で移動することができる。
【0052】
基板サポートアーム420は、直交する脚部442、444を備えており、これら脚部には、基板66を支持するためのV字形状の溝を有する3つのホイール440すなわち輪が取り付けられている。ホイール440は、基板66がその側部を水平に対して約45°をなすように位置決めされている。
【0053】
アンロードロック402は、真空処理装置から基板を取り出すために使用される。基板を装置から取り出すために、ドアアセンブリ410は最初に閉位置にあり、これにより、アンロードロック402のケーシング408が真空密にシールされる。アンロードロックのケーシング408は、ゲート弁40を閉位置にした状態で、真空排気装置によって排気され、該真空排気装置は、粗引きポンプすなわちラフ・ポンプ43、及び、クライオポンプ44、45を備えることができる。アンロードロックのケーシング408を排気した後に、ゲート弁40が開放され、基板キャリア446が、キャリア搬送アセンブリ450によって、バッファチャンバ24からアンロードロック402の中へ移動される。図3に関して上に説明したように、キャリア搬送アセンブリ450は、ローラ452と、ガイド輪454とを備えており、該ガイド輪は、モータ456によって駆動され、基板キャリア446を水平な経路に沿ってバッファチャンバ24とアンロードロック402との間で動かす。同様のキャリア搬送アセンブリが、バッファチャンバ24の中に設けられている。
【0054】
ドアアセンブリ410が閉位置にあり、また、アンロードロックのケーシング408が排気された状態で、基板66は、下に詳細に説明する搬送機構422によって、基板キャリア446からサポートアーム420へ搬送される。基板66は、サポートアーム420によって、基板キャリア446から持ち上げられて保持される。次に、基板キャリア446は、キャリア搬送アセンブリ450によって、水平な経路に沿ってバッファチャンバ24へ戻され、ゲート弁40が閉じる。次に、アンロードロックのケーシング408が大気に通気され、ドアアセンブリ410は、直線駆動モータ423を励起することにより、開位置へ移動される。基板66は、ドアアセンブリ410によって、その平面に平行に移動され、これにより、ドア416及び開口418が、比較的小さい寸法を有することを可能にすると共に、空気の移動を減少させる。ドアアセンブリ410が開位置にある時に、基板66は、ロボットによって、サポートアーム420から取り除かれる。
【0055】
好ましい実施例においては、基板キャリア446は金属プレートを備え、該金属プレートには、3つのサポートVホイール451、及び、3つの拘束Vホイール453が取り付けられている。各々のVホイール451、453は、金属プレートの平面に対して直交する軸線の周囲で回転するように、基板キャリア446の金属プレートに取り付けられており、また、その外周部には、基板を受け入れるためのV字溝を有している。3つのサポートVホイール451は、基板66をその側部が水平に対して約45°をなして垂直方向の向きで支持する。拘束Vホイール453は、例えば約0.127mm(0.005インチ)の如き小さな距離だけ、その主要な位置にある基板66から隔置され、基板がその値だけ湾曲した場合のための拘束手段として作用する。Vホイール451、453の形態は、加熱の間に基板が膨張した時に支持点に生ずる大きな摩擦を減少させる。基板キャリア446は更に、基板が搬送される間に、基板サポートアーム420上のホイール440を受け入れる開口455を有している。
【0056】
基板66は、搬送機構422によって、基板キャリア446からサポートアーム420まで搬送される。ロードロック400においては、基板66は、上述の作用と同様で且つ反対の手順で、サポートアームから基板キャリアへ搬送される。図12及び図14に最も良く示すように、搬送機構422は、運動可能なキャリッジ462に機械的に接続されたカム作用モータ460を備えている。基板サポートアーム420は、キャリッジ462に堅固に取り付けられている。キャリッジ462は、平行な垂直シャフト466、467に沿って運動することができる直線軸受け464を備えている。シャフト466、467の上方及び下方の端部は、接続ブロック470に取り付けられており、該接続ブロックは、平行な水平シャフト472、473に沿って運動可能な直線軸受を備えている。シャフト472、473は、静止型のブラケット474、475にそれぞれ取り付けられている。従って、キャリッジ462は、モータ460の制御を受けて、垂直方向及び水平方向に運動可能である。
【0057】
モータ460のシャフト482、並びに、キャリッジ462の水平スロット486の中で運動可能なカム従動子484に、クランクアーム480が取り付けられている。静止型のカム従動子490が、キャリッジ462のガイドスロット492を貫通している。ガイドスロット492は、モータ460がクランクアーム480を回転させる時に、キャリッジ462及び基板サポートアーム420の運動経路を確立する。ガイドスロット492は、3つの区間、すなわち、垂直な中央区間と、該中央区間から離れる方向に約45°の角度をなして伸長する上方区間と、上記中央区間から離れる方向に約45°の角度をなして伸長する下方区間とを有するのが好ましい。ガイドスロット492は、アンロードロック402内の基板キャリア446から基板を取り除く際(また、ロードロック400内のキャリア446へ基板を動かす際)の基板サポートアーム420の運動を画定する。モータ460が励起されると、クランクアーム480が180°回転し、キャリッジ462は、図14に実線で示す位置から破線で示す位置まで持ち上げられる。静止型のカム従動子490及びガイドスロット492が、キャリッジ462をその下方位置及び上方位置の間の経路494に従わせる。図13に示すように、サポートアーム420が、経路494の下方区間に沿って移動し、ホイール440を基板66の下で基板キャリア446に向かって動かす。次に、サポートアーム420が、経路494の垂直区間に沿って移動し、基板66を基板キャリア446から持ち上げる。最後に、サポートアーム420が、経路494の上方区間に沿って移動し、基板66を基板キャリア446から離れる方向に動かす。サポートアーム420の運動は、図13及び図14に示す経路494に限定されないことは理解されよう。
【0058】
基板66がロードロック400内の基板キャリア446へ搬送されると、サポートアーム420は、経路494を反対の方向に移動する。すなわち、基板66は、キャリア446の上を移動して次に下降し、これにより、基板66は、キャリア446のVホイール451の中に着座する。次に、サポートアーム420は、基板キャリア446から離れる方向に移動する。
【0059】
上述のように、ロードロック400及びアンロードロック402は、鏡像関係にあり、同様の態様で作動する。図11乃至図14に示して上に説明したロードロック及びアンロードロックは、比較的小さなドアを有するという利点を有しており、従って、微粒子による汚染の危険性を減少させる。また、基板のハンドリングの間に比較的小さな質量が移動し、また、関連する空気の移動量が比較的小さい。本装置は、ロードロック及びアンロードロックがクリーンルームの中に設けられ、また、ドアアセンブリ406、410が、ロボット装置によって基板の積み込み(ロード)及び積み卸し(アンロード)を行えるようにクリーンルーム壁90を貫通するように組み立てることができる。
【0060】
本発明の真空処理装置は、6つの処理チャンバ及び6つの基板キャリアを備えるものとして説明した。しかしながら、特定の用途に応じて、別の数の処理チャンバを装置に設けることができることは理解されよう。処理チャンバは、上述のプロセスすなわち工程以外のプロセスを実行するように構成することができる。異なる処理チャンバを任意に組み合わせたものを使用することができる。また、生産量及び処理チャンバの数に応じて、別の数の基板キャリアを装置に設けることもできる。更に、装置を通して基板を垂直方向の向きで搬送するために、いかなる適宜な機構を用いることもできる。結局、基板を装置に装填しまた基板を該装置から取り出すためにいかなる適宜な技術をも用いることができる。
【0061】
本発明の現時点において好ましい実施例を図示し且つ説明したが、本発明の範囲から逸脱することなく、当業者が、種々の改良及び変更を行うことができることは明らかであろう。
【図面の簡単な説明】
【図1】本発明の真空処理装置の配置図である。
【図2】基板の取り扱い及び処理を示すために図1の装置を切断して平面で示す概略断面図である。
【図3】本真空処理装置に使用される基板キャリア及びキャリア搬送アセンブリを示す概略立面図である。
【図4】本真空処理装置に使用されるバッファチャンバ及び回転テーブルを示す概略的な垂直断面図である。
【図5】本真空処理装置に使用されるスパッタ源の断面図である。
【図6】スパッタ源の拡大部分断面図である。
【図7】予熱チャンバ及びスパッタリング堆積チャンバで使用されるヒータの概略図である。
【図8】基板キャリアへあるいは該基板キャリアから基板を搬送するためにロードロック及びアンロードロックで使用されるアセンブリを示す概略図である。
【図9】アンロードロック・ドアの開位置及び閉位置の間の運動を示す概略図である。
【図10】ロックドアが開位置にある状態を示す概略図である。
【図11】ロードロック及びアンロードロックの別の実施例を示す平面図である。
【図12】図11の線12−12に沿ってアンロードロックを示す断面図である。
【図13】図12の線13−13に沿ってアンロードロックを示す概略断面図である。
【図14】図12の線14−14に沿ってドアアセンブリを示す断面図である。
【符号の説明】
10、12、14、16、18、20 処理チャンバ
14A、16A、18A、20A スパッタ源
24 バッファチャンバ
26 ロードロック
28 アンロードロック
30 ロボット
40、42、50、52、54、56、58、60 ゲート弁
43 ラフポンプ
44、45、49 クライオポンプ
47 ターボポンプ
48 フォアポンプ
64 基板キャリア
66 基板
70 回転テーブル
74、76 基板キャリア位置
80、86 ドア
82、88 ホルダ
92 制御装置
110、112 キャリア搬送アセンブリ
116 ローラ
120、122 モータ
150、152 キャリア搬送アセンブリ
200、202、204 ターゲットリング
Claims (3)
- 真空処理装置において、
当該装置の中へ基板を装填するためのロードロックと、
前記基板を処理するため該基板を垂直方向の向きでかつ基板の長さ方向に収容する複数の処理チャンバと、
当該装置から前記基板を積み卸すためのアンロードロックと、
前記ロードロック、前記各々の処理チャンバ、及び、前記アンロードロックに各々ゲート弁を介して接続されると共に、垂直軸線の周囲で回転可能な回転テーブルを有する中央のバッファチャンバと、
前記ロードロック、前記処理チャンバ、前記アンロードロック及び前記中央のバッファチャンバを個々に真空排気するための真空排気手段と、
前記回転テーブルを前記垂直軸線の周囲で回転させるための回転手段と、
2又はそれ以上の基板キャリアであって、基板が当該装置の中で搬送される際に前記基板を垂直方向の向きで各々支持すると共に、前記基板が処理される際に、前記回転テーブル及び前記バッファチャンバとは独立して、前記基板を前記処理チャンバの選択された1つの中で垂直方向の向きで各々支持する2又はそれ以上の基板キャリアと、
前記基板キャリアとは別体よりなり、該基板キャリアを前記ロードロック及び回転テーブルへ向けておよびこれらの間で、また、前記回転テーブル及び前記処理チャンバの前記選択された1つへ向けておよびこれらの間で、更に、前記回転テーブル及び前記アンロードロックへ向けておよびこれらの間で水平方向にかつ基板の長さ方向に搬送するための搬送手段と、
前記基板キャリアの各々が当該装置を通る選択された経路に従って移動し、これにより、2又はそれ以上の基板が当該装置を通して搬送され、同時に且つ独立して処理されることを可能とするように、前記回転手段、前記搬送手段、前記各ゲート弁及び各真空排気手段を制御するための制御手段とを備えることを特徴とする真空処理装置。 - 真空処理装置の中で基板を取扱うための方法において、
(a)中央のバッファチャンバと、該バッファチャンバ内で垂直軸線の周囲で回転可能に設けられた回転テーブルと、ロードロックと、アンロードロックと、前記バッファチャンバの周囲に設けられ且つ前記バッファチャンバに接続された2又はそれ以上の処理チャンバと、当該真空処理装置の中で基板を搬送する際に基板を支持するための2又はそれ以上の基板キャリアと、真空処理装置の中で基板キャリアを搬送するため該基板キャリアとは別体よりなる搬送装置とを備える真空処理装置であって、前記各々の基板キャリアが、基板が真空処理装置の中で搬送される際に基板を垂直の向きで支持するようになされた真空処理装置を準備する工程と、
(b)基板を前記ロードロックに装填し、前記ロードロックを排気する工程と、
(c)前記基板を前記ロードロック内で基板キャリアの1つへ搬送する工程と、
(d)前記基板及び基板キャリアを前記ロードロックから前記バッファチャンバ内の回転テーブルの上へ基板の長さ方向に搬送する工程と、
(e)前記回転テーブルを垂直な回転軸線の周囲で回転させ、前記処理チャンバの選択された処理チャンバに整合させる工程と、
(f)前記基板及び基板キャリアを前記回転テーブルから水平方向にかつ基板の長さ方向に搬送して
前記選択された処理チャンバの中へ入れる工程と、
(g)前記基板キャリアが、前記回転テーブル及び前記バッファチャンバとは独立して、前記基板を前記処理チャンバの中で垂直方向の向きで支持した状態で、前記基板を前記選択された処理チャンバの中で処理する工程と、
(h)前記基板を前記選択された処理チャンバから前記回転テーブルの上へ水平方向にかつ基板の長さ方向に搬送する工程と、
(i)前記回転テーブルを回転させて基板キャリアを前記アンロードロックに基板の長さ方向に整合させる工程
と、
(j)前記基板及び基板キャリアを前記回転テーブルから前記アンロードロックの中へ搬送する工程と、
(k)前記基板を前記基板キャリアから前記アンロードロックへ搬送する工程と、
(l)前記基板キャリアを前記アンロードロックから前記中央のバッファチャンバの回転テーブルの上へ搬送する工程と、
(m)前記アンロードロックを通気させ、前記基板を前記アンロードロックから取り出す工程と、
(n)2又はそれ以上の基板に関して時間多重的に前記工程(b)乃至(m)を繰り返し、2又はそれ以上の基板を前記真空処理装置によって同時平行的に処理する工程とを備えることを特徴とする方法。 - 真空処理チャンバへあるいは該真空処理チャンバから基板を搬送するためのロックにおいて、
ロックチャンバを形成するロックケーシングであって、前記ロックチャンバを前記真空処理チャンバに接続する封止可能な開口を有するロックケーシングと、
基板を垂直方向の向きで支持する基板キャリアを前記ロックチャンバ及び前記真空処理チャンバに向けておよびその間で基板の長さ方向に搬送するための該基板キャリアとは別体よりなるキャリア搬送アセンブリと、
ドア、基板サポートアーム、及び、前記基板を前記サポートアーム及び前記基板キャリアに向けておよびその間で搬送するための搬送機構を有するドアアセンブリと、
前記基板を前記サポートアームに向けてあるいは該サポートアームから搬送するための開位置と前記基板を前記サポートアーム及び前記基板キャリアに向けておよびその間で搬送するための閉位置との間で前記ドアアセンブリを直線的に移動させるための直線駆動機構と、
前記ドアアセンブリが前記閉位置にある時に、前記ロックチャンバを真空排気するための手段とを備えることを特徴とするロック。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17990394A | 1994-01-11 | 1994-01-11 | |
US179903 | 1994-01-11 | ||
US342275 | 1994-11-23 | ||
US08/342,275 US5738767A (en) | 1994-01-11 | 1994-11-23 | Substrate handling and processing system for flat panel displays |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH083744A JPH083744A (ja) | 1996-01-09 |
JP3700793B2 true JP3700793B2 (ja) | 2005-09-28 |
Family
ID=26875798
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP00216395A Expired - Lifetime JP3700793B2 (ja) | 1994-01-11 | 1995-01-10 | 真空処理装置、真空処理装置の中で基板を処理する方法、及び、真空処理装置用のロック |
Country Status (2)
Country | Link |
---|---|
US (1) | US5738767A (ja) |
JP (1) | JP3700793B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101739012B1 (ko) * | 2010-11-22 | 2017-05-23 | 주식회사 원익아이피에스 | 기판처리시스템 |
Families Citing this family (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997034742A1 (fr) * | 1996-03-18 | 1997-09-25 | Komatsu Ltd. | Dispositif de commande d'un systeme de transport de pieces |
DE29716440U1 (de) * | 1997-09-12 | 1997-12-11 | Balzers Ag, Balzers | Sputterstation |
US6730194B2 (en) * | 1997-11-05 | 2004-05-04 | Unaxis Balzers Aktiengesellschaft | Method for manufacturing disk-shaped workpieces with a sputter station |
TW461923B (en) | 1998-02-17 | 2001-11-01 | Sharp Kk | Movable sputtering film forming apparatus |
US6142722A (en) * | 1998-06-17 | 2000-11-07 | Genmark Automation, Inc. | Automated opening and closing of ultra clean storage containers |
JP2000144399A (ja) * | 1998-10-30 | 2000-05-26 | Applied Materials Inc | スパッタリング装置 |
US6949143B1 (en) * | 1999-12-15 | 2005-09-27 | Applied Materials, Inc. | Dual substrate loadlock process equipment |
US20020184970A1 (en) * | 2001-12-13 | 2002-12-12 | Wickersham Charles E. | Sptutter targets and methods of manufacturing same to reduce particulate emission during sputtering |
JP4981233B2 (ja) | 2000-05-11 | 2012-07-18 | トーソー エスエムディー,インク. | 音波の位相変化の検出を使用する、スパッターターゲット清浄度の非破壊評価のための方法と装置 |
KR100653468B1 (ko) * | 2000-05-31 | 2006-12-04 | 비오이 하이디스 테크놀로지 주식회사 | 액정 모듈의 반전 장치 |
JP2002057203A (ja) | 2000-08-14 | 2002-02-22 | Anelva Corp | 基板処理装置 |
TW512421B (en) * | 2000-09-15 | 2002-12-01 | Applied Materials Inc | Double dual slot load lock for process equipment |
JP4856308B2 (ja) * | 2000-12-27 | 2012-01-18 | キヤノンアネルバ株式会社 | 基板処理装置及び経由チャンバー |
JP2002203885A (ja) | 2000-12-27 | 2002-07-19 | Anelva Corp | インターバック型基板処理装置 |
EP1381703B1 (en) * | 2001-04-04 | 2011-01-26 | Tosoh Smd, Inc. | A method for determining a critical size of an inclusion in aluminum or aluminum alloy sputtering target |
KR100425860B1 (ko) * | 2001-07-30 | 2004-04-03 | 엘지.필립스 엘시디 주식회사 | 스퍼터링 증착장비용 히팅 챔버의 접지장치 |
FR2828428B1 (fr) * | 2001-08-07 | 2003-10-17 | Soitec Silicon On Insulator | Dispositif de decollement de substrats et procede associe |
WO2003014718A2 (en) * | 2001-08-09 | 2003-02-20 | Tosoh Smd, Inc. | Method and apparatus for non-destructive target cleanliness characterization by types of flaws sorted by size and location |
US7316966B2 (en) * | 2001-09-21 | 2008-01-08 | Applied Materials, Inc. | Method for transferring substrates in a load lock chamber |
JP4850372B2 (ja) | 2001-09-28 | 2012-01-11 | キヤノンアネルバ株式会社 | 基板処理装置 |
JP2003258058A (ja) * | 2002-02-27 | 2003-09-12 | Anelva Corp | 基板処理装置の運転方法 |
JP4447256B2 (ja) * | 2003-06-27 | 2010-04-07 | 株式会社半導体エネルギー研究所 | 発光装置の作製方法 |
DE10332163B4 (de) * | 2003-07-15 | 2008-08-21 | Von Ardenne Anlagentechnik Gmbh | Vakuumbeschichtungsanlage mit in Clustern angeordneten Prozessstationen |
US8545159B2 (en) * | 2003-10-01 | 2013-10-01 | Jusung Engineering Co., Ltd. | Apparatus having conveyor and method of transferring substrate using the same |
US7207766B2 (en) * | 2003-10-20 | 2007-04-24 | Applied Materials, Inc. | Load lock chamber for large area substrate processing system |
US7497414B2 (en) * | 2004-06-14 | 2009-03-03 | Applied Materials, Inc. | Curved slit valve door with flexible coupling |
US20060273815A1 (en) * | 2005-06-06 | 2006-12-07 | Applied Materials, Inc. | Substrate support with integrated prober drive |
US20070006936A1 (en) * | 2005-07-07 | 2007-01-11 | Applied Materials, Inc. | Load lock chamber with substrate temperature regulation |
JP5078243B2 (ja) * | 2005-09-02 | 2012-11-21 | 東京エレクトロン株式会社 | 真空処理装置および真空予備室の排気方法 |
US7845891B2 (en) * | 2006-01-13 | 2010-12-07 | Applied Materials, Inc. | Decoupled chamber body |
US7665951B2 (en) * | 2006-06-02 | 2010-02-23 | Applied Materials, Inc. | Multiple slot load lock chamber and method of operation |
US7845618B2 (en) | 2006-06-28 | 2010-12-07 | Applied Materials, Inc. | Valve door with ball coupling |
US8124907B2 (en) * | 2006-08-04 | 2012-02-28 | Applied Materials, Inc. | Load lock chamber with decoupled slit valve door seal compartment |
US20080251019A1 (en) * | 2007-04-12 | 2008-10-16 | Sriram Krishnaswami | System and method for transferring a substrate into and out of a reduced volume chamber accommodating multiple substrates |
TWI401331B (zh) * | 2007-12-06 | 2013-07-11 | Intevac Inc | 雙面濺射蝕刻基板之系統與方法(二) |
US9353436B2 (en) * | 2008-03-05 | 2016-05-31 | Applied Materials, Inc. | Coating apparatus with rotation module |
EP2159302B1 (en) * | 2008-08-25 | 2015-12-09 | Applied Materials, Inc. | Coating chamber with a moveable shield |
US20100044213A1 (en) * | 2008-08-25 | 2010-02-25 | Applied Materials, Inc. | Coating chamber with a moveable shield |
KR20110056392A (ko) * | 2008-08-25 | 2011-05-27 | 어플라이드 머티어리얼스, 인코포레이티드 | 이동식 쉴드를 구비한 코팅 챔버 |
US8303779B2 (en) * | 2009-12-16 | 2012-11-06 | Primestar Solar, Inc. | Methods for forming a transparent conductive oxide layer on a substrate |
KR101256192B1 (ko) * | 2010-07-06 | 2013-04-19 | 주식회사 에스에프에이 | 수직형 증착 시스템 |
US20120027954A1 (en) * | 2010-07-30 | 2012-02-02 | Applied Materials, Inc. | Magnet for physical vapor deposition processes to produce thin films having low resistivity and non-uniformity |
EP2444993A1 (en) * | 2010-10-21 | 2012-04-25 | Applied Materials, Inc. | Load lock chamber, substrate processing system and method for venting |
US20140050843A1 (en) * | 2012-08-17 | 2014-02-20 | Wd Media, Inc. | Dual single sided sputter chambers with sustaining heater |
US11053583B2 (en) | 2016-11-10 | 2021-07-06 | Corning Incorporated | Particle reduction during sputtering deposition |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3294670A (en) * | 1963-10-07 | 1966-12-27 | Western Electric Co | Apparatus for processing materials in a controlled atmosphere |
US3945903A (en) * | 1974-08-28 | 1976-03-23 | Shatterproof Glass Corporation | Sputter-coating of glass sheets or other substrates |
US4274936A (en) * | 1979-04-30 | 1981-06-23 | Advanced Coating Technology, Inc. | Vacuum deposition system and method |
JPS6052574A (ja) * | 1983-09-02 | 1985-03-25 | Hitachi Ltd | 連続スパツタ装置 |
US4761218A (en) * | 1984-05-17 | 1988-08-02 | Varian Associates, Inc. | Sputter coating source having plural target rings |
JPH0613751B2 (ja) * | 1986-03-07 | 1994-02-23 | 株式会社日立製作所 | 連続スパッタ装置 |
US4951601A (en) * | 1986-12-19 | 1990-08-28 | Applied Materials, Inc. | Multi-chamber integrated process system |
US4795299A (en) * | 1987-04-15 | 1989-01-03 | Genus, Inc. | Dial deposition and processing apparatus |
US4785962A (en) * | 1987-04-20 | 1988-11-22 | Applied Materials, Inc. | Vacuum chamber slit valve |
US4995958A (en) * | 1989-05-22 | 1991-02-26 | Varian Associates, Inc. | Sputtering apparatus with a rotating magnet array having a geometry for specified target erosion profile |
US5252194A (en) * | 1990-01-26 | 1993-10-12 | Varian Associates, Inc. | Rotating sputtering apparatus for selected erosion |
JPH04137522A (ja) * | 1990-09-27 | 1992-05-12 | Shimadzu Corp | マルチチャンバ式成膜装置 |
JP2598353B2 (ja) * | 1991-12-04 | 1997-04-09 | アネルバ株式会社 | 基板処理装置、基板搬送装置及び基板交換方法 |
-
1994
- 1994-11-23 US US08/342,275 patent/US5738767A/en not_active Expired - Lifetime
-
1995
- 1995-01-10 JP JP00216395A patent/JP3700793B2/ja not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101739012B1 (ko) * | 2010-11-22 | 2017-05-23 | 주식회사 원익아이피에스 | 기판처리시스템 |
Also Published As
Publication number | Publication date |
---|---|
JPH083744A (ja) | 1996-01-09 |
US5738767A (en) | 1998-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3700793B2 (ja) | 真空処理装置、真空処理装置の中で基板を処理する方法、及び、真空処理装置用のロック | |
EP0665193B1 (en) | Substrate handling and processing system for flat panel displays | |
JP2699045B2 (ja) | 基板取扱い処理システム | |
CN107923037B (zh) | 真空处理设备和用于真空处理基底的方法 | |
US4756815A (en) | Wafer coating system | |
US6315879B1 (en) | Modular deposition system having batch processing and serial thin film deposition | |
US8377210B2 (en) | Film forming apparatus | |
US6641702B2 (en) | Sputtering device | |
US6328858B1 (en) | Multi-layer sputter deposition apparatus | |
GB1558583A (en) | Treatment of a workpiece | |
JPH0345455B2 (ja) | ||
JPH03120362A (ja) | プラズマ処理装置およびプラズマ処理方法 | |
WO2003100848A1 (fr) | Dispositif et procede de traitement de substrats | |
WO2000018979A9 (en) | Sputter deposition apparatus | |
JPWO2011007753A1 (ja) | 基板処理装置 | |
JP2000273615A (ja) | 成膜装置における基板保持具の表面の堆積膜の除去方法及び成膜装置 | |
TWI250220B (en) | Vacuum-processing equipment for plane rectangular or quadratic substrate | |
JP4702867B2 (ja) | 真空処理装置 | |
WO2022002385A1 (en) | Apparatus for moving a substrate, deposition apparatus, and processing system | |
WO2021244738A1 (en) | Deposition apparatus, processing system, method of maintaining a deposition apparatus, and method of manufacturing a layer of an optoelectronic device | |
KR102142002B1 (ko) | 기판 상의 재료 증착을 위한 방법, 재료 증착 프로세스를 제어하기 위한 제어기, 및 기판 상의 층 증착을 위한 장치 | |
JPS60249329A (ja) | スパッタエッチング装置 | |
US6949170B2 (en) | Deposition methods and apparatus | |
JP2001226771A (ja) | 成膜装置 | |
JP2001115256A (ja) | 成膜装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20031224 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040209 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050607 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050706 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080722 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090722 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090722 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090722 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090722 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090722 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090722 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100722 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110722 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110722 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110722 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110722 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110722 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110722 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120722 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120722 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120722 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120722 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120722 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130722 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |