JP3694626B2 - ヒータ一体型広域空燃比センサ素子 - Google Patents

ヒータ一体型広域空燃比センサ素子 Download PDF

Info

Publication number
JP3694626B2
JP3694626B2 JP36502499A JP36502499A JP3694626B2 JP 3694626 B2 JP3694626 B2 JP 3694626B2 JP 36502499 A JP36502499 A JP 36502499A JP 36502499 A JP36502499 A JP 36502499A JP 3694626 B2 JP3694626 B2 JP 3694626B2
Authority
JP
Japan
Prior art keywords
sensor element
opening
cylindrical tube
fuel ratio
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36502499A
Other languages
English (en)
Other versions
JP2001183333A (ja
Inventor
等 松之迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP36502499A priority Critical patent/JP3694626B2/ja
Publication of JP2001183333A publication Critical patent/JP2001183333A/ja
Application granted granted Critical
Publication of JP3694626B2 publication Critical patent/JP3694626B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車等の内燃機関における空気と燃料の比率を制御するためのヒータ一体型広域空燃比センサ素子に関するものであり、具体的には発熱体と検知部が一体化されてなり、活性化時間が短く応答性の良いヒータ一体型広域空燃比センサ素子に関する。
【0002】
【従来技術】
現在、自動車等の内燃機関においては、排出ガス中の酸素濃度を検出して、その検出値に基づいて内燃機関に供給する空気および燃料供給量を制御することにより、内燃機関からの有害物質、例えばCO、HC、NOxを低減させる方法が採用されている。
この検出素子として、主として酸素イオン導電性を有するジルコニアを主分とする固体電解質からなり、一端が封止された円筒管の外面および内面にそれぞれ一対の電極層が形成された固体電解質型の酸素センサが用いられている。
【0003】
一般に、図7に示す広域空燃比センサ(A/Fセンサ)は、理論空燃比センサ(λセンサ)に比べ広範囲の空燃比を制御するために用いられ、測定電極33の表面に微細な細孔を有する拡散抵抗層となるセラミック多孔質層34を設け、固体電解質からなる円筒管31に一対の電極32、33を通じて印加電圧を加え、その際、得られる限界電流値を測定して希薄燃焼領域の空燃比を制御するものである。
【0004】
上記広域空燃比センサはセンシング部を約700℃付近の作動温度までに加熱する必要があり、そのために、円筒管の内側には、センシング部を作動温度まで加熱するため棒状ヒータ35が挿入されている。
【0005】
【発明が解決しようとする課題】
しかしながら、近年排気ガス規制の強化傾向が強まり、エンジン始動直後からのCO、HC、NOxの検出が必要になってきた。このような要求に対して、上述のように、ヒータ35を円筒管31内に挿入してなる間接加熱方式の円筒型酸素センサでは、センシング部が活性化温度に達するまでに要する時間(以下、活性化時間という。)が遅いために排気ガス規制に充分対応できないという問題があった。
【0006】
その問題を回避する方法として、固体電解質からなる円筒管の内面および外面に基準電極、測定電極が設けられ、測定電極の表面に、ガス透過性の多孔性の絶縁層を設け、さらにその中のガス透過性の低いガス非透過層中に白金発熱体を設けた円筒型のヒータ一体型広域空燃比センサ素子も特開平10−206380号公報に記載されている。
【0007】
一方、本出願人は、図8に示すように、先にセラミック固体電解質からなり一端が封止された円筒管36の内面および外面に基準電極37および測定電極38を形成してなるセンサ素子と、測定電極38が露出するように前記円筒管36の外面に測定電極38形成部に開口部39を設けたセラミック絶縁層40を積層形成し、測定電極38がその開口部39から露出するようにし、その少なくとも露出している測定電極38の周囲のセラミック絶縁層40内に発熱体41を埋設し、また開口部39内の測定電極38の表面に拡散抵抗層42を形成したヒータ一体型の広域空燃比センサ素子を提案した。
【0008】
しかしながら、この広域空燃比センサ素子は、拡散抵抗層42の厚みが測定電極38の面内の位置によって異なり、その結果、ガスの拡散経路の長さが測定電極38の位置によって不均一となるため、応答性が低下したり限界電流値が発現しないなどの問題があった。
【0009】
従って、本発明は、円筒型広域空燃比センサ素子に対してヒータが一体化されてなるとともに、急速昇温が可能で応答性に優れたヒータ一体型広域空燃比センサ素子を提供することを目的とするものである。
【0010】
【課題を解決するための手段】
本発明者は、上記の問題について検討した結果、酸素イオン導電性を有するセラミック固体電解質からなり一端が封止された円筒管と、該円筒管の内面および外面の対向する位置にそれぞれ形成された基準電極および測定電極と、前記測定電極の一部または全部が露出するように開口部が形成されたセラミック絶縁層と、前記開口部の周囲の前記セラミックス絶縁層に埋設された発熱体と、を具備する広域空燃比センサ素子に対して、拡散抵抗層を形成するにあたり、拡散抵抗層を少なくとも前記開口部を覆うように被着形成するとともに、前記開口部内の前記測定電極を被覆する前記拡散抵抗層の厚みを前記測定電極の全部の領域で450〜600μmとなるように拡散抵抗層の表面形状を制御することによって、上記目的が達成できることを見いだした。
【0011】
また、本発明の上記のヒータ一体型広域空燃比センサ素子においては、前記開口部内に測定電極が形成された開口部を前記円筒管の相対向する箇所に2つ形成することによってセンサ素子の耐久性を向上させることができる。また、この前記開口部の円筒管の中心からの広がり角度は、いずれも30〜90度であることが耐久性を向上し、発熱体による加熱効率を高める上で望ましい。
【0012】
本発明のヒータ一体型広域空燃比センサ素子によれば、セラミック固体電解質からなる円筒管の外面に測定電極を形成し、開口部の周囲に発熱体を内蔵したセラミック絶縁層を測定電極が露出するように配置したことによって、発熱体によるセンシング部の加熱効率を高め、急速昇温を行うことができる結果、センサ活性化時間を短縮することができる。
【0013】
そして、本発明では、測定電極の表面に拡散抵抗層を形成するにあたり、上記開口部全体を覆うように拡散抵抗層を形成することによって、開口部内の測定電極表面の拡散抵抗層の厚みを容易に制御することが可能となり、それによって、測定電極表面におけるすべての領域における拡散抵抗層の厚みを450〜600μmの範囲に制御することによってガスの拡散経路の長さを均一化でき、安定な限界電流値が得られるともに、高い応答性が得られる。
【0014】
また本発明によれば、上記測定電極が内蔵された開口部を円筒管の相対向する位置にそれぞれ形成することによって、セラミック絶縁層の開口部の周囲に発生する急速昇温時のセンサ素子内の温度勾配に起因する熱応力を互いに相殺させることによって緩和することができ、その結果、センサ素子の熱衝撃性を向上させることができる。
【0015】
なお、本発明のヒータ一体型広域空燃比センサ素子は、製造にあたって、固体電解質からなる円筒管を具備するセンサ素体の表面に、セラミック絶縁層内に発熱体を埋設したヒータ素体を巻き付け、ヒータ素体とセンサ素体とを同時焼成して作製できるため、従来のように、酸素センサとヒータとをそれぞれ個別に作製した後、酸素センサ内にヒータを勘合して使用する広域空燃比センサ素子に比べて製造コストが極めて安価になり、経済性の観点からも優れている。
【0016】
【発明の実施の形態】
以下、本発明のヒータ一体型広域空燃比センサ素子の一例を図1の概略斜視図(a)およびX1−X1断面図(b)をもとに説明する。
【0017】
図1のヒータ一体型広域空燃比センサ素子1は、酸素イオン導電性を有するセラミック固体電解質からなり、先端が封止された、即ち断面がU字状の円筒管2の側面の内面に、第1の電極として、空気などの基準ガスと接触される基準電極3が被着形成され、また、円筒管2の基準電極3と対向する外面には、第2の電極として、排気ガスなどの被測定ガスと接触する測定電極4が形成されている。
【0018】
また、本発明によれば、先端が封止された円筒管2の外面に形成された測定電極4の表面またはその周囲にはセラミック絶縁層5が被着形成されている。そして、このセラミック絶縁層5には、測定電極4が露出するように第一の開口部6が形成されており、開口部6の周囲のセラミック絶縁層5中には発熱体7が埋設されている。また、発熱体7は、リード電極8を経由して端子電極9と接続されており、これらを通じて発熱体7に電流を流すことにより発熱体7が加熱され、円筒管2、基準電極3および測定電極4とからなる素子部を発熱体を埋設したセラミック絶縁層5からなる加熱部によって加熱する仕組みとなっている。上記の検知部と加熱部とによって1つのセンシング部Aが形成されている。
【0019】
本発明によれば、円筒管2の上記センシング部Aの形成位置に対して、円筒管2の相対向する位置に、同様の構造からなるセンシング部Bが形成されている。
【0020】
即ち、センシング部Bは、円筒管2の相対向する内面および外面に、基準電極3’、測定電極4’が形成されており、測定電極4’の表面またはその周囲にはセラミック絶縁層5が被着形成されている。そして、このセラミック絶縁層5には、測定電極4’が露出するように第2の開口部6’が形成されており、開口部6’の周囲のセラミック絶縁層5中には発熱体7’が埋設されている。また、発熱体7’は、リード電極8を経由して端子電極9と接続されており、これらを通じて発熱体7’に電流を流すことにより発熱体7’が加熱され、円筒管2、基準電極3’および測定電極4’とからなる検知部を発熱体7’を埋設したセラミック絶縁層5からなる加熱部によって加熱される。
【0021】
本発明によれば、このようにセンシング部を相対向する位置に形成することによって、円筒状の酸素センサ素子において外的な熱衝撃等が加わった場合においても、センシング部が1つしか存在しない場合に比較して応力の集中を抑制するとともに、発生する熱応力を相殺して応力を低減することができる結果、とりわけ、開口部付近でのクラックの発生などを防止することができる。
【0022】
また、上記の開口部6,6’の表面には、この開口部6,6’を覆うようにして溶射等によって拡散抵抗層10が被着形成されている。
【0023】
また、この開口部6,6’内の測定電極4,4’を被覆する拡散抵抗層10の厚みは測定電極4,4’の全部の領域で450〜600μmであることが重要である。これは、厚みが450μm未満の場合、拡散経路が短くポンピング電流が大きいため限界電流が発現せず、600μmを超えると拡散時間が長くなり検知ガスに対する応答性が低下するためである。この拡散抵抗層10の厚みは、480〜520μmが最適である。
【0024】
また、素子全体の大きさとしては、外径を3〜6mm、特に3〜4mmとすることにより、消費電力を低減するとともに、センシング性能を高めることができる。
(固体電解質材質)
本発明において用いられるセラミック固体電解質は、ZrO2を含有するセラミックスからなり、具体的には、Y23およびYb23、Sc23、Sm23、Nd23、Dy23等の希土類酸化物を酸化物換算で1〜30モル%、好ましくは3〜15モル%含有する部分安定化ZrO2あるいは安定化ZrO2が用いられている。
【0025】
また、ZrO2中のZrを1〜20原子%をCeで置換したZrO2を用いることにより、酸素イオン導電性が大きくなり、応答性がさらに改善されるといった効果がある。
【0026】
さらに、焼結性を改善する目的で、上記ZrO2に対して、Al23やSiO2を添加含有させることができるが、多量に含有させると、高温におけるクリープ特性が悪くなることから、Al23およびSiO2の添加量は総量で5重量%以下、特に2重量%以下であることが望ましい。
(セラミック絶縁層)
一方、発熱体7を埋設するセラミック絶縁層5としては、アルミナ、スピネル、フォルステライト、ジルコニア、ガラス等のセラミック材料が好適に用いられる。この時、セラミック絶縁層としてジルコニアを用いる場合には、ジルコニア自体が固体電解質であり、発熱体7からのもれ電流が酸素濃度検知に影響を及ぼすことがないように、円筒管2との間に、アルミナ、スピネル、フォルステライトなどの中間層を形成することが望ましい。さらに、セラミック絶縁層5としてガラス絶縁層にはガラスを用いることができるが、この場合は耐熱性の観点から、BaO、PbO、SrO、CaO、CdOのうちの少なくとも1種を5重量%以上含有するガラス、特に、結晶化ガラスであることが望ましい。
【0027】
また、このセラミック絶縁層5は、相対密度が80%以上、開気孔率が5%以下の緻密質なセラミックスによって構成されていることが望ましい。これは、セラミック絶縁層5が緻密質であることにより絶縁層の強度が高くなる結果、広域空燃比センサ素子自体の機械的な強度を高めることができるためである。
(発熱体)
また、上記セラミック絶縁層5の内部に埋設される発熱体7としては、白金、ロジウム、パラジウム、ルテニウムの群から選ばれる1種の金属、または2種以上の合金からなることが望ましく、特に、セラミック絶縁層5との同時焼結性の点で、そのセラミック絶縁層5の焼成温度よりも融点の高い金属または合金を選択することが望ましい。
【0028】
また、発熱体7中には上記の金属の他に焼結防止と絶縁層との接着力を高める観点からアルミナ、スピネル、アルミナ/シリカの化合物、フォルステライトあるいは上述の電解質となり得るジルコニア等を体積比率で10〜80%、特に30〜50%の範囲で混合することが望ましい。
(ヒータ部構造)
セラミック絶縁層5の内部に発熱体7を埋設してなるヒータ部の構造は、図1(b)の断面図に示すように、固体電解質からなる円筒管2の表面に内部に発熱体7が埋設されたセラミック絶縁層5を積層した構造の他に、図2の要部拡大断面図(a)〜(c)に示すように、円筒管2の外面に、内部に発熱体7が埋設されたアルミナ、スピネル、フォルステライト等のセラミック絶縁層5を形成し、さらにそのセラミック絶縁層5の外面に、ジルコニア層11を形成することができる。このジルコニア層11は、固体電解質とセラミック絶縁層5間の熱膨張差や焼成収縮差等に起因する応力を緩和させ、熱応力をできる限り小さくするためのものである。
【0029】
なお、かかる構成において、発熱体7は、図2(a)のように、セラミック絶縁層5内部に埋設できる他、図2(b)に示すように、ジルコニア層10中に埋設したり、図2(c)に示すように、セラミック絶縁層5とジルコニア層11との間に配設することもできる。
【0030】
いずれの場合においても、発熱体7は、円筒管2や電極に対して直接接することなく、アルミナなどの固体電解質性能を有さないセラミック絶縁層5を介して配設されていることが必要であって、円筒管2と発熱体7の間のセラミック絶縁層5の厚みは少なくとも2μm以上であることが望ましい。
(電極)
円筒管2の表面に被着形成される基準電極3、測定電極4は、いずれも白金、ロジウム、パラジウム、ルテニウムおよび金の群から選ばれる1種、または2種以上の合金が用いられる。またセンサ動作時、電極中の金属の粒成長を防止する目的と、応答性に係わる金属粒子と固体電解質と気体との、いわゆる3相界面の接点を増大する目的で、上述のセラミック固体電解質成分を1〜50体積%、特に10〜30体積%の割合で上記電極中に混合してもよい。また、本発明においては、この第1の開口部6に露出している測定電極4の形状としては、図1(a)に示すような縦長の長方形状、または図3に示すように、楕円形状から構成されていることが望ましい。
【0031】
一方、固体電解質からなる円筒管2の内面に形成される基準電極3は、測定電極4の前記開口部6より露出する部分に対向する内面部分に形成されていればよく、測定電極4の露出部面積よりも大きい面積、例えば、円筒管2の内面全面に形成されていてもよい。
(開口部)
開口部6,6’の形状としては、上述のように長方形状あるいは楕円形状でもよいが、セラミック絶縁層5の第1および第2開口部6,6’とも形状が長方形状の場合は、その開口部角部は緩やかな曲線とするかc面をとった構造とすることが、開口部6,6’の角部への熱応力の集中を緩和する観点から好ましい。
【0032】
また、第1の開口部6と第2の開口部6’の形状とは同じ形状であることが望ましいが、異なる形状であってもよい。その場合、第2開口部の大きさとしては、第1開口部の面積の50%以上、150%以下であることが望ましい。
【0033】
開口部の広がりとしては、測定電極4、4’が形成されている第1の開口部6,および第2の開口部6’とも、図1(b)に示すように、円筒管2中心xからの広がり角度θ1、θ2は30〜90度の範囲が優れている。広がり角度が30度より小さいと開口部6、6’の周囲への熱応力が発生しやすく、広がり角度が90度を越えると、加熱部による検知部の加熱効率が低くなり、検知部を均一に加熱するためのヒータ容量を大きくする必要がある。この開口部の広がり角度としては40〜70度の範囲が最適である。
【0034】
また、センシング部A,Bの第1および第2の開口部6、6’は、相対向する位置に形成されているが、第1および第2の開口部6、6’の各開口部中心を結ぶ線分が、円筒管2の中心軸を通過することが最も望ましいが、その開口部のずれ角度が10度以内であれば、特に問題はない。
(拡散抵抗層)
本発明の広域空燃比センサ素子における拡散抵抗層10は、気孔率が5〜30%、特に10〜20%の微細な細孔を有するジルコニア、アルミナ、スピネル、マグネシアまたはγ−アルミナの群から選ばれる少なくとも1種によって形成することが望ましい。これらの中でも特にスピネルが熱的安定性の点で望ましい。
【0035】
このような拡散抵抗層10の表面には、さらに排気ガスの被毒を防止する観点から、ジルコニア、アルミナ、スピネル、マグネシア、γ−アルミナの群から選ばれる少なくとも1種からなるセラミック保護層を設けることが望ましい。
(製造方法)
次に、本発明の酸素センサ素子の製造方法について、図1のヒータ一体型酸素センサ素子の製造方法を例にして図4をもとに説明する。
【0036】
(1)まず図4(a)に示すような一端が封止された中空の円筒管12を作製する。この円筒管12は、ジルコニア等の酸素イオン伝導性を有するセラミック固体電解質粉末に対して、適宜、成形用有機バインダーを添加して押出成形や、静水圧成形(ラバープレス)あるいはプレス形成などの周知の方法により作製される。
【0037】
この時、用いられる固体電解質粉末としては、ジルコニア粉末に対して、安定化剤としてY23およびYb23、Sc23、Sm23、Nd23、Dy23等の希土類酸化物粉末を酸化物換算で1〜30モル%、好ましくは3〜15モル%の割合で添加した混合粉末、あるいはジルコニアと上記安定化剤との共沈原料粉末が用いられる。また、ZrO2中のZrを1〜20原子%をCeで置換したZrO2粉末、または共沈原料を用いることもできる。さらに、焼結性を改善する目的で、上記固体電解質粉末に、Al23やSiO2を5重量%以下、特に2重量%以下の割合で添加することも可能である。
【0038】
(2)そして、上記固体電解質からなる円筒管12の相対向する内面および外面に、基準電極および測定電極となるパターン13,13’,14,14’を、例えば、白金を含有する導電性ペーストを用いてスラリーデッィプ法、あるいはスクリーン印刷、パット印刷、ロール転写で形成する。この時、円筒管12内面への基準電極の印刷は、導体ペーストを充填して排出して、内面全面に塗布形成することが効率がよい。このようにしてセンサ素体Xを作製する。
【0039】
(3)次に、図4(b)に示すようなヒータ素体Yを形成する。ヒータ素体Yは、まず、アルミナ、スピネル、フォルステライト、ジルコニア、ガラス等のセラミック粉末を用いて、適宜成形用有機バインダーを添加してスラリーを調製し、このスラリーを用いてドクターブレード法、押し出し成形法、プレス法などにより所定厚さのセラミック絶縁層を形成するためのグリーンシート15を作製する。グリーンシート1枚の厚みは、シートの取り扱いの観点から50〜500μm、特に100〜300μmの範囲が特に好ましい。
【0040】
その後、成形したグリーンシート15表面の後述するセンサ素体Xへの巻き付けによって相対向する位置に白金粉末を含む導電性ペーストをスクリーン印刷法、パット印刷法、ロール転写法等により印刷して発熱体パターン16、16’を塗布した後、その上にさらにもう1枚の上記グリーンシート15を積層するか、またはセラミック粉末のスラリーを印刷法あるいは転写法で塗布して、発熱体を埋設したシート状の積層体を得る。その後、適宜、第1および第2の開口部17,17’をパンチングなどによって形成することにより作製される。
【0041】
(4)次に、図4(c)に示すように、上記円筒状のセンサ素体Xの表面に、ヒータ素体Yを巻き付けて円筒状積層体を作製する。この際、ヒータ素体Yをセンサ素体Xに巻き付けるには、ヒータ素体Yとセンサ素体Xとの間にアクリル樹脂や有機溶媒などの接着剤を介在させて接着させたり、あるいはローラ等で圧力を加えながら機械的に接着することができる。この時、巻き付けされたヒータ素体Bの合わせ目は、焼成時の収縮を考慮し、シート端部同志を重ねるか、あるいは所定の間隔をおいて接着してもよい。
【0042】
(5)そして、上記の円筒状積層体をセンサ素体Xを構成する固体電解質からなる円筒管12およびヒータ素体Yにおけるセラミック絶縁層を形成するグリーンシート15が同時に焼成可能な温度で焼成することにより、センサ素体Xとセンサ素体Yとを一体化することができる。例えば、固体電解質としてジルコニアを用いた場合には、アルゴンガス等の不活性雰囲気中あるいは大気中1300〜1700℃で1〜10時間程度焼成することによりヒータ素体Yとセンサ素体Xとを同時焼成することができる。
(他の製造方法)
なお、他の製造方法としては、電極を有しない円筒管12の表面に上記(3)によって形成したヒータ素体Yを巻き付けて円筒状積層体を作製した後、円筒状積層体に対して、電極ペーストをスクリーン印刷、パット印刷、ロール転写法あるいは浸漬法によって円筒管12の内面およびヒータ素体Yにおける開口部17内の円筒管表面に塗布した後、上記(5)のようにして同時焼成することもできる。
【0043】
また、さらに他の方法としては、電極を有しない円筒管12の表面に上記(3)によって形成したヒータ素体Yを巻き付けて円筒状積層体を作製した後、これを円筒管12の内面およびヒータ素体Yにおける開口部17内に電極ペーストを印刷して焼き付け処理するか、またはスパッタ法やメッキ法にて形成することもできる。
(拡散抵抗層の形成法)
次に、上記のようにして作製したセンサ素子に対して拡散抵抗層を形成するが、この拡散抵抗層を形成する方法としては、以下の方法が挙げられる。
【0044】
(1)アルミナ、スピネル、ジルコニア等の粉末をゾルゲル法、スラリーディップ法、印刷法などによって印刷塗布し、焼き付け処理する。
【0045】
(2)上記セラミックスをスパッタ法あるいはプラズマ溶射法により被覆して拡散抵抗層を形成する。
【0046】
これらの方法では、円筒状のセンサ素子の少なくとも開口部を覆うように形成するが、生産性を考慮すれば、円筒状のセンサ素子の開口部を含む周面全体に拡散抵抗層を形成することが測定電極表面における拡散抵抗層の厚みを一定にする上で望ましい。
【0047】
その場合には、センサ素子をスラリー中に浸漬して引き上げした後、焼き付け処理する。なお、拡散抵抗層の測定電極表面の厚みは、スラリーの粘度によって容易に制御できる。
【0048】
また、スパッタ法によれば、センサ素子を低速で円筒管の長手方向の軸を中心に回転させながら、蒸着源に対して円筒管の側面が対向するように配置してスパッタを行なう。拡散抵抗層の厚みはスパッタ時間によって容易に制御できる。
【0049】
さらに、溶射法によれば、図4(d)に示すように、センサ素子を高速で円筒管の長手方向の軸を中心に回転させながら、センサ素子の側面にセラミック粒子をプラズマ溶射することにより形成することもできる。拡散抵抗層の厚みは溶射時間によって容易に制御できる。
【0050】
【実施例】
市販のアルミナ粉末と、5モル%Y23含有のジルコニア粉末と、白金粉末をそれぞれ準備した。まず、5モル%Y23含有のジルコニア粉末にポリビニルアルコール溶液を添加して坏土を作製し、押出成形により焼結後外径が約4mm、内径が1mmになるように一端が封じた円筒状成形体を作製し、その相対向する位置の表面に、白金ペーストからなる長方形状の測定電極パターンおよびリードパターンを印刷塗布するとともに、成形体の内部全面にも白金ペーストを塗布して基準電極を形成した。なお、測定電極および基準電極の厚みは焼成後に約5μmとなるように調整した。
【0051】
また、5モル%Y23含有のジルコニア粉末にポリビニルアルコール溶液を加えてスラリーを作製し、厚みが約200μmのグリーンシートを作製した。このグリーンシートに前記測定電極の形状と一致する長方形状の種々の大きさを有する第1開口部と反対側に位置するように同じ大きさと同じ形状の第2開口部をパンチングによってそれぞれ開けた。
【0052】
その後、開口部以外の部分にアルミナ粉末を約10μmの厚みに塗布した後、白金粉末を含む導体ペーストを第1および第2の開口部の周囲に発熱体パターンを厚みが約10μmになるようにスクリーン印刷し、さらにその上にアルミナ粉末を約10μmとなるように塗布し発熱体を埋設した図4(b)に示す構造のヒータ素体を作製した。
【0053】
次に、上記円筒状のセンサ素体の表面に、接着剤としてアクリル系樹脂を用いて上記ヒータ素体を巻き付け円筒状積層体を作製した。その後、この円筒状積層体を大気中にて、1500℃で2時間焼成し、焼成一体化して、円筒型のヒータ一体型センサ素子を作製した。
【0054】
その後、センサ素子を円筒管の中心軸を中心に1000rpmの速度で回転させながら、センサ素子の開口部を含む周面全体にプラズマ溶射によりスピネル、ジルコニア、アルミナ、マグネシアからなる気孔率が7〜25%の拡散抵抗層を表1の厚みで形成して広域空燃比センサ素子を作製した。
【0055】
また、拡散抵抗層の測定電極上での形状が、図5(a)(b)(c)のいずれかになるように溶射を施した。
【0056】
作製した広域空燃比センサ素子の評価は、Air/Fuel=7のガスからAir間で、印加電圧(V)に対するポンピング電流(Ip)の変化(V−Ip特性)により限界電流の発現の有無を調べた。また応答性について、Air/Fuel=14およびAir/Fuel=15の2種のガスを2秒間に1回の周期で切り換え、出力の変化が全変化量の63%となるまでの所要時間をもって評価した。結果を表1に示す。
【0057】
印加電圧とポンピング電流のV−Ip曲線において、拡散が律速されている領域の勾配は検知電極(測定電極)の引き出し部と大気電極(基準電極)との間で双方向に漏洩する電流によるものである。拡散の律速が不十分であると、この電流に加え、拡散抵抗層を介した酸素によるポンピング電流が生じるためにリーク抵抗が低下してしまう。このような原理から、リーク抵抗を測定しその結果を表1に示した。
【0058】
【表1】
Figure 0003694626
【0059】
表1の結果から明らかなように、開口部の測定電極のみに溶射法によって拡散抵抗層を形成した試料No.1、センサ素子の周面に溶射したもののその拡散抵抗層に盛り上がり部が形成される試料No.2では、いずれも拡散抵抗層のガスの拡散経路が測定電極の全体で一定でなく、試料No.1の形状(a)では拡散経路が著しく短いところがあるために限界電流が得られなかった。また、試料No.2の形状(b)では、拡散抵抗層の厚みが著しく厚い部位があるために応答性が著しく粗悪となった。
【0060】
拡散抵抗層のガスの拡散経路が測定電極の全体で一定でも拡散抵抗層の厚みが450μmよりも薄い試料No.3は、拡散抵抗層の厚みが薄いために限界電流が得られない。また、拡散抵抗層の厚みが600μmよりも厚い試料No.8では逆に拡散抵抗層の厚みが厚すぎるために応答性が低下した。
【0061】
これらに対し、試料No.4、5、6、7、9、10、11、12、13はいずれも安定した限界電流が発現し、良好な応答性を示した。特に、拡散抵抗層の厚みが480〜520μmの試料No.5、11、12、13は、限界電流の安定性、応答性ともに優れていた。試料No.5について、広域空燃比センサ素子の700℃における限界電流値と空燃比との関係を図6に示した。
【0062】
【発明の効果】
以上詳述した通り、本発明のヒータ一体型広域空燃比センサ素子によれば、円筒型の固体電解質の外面に測定電極と、その周囲に発熱体を内蔵したセラミック絶縁層を介して発熱体を形成させ、これを測定電極の周囲に配置し、測定電極表面に所定の厚さの拡散抵抗層を形成したことによって、発熱体によるセンシング部の加熱効率を高め、急速昇温を行うことができる。また、拡散抵抗層表面と電極表面との間の拡散経路を所定の厚みで一定にすることにより、応答性の良い安定した出力を得ることができ、少ない消費電力でセンサ素子を活性化させることができるために、正確に酸素濃度を検出ることができる。しかも、本発明のセンサ素子は発熱体を内蔵するセラミック絶縁層とを同時焼成して作製できるため、製造コストが極めて安価になり、経済性の観点からも優れている。
【図面の簡単な説明】
【図1】本発明の広域空燃比センサ素子の一例を説明するための(a)一部切り欠き斜視図と(b)(a)のX1−X1断面図を示す。
【図2】発熱部の種々の構造を説明するための要部拡大断面図である。
【図3】本発明の広域空燃比センサ素子の他の例を説明するための概略斜視図である。
【図4】本発明のヒータ一体型広域空燃比センサ素子の製造方法の一例として、図1のセンサ素子を製造する方法を説明するための工程図である。
【図5】測定電極表面の拡散抵抗層の被覆形態を説明するための要部拡大断面図であって、(a)(b)は比較例、(c)は本発明品を示す。
【図6】試料No.5の広域空燃比センサ素子の700℃における限界電流値と空燃比との関係を示す。
【図7】従来のヒータ一体型の円筒型酸素センサの概略斜視図を示す。
【図8】他の従来のヒータ一体型の円筒型酸素センサの概略断面図を示す。
【符号の説明】
1 広域空燃比センサ素子
2 円筒管
3 基準電極
4 測定電極
5 セラミック絶縁層
6 開口部
7 発熱体
11 拡散抵抗層

Claims (3)

  1. 酸素イオン導電性を有するセラミック固体電解質からなり一端が封止された円筒管と、該円筒管側面の内面および外面の対向する位置にそれぞれ形成された基準電極および測定電極と、前記測定電極の一部または全部が露出するように開口部が形成されたセラミック絶縁層と、前記開口部の周囲の前記セラミックス絶縁層に埋設された発熱体と、少なくとも前記開口部を覆うように被着形成された拡散抵抗層とを具備してなるとともに、前記開口部内の前記測定電極を被覆する前記拡散抵抗層の厚みが前記測定電極の全部の領域で450〜600μmであることを特徴とするヒータ一体型広域空燃比センサ素子。
  2. 前記開口部内に測定電極が形成された開口部が、前記円筒管の相対向する箇所に2つ形成されていることを特徴とする請求項1記載のヒータ一体型広域空燃比センサ素子。
  3. 前記開口部の円筒管の中心からの広がり角度がそれぞれ30〜90度であることを特徴とする請求項1または請求項2記載のヒータ一体型広域空燃比センサ素子。
JP36502499A 1999-12-22 1999-12-22 ヒータ一体型広域空燃比センサ素子 Expired - Fee Related JP3694626B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36502499A JP3694626B2 (ja) 1999-12-22 1999-12-22 ヒータ一体型広域空燃比センサ素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36502499A JP3694626B2 (ja) 1999-12-22 1999-12-22 ヒータ一体型広域空燃比センサ素子

Publications (2)

Publication Number Publication Date
JP2001183333A JP2001183333A (ja) 2001-07-06
JP3694626B2 true JP3694626B2 (ja) 2005-09-14

Family

ID=18483250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36502499A Expired - Fee Related JP3694626B2 (ja) 1999-12-22 1999-12-22 ヒータ一体型広域空燃比センサ素子

Country Status (1)

Country Link
JP (1) JP3694626B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4565739B2 (ja) * 2000-01-31 2010-10-20 京セラ株式会社 空燃比センサ素子

Also Published As

Publication number Publication date
JP2001183333A (ja) 2001-07-06

Similar Documents

Publication Publication Date Title
JP3668050B2 (ja) ヒータ一体型酸素センサおよびその製造方法
JP3572241B2 (ja) 空燃比センサ素子
JP2004325196A (ja) 酸素センサ素子
JP4084505B2 (ja) ヒータ一体型酸素センサ素子
JP3981307B2 (ja) 酸素センサ素子
JP3694626B2 (ja) ヒータ一体型広域空燃比センサ素子
JP4689860B2 (ja) ヒータ一体型酸素センサ素子
JP3694618B2 (ja) ヒータ一体型酸素センサ素子
JP3668059B2 (ja) ヒータ一体型酸素センサ素子の製造方法
JP3694625B2 (ja) ヒータ一体型酸素センサ素子
JP3860768B2 (ja) 酸素センサ素子
JP4582899B2 (ja) セラミックヒータおよびそれを用いた酸素センサ
JP4610127B2 (ja) 空燃比センサ素子
JP4689859B2 (ja) ヒータ一体型酸素センサ素子
JP4637375B2 (ja) 酸素センサの製造方法
JP4698041B2 (ja) 空燃比センサ素子
JP4744043B2 (ja) 空燃比センサ素子
JP3814549B2 (ja) 酸素センサ素子
JP4540222B2 (ja) 酸素センサおよびその製法
JP4113479B2 (ja) 酸素センサ素子
JP3673501B2 (ja) 酸素センサ素子
JP4700214B2 (ja) 酸素センサ素子およびその製造方法
JP3668077B2 (ja) ヒータ一体型酸素センサ素子
JP4530529B2 (ja) ヒータ一体型酸素センサ素子
JP3987708B2 (ja) 理論空燃比センサ素子

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080701

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees