JP3694507B2 - 軌道狂い測定装置 - Google Patents

軌道狂い測定装置 Download PDF

Info

Publication number
JP3694507B2
JP3694507B2 JP2003044639A JP2003044639A JP3694507B2 JP 3694507 B2 JP3694507 B2 JP 3694507B2 JP 2003044639 A JP2003044639 A JP 2003044639A JP 2003044639 A JP2003044639 A JP 2003044639A JP 3694507 B2 JP3694507 B2 JP 3694507B2
Authority
JP
Japan
Prior art keywords
rail
beam members
provided corresponding
angle
error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003044639A
Other languages
English (en)
Other versions
JP2004251842A (ja
Inventor
泰州 永沼
誠志 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Japan Railway Co
Original Assignee
Central Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Japan Railway Co filed Critical Central Japan Railway Co
Priority to JP2003044639A priority Critical patent/JP3694507B2/ja
Publication of JP2004251842A publication Critical patent/JP2004251842A/ja
Application granted granted Critical
Publication of JP3694507B2 publication Critical patent/JP3694507B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、軌道狂いを測定する装置に関する。
【0002】
【従来の技術】
鉄道車両を安全で快適に走行させるためには、鉄道軌道を常に良好な状態に保守管理する必要があり、このためにはレールの不整量(軌道狂い)の測定が不可欠である。軌道狂いの測定は主に、高速軌道検測車または簡易な軌道検測装置により行われている。このうち高速軌道検測車は測定専用の車両で、効率良く軌道狂いを測定するため、営業列車と同等の速度で運行され、主に本線の軌道狂いを測定する。一方の簡易軌道検測装置は、手押しまたは牽引により極低速で移動するトロリーで、副本線や基地線など高速軌道検測車の走行しない箇所の測定、軌道狂い整正作業直後の仕上がり確認、等に利用されている。
【0003】
現存する軌道検測車および簡易軌道検測装置は、その大多数が「正矢(せいや)法」と呼ばれる測定原理により、鉛直方向の軌道不整(高低狂い)および、水平方向の軌道不整(通り狂い)を測定している(例えば特許文献1参照)。この正矢法は、複数点の相対変位により軌道狂いを測定する「差分法」の一種で、図11(a)に示すとおり、任意の2点間に水糸αを張り、その中点とレールβとの距離を測定するものである。現存する主な可搬式軌道検測装置は1〜3mの基準の梁(弦:測定の基線)γをレールβに押し当て、その梁γの中央点とレールβとの相対変位を変位計で測定している(図11(b))。
【0004】
少数ではあるが正矢法以外の原理を採用する簡易測定装置も存在し、例えば、傾斜計によりレール勾配(傾斜角)を検出し、これを距離積分することで高低狂いを得る方法(例えば非特許文献1参照)や、レーザー光線を基準としてレールとの距離を測定する方法等が可搬式軌道検測装置(例えば特許文献2参照)として実用化されている。
【0005】
【特許文献1】
特開平7−223539号公報
【非特許文献1】
Coenraad Esvelt著「Modern Railway Track」 2001 MRT-Productions P.553
(ISBN 90-800324-3-3 SISO 696.3 UDC 625.1)
【特許文献2】
特開平10−221050号公報
【0006】
【発明が解決しようとする課題】
簡易軌道検測装置の目的は、軌道狂いを簡便に測定することであるから、以下の軌道狂いの基本7項目を同時測定できることが望まれている。
・高低狂い(左・右)…レール上下方向の狂い
・通り狂い(左・右)…レール左右方向の狂い
・軌間狂い…左右レールの内面間の幅(軌間)の狂い
・水準狂い…左右レールの高さの違い
・平面性狂い…車軸の間隔に近い距離(例えば在来線で5m、新幹線で2.5m)の間の線路のねじれ
さらに可搬式軌道検測装置には軽量である必要もある。しかし、これらを両立した可搬式軌道検測装置は現存しない。7項目同時測定可能な装置は重く(例えば70kg以上)、軽量な装置は測定項目が限定されているのが実情である。
【0007】
従来の可搬式軌道検測装置が軽量化できなかった理由は、図11(b)に示したとおり、基準の梁γ(約1〜3m)、および変位計を使用して正矢法検測機構を構成していることに起因する。正矢法の弦に相当する「梁γ」は可能な限り直線性を保持することが必要で、梁γの僅かな撓みも測定誤差となるため、梁γには高い剛性が求められる。この梁γの高剛性化は装置全体の重量増のみならず、「折り畳み」や「分割」構造の実現をも妨げる。
【0008】
この結果として、従来装置の場合は、測定作業自体は1人で行えるものの、その運搬や載線作業には複数の作業員を必要とするため、測定作業の機動性という点が大きく損なわれていた。
一方、傾斜角を積分する方法は、1つの傾斜計のみで測定可能なため、高低狂いに限定すれば大幅な軽量化の可能性がある。しかしこの方法を通り狂い測定に適用するのは困難で、通り狂いも共に測定したい場合、現状では正矢法を併用せざるを得ず、前述の理由から軽量化困難である。
【0009】
また、レーザー光線を使用する方法は、雨、霧等により測定精度に影響を受け易く、機器の据え付けに時間がかかる他、長距離の測定には不向きであるため、現状では試作の段階に留まり、実使用に耐えうる装置は存在しない。
そこで本発明は、高低狂いや通り狂いを正矢法を用いて検測しながら、軽量化も実現できるようにした軌道狂い測定装置を提供することを目的とする。
【0010】
また、同様の原理を適用して他の種類の軌道狂いを検測する装置を提供することも目的とする。
【0011】
【課題を解決するための手段及び発明の効果】
(1)請求項1に係る軌道狂い測定装置は、(a)「高低狂い」を測定可能な第1の軌道狂い測定装置、(b)「通り狂い」を測定可能な第2の軌道狂い測定装置、(c)「軌間狂いを測定可能な第3の軌道狂い測定装置」及び(d)「水準狂い」を測定可能な第4の軌道狂い測定装置の少なくとも2つ以上の構成を備え、且つ、少なくとも1本の梁部材は兼用されていることを特徴とする。このようにすれば、「高低狂い」、「通り狂い」、「軌間狂い」及び「水準狂い」の内の2つ以上を同時に測定することが可能である。そして、単にそれぞれの構成を併有しているだけでなく、少なくとも1本の梁部材は兼用されているので、構成の簡素化の点でも有効である。
それでは、上記(a)「高低狂い」を測定可能な第1の軌道狂い測定装置、(b)「通り狂い」を測定可能な第2の軌道狂い測定装置、(c)「軌間狂いを測定可能な第3の軌道狂い測定装置」及び(d)「水準狂い」を測定可能な第4の軌道狂い測定装置について、順番に説明していく。
(a)「高低狂い」を測定可能な第1の軌道狂い測定装置は、n(n≧2)本の梁部材、n本中の2本の梁部材同士を折れ曲げ可能に接続するn−1個の関節部、各梁部材に少なくとも1つ対応して設けられ、且ついずれか1つの梁部材については2つ対応して設けられ、レール上に当接可能な当接部材、各関節部に対応して設けられ、当該関節部にて折れ曲がる2本の梁部材のなす角度を直接又は間接的に検出する角度検出手段を備えている。そして、角度検出手段が検出する2本の梁部材のなす角度は、全ての当接部材を同一レール上に当接させた際の、レール踏面に垂直な面に投影した2本の梁部材のなす角度である。
【0012】
第1の軌道狂い測定装置の角度検出手段によって検出した角度に基づいて得られる「2本の梁部材のなす角度」に基づけば、梁部材の長さ等を用いて高低狂いを計算することができる。例えば簡単のため、2本の梁部材の端部同士が関節部にて接続されている場合を考える。各々の梁部材の長さをL1,L2とし、角度検出手段の出力をθとすると、高低狂いの大きさVは下式で表される。
V={2L1・L2/(L1+L2)}・sin(θ/2)
このように、第1の軌道狂い測定装置によれば、図11(b)で例示したような従来の基準梁をレールβに押し当ててその梁γの中央点とレールβとの相対変位を変位計で測定する手法のような「高剛性の梁」を必要とせずに、正矢法による高低狂い測定が可能となる。例えば2m正矢法を測定原理とする既存の装置では、弦長となる2mの梁γを前後の測定点で2点支持し、その梁γの撓みを限りなくゼロにする必要がある。しかし、本発明では、例えば上述した梁部材端部同士を関節部にて接続する構成において2本の梁部材を同じ長さにした場合には、各梁部材は1mでよくなるため、2m弦測定のケースであれば従来技術における弦長の半分、つまり1mの梁の剛性確保で済むこととなる。したがって、高低狂いを正矢法を用いて検測しながら、軽量化も実現できる。
【0013】
なお、当接部材については、最低限レールに当接可能であればよいが、さらにレールを走行可能であってもよい。当接部材がレールを走行可能であれば、測定部位を移動する場合に、当接部材をその都度レールから外されなくてもよくなり便利である。この走行可能に構成する場合、例えばローラのように回転しながらレールを走行可能な部材が代表的なものとして考えられるが、回転せずに滑走(摺動)するような部材であっても、走行可能であれば構わない。
【0014】
また、角度検出手段は、例えば関節部に設けた角度計で「2本の梁部材のなす角度」を直接検出してもよいし、例えば梁の所定位置を検出点とし、その検出点と基準位置との距離を例えば変位計(レーザ等)にて計測し、その距離から角度を(間接的に)求めるようにしてもよい。
【0015】
(b)「通り狂い」を測定可能な第2の軌道狂い測定装置は、n(n≧2)本の梁部材と、n本中の2本の梁部材同士を折れ曲げ可能に接続するn−1個の関節部、各梁部材に少なくとも1つ対応して設けられ、且ついずれか1つの梁部材については2つ対応して設けられ、レール上に当接可能な当接部材、各関節部に対応して設けられ、関節部にて折れ曲がる2本の梁部材のなす角度を直接又は間接的に検出する角度検出手段を備えている。そして、角度検出手段が検出する2梁部材のなす角度は、全ての当接部材を同一レール上に当接させた際の、レール踏面に水平な面に投影した2本の梁部材のなす角度である。
【0016】
第2の軌道狂い測定装置の角度検出手段によって検出した角度に基づいて得られる「2本の梁部材のなす角度」に基づけば、梁部材の長さ等を用いて通り狂いを計算することができる。この計算原理は、上述した高低狂いの場合と全く同じであり、角度成分の対象となる面が異なるだけである。したがって、本発明によれば、通り狂いを正矢法を用いて検測しながら、軽量化も実現できる。
【0017】
このように、高低狂いや通り狂いが反映した「梁部材のなす角度」を検出することによって、それらの狂いを測定する技術思想を説明したが、同様に、「梁部材のなす角度」を検出することによって「軌間狂い」や「水準狂い」といった他の軌道狂いを測定することも可能である。以下、順番に説明する。
【0018】
(c)「軌間狂いを測定可能な第3の軌道狂い測定装置」は、n(n≧2)本の梁部材、n本中の2本の梁部材同士を折れ曲げ可能に接続するn−1個の関節部、各梁部材に少なくとも1つ対応して設けられ、且ついずれか1つの梁部材については2つ対応して設けられ、レール上に当接可能な当接部材、各関節部に対応して設けられ、関節部にて折れ曲がる2本の梁部材のなす角度を直接又は間接的に検出する角度検出手段を備えている。そして、角度検出手段が検出する2本の梁部材のなす角度は、一方の梁部材に対応して設けられた当接部材と前記部に対応して設けられた当接部材を同一レール上で走行させ、他方の梁部材に対応して設けられた当接部材を他方のレール上で走行させた際の、レール踏面に水平な面に投影した2本の梁部材のなす角度である。
【0019】
上述した高低狂いや通り狂いの場合は1本のレールにおける狂いであるため、全ての当接部材を同一レール上で走行させて測定することとなる。これに対して軌間狂いや水準狂いは2本のレール同士の位置関係に起因するものであるため、一方の梁部材と関節部に対応する当接部材を一方のレール上で走行させ、他方の梁部材に対応する当接部材は他方のレール上で走行させる。そして、本軌道狂い測定装置の角度検出手段によって検出した角度に基づいて得られる「レール踏面に水平な面に投影した2本の梁部材のなす角度」に基づけば、梁部材の長さ等を用いて軌間狂いを計算することができる。
【0020】
(d)「水準狂い」を測定可能な第4の軌道狂い測定装置は、n(n≧2)本の梁部材、n本中の2本の梁部材同士を折れ曲げ可能に接続するn−1個の関節部、各梁部材に少なくとも1つ対応して設けられ、且ついずれか1つの梁部材については2つ対応して設けられ、レール上に当接可能な当接部材、各関節部に対応して設けられ、関節部にて折れ曲がる2本の梁部材のなす角度を直接又は間接的に検出する角度検出手段を備えている。そして、角度検出手段が検出する2本の梁部材のなす角度は、一方の梁部材に対応して設けられた当接部材と関節部に対応して設けられた当接部材を同一レール上で走行させ、他方の梁部材に対応して設けられた当接部材を他方のレール上で走行させた際の、レール踏面に垂直な面に投影した2本の梁部材のなす角度である。
【0021】
そして、本軌道狂い測定装置の角度検出手段によって検出した角度に基づいて得られる「レール踏面に垂直な面に投影した2本の梁部材のなす角度」に基づけば、梁部材の長さ等を用いて水準狂いを計算することができる。
(5)請求項5に係る軌道狂い測定装置は、請求項1〜4の何れかに記載の軌道狂い測定装置の構成の内、少なくとも2つ以上の構成を備え、且つ、少なくとも1本の梁部材は兼用されていることを特徴とする。このようにすれば、「高低狂い」、「通り狂い」、「軌間狂い」及び「水準狂い」の内の2つ以上を同時に測定することが可能である。そして、単にそれぞれの構成を併有しているだけでなく、少なくとも1本の梁部材は兼用されているので、構成の簡素化の点でも有効である。
【0022】
なお、(a)「高低狂い」を測定可能な第1の軌道狂い測定装置の構成と(b)「通り狂い」を測定可能な第2の軌道狂い測定装置の構成を組合せる場合には、梁部材は全て兼用することも可能であり、また、(c)「軌間狂いを測定可能な第3の軌道狂い測定装置」の構成と(d)「水準狂い」を測定可能な第4の軌道狂い測定装置の構成を組合せる場合にも、梁部材を全て兼用することも可能である。このような構成にすれば、梁部材と関節部の個数は各狂いを単独で測定する場合と同じでありながら、両方の軌道狂いを共に測定できる。そして、それらの組合せ構成をさらに組み合わせて4つの狂いを全て測定する構成を実現する場合にも、さらに少なくとも1本の梁部材を兼用することが可能であり、その場合には、梁部材の数を無用に増加させずに4つの狂いを測定する構成が得られる。
ところで、(c)「軌間狂いを測定可能な第3の軌道狂い測定装置」の構成については、請求項3に示すように単独で軌道狂い測定装置として実現してもよい。また、(d)「水準狂い」を測定可能な第4の軌道狂い測定装置の構成については、請求項4に示すように単独で軌道狂い測定装置として実現してもよい。
【0023】
また、上述の「発明が解決しようとする課題」の欄において、軌道狂いの基本7項目として、高低狂い(左・右)・通り狂い(左・右)・軌間狂い・水準狂い・平面性狂いを挙げたが、左右いずれかのレールの高低狂いと通り狂い、及び軌間狂いと水準狂いという4項目を直接測定できれば、残る3項目は演算によって求めることができる。つまり、反対レールの高低狂いは、測定レールの高低狂い+水準狂いで演算でき、反対レールの通り狂いは、測定レールの通り狂い+軌間狂いで演算できる。また、平面性狂いは水準データの差分にて演算できる。
【0024】
以上説明したようにして検出した角度に関しては、例えば次のように処理することが考えられる。例えば、当接部材についてはレールを走行可能に構成しておき、さらに、レールを走行した距離を検出する走行距離検出手段、角度検出手段によって検出した角度を、走行距離検出手段によって検出した走行距離と対応付けて、内蔵する記憶手段に記憶させる記憶制御手段又は外部装置へ出力する出力制御手段の少なくともいずれか一方を備えるようにするのである。このようにすれば、所定の起点からの走行距離に対応した検出角度を取得できるため、その検出データに基づいて、軌道狂いの分析等を行うことができる。
【0025】
【発明の実施の形態】
以下、本発明が適用された実施例について図面を用いて説明する。なお、本発明の実施の形態は、下記の実施例に何ら限定されることなく、本発明の技術的範囲に属する限り、種々の形態を採り得ることは言うまでもない。
【0026】
[第1実施例]
図1(a)は、第1実施例の軌道狂い測定装置10の概略構成を示す説明図である。第1実施例の軌道狂い測定装置10は、軌道狂いの内の「高低狂い」を測定するための装置であり、2本の梁部材11,12、それら2本の梁部材11,12を接続するジョイント17、そのジョイント17部分に設けられた高低検出角度計18、レールRを走行可能な3つの走行ローラ14,15,16を備えている。なお、走行ローラ14,15,16は、レール踏面Ra(図1(b)も参照)に当接しながら、走行可能に構成されている。
【0027】
2本の梁部材11,12は、それぞれの長さがL1,L2(mm)である。また、ジョイント17は、2本の梁部材11,12の端部同士を折れ曲げ可能に接続する「関節部」に相当し、全ての走行ローラ14,15,16を同一レールR上に当接させた際の梁部材11,12間の折れ曲げが、レール踏面Raに垂直な方向にて行われるよう構成されている。なお、本実施例においては、2本の梁部材11,12は、軌道に高低狂いが存在しない状態での相対角θ=零(0)となるよう初期設定がされている。そして、高低検出角度計18は、レールRを含みレール踏面Raに垂直な面に投影した場合における梁部材11,12間の相対的な折れ曲げ角度(以下、単に相対角とも称す。)θを検出可能となっている。
【0028】
このような構成であるため、走行ローラ14,15,16をレールR上に当接させて走行させると、軌道に高低狂いが存在しない場合は2本の梁部材11,12,12の相対角θは0であるが、軌道に高低狂いが存在すれば、その大きさに応じて2本の梁部材11,12の相対角θに変化が生じ、「高低狂い」は次式で表される。
V={2L1・L2/(L1+L2)}・sin(θ/2)
ここに、 V:高低狂いの大きさ
L1,L2:各々の梁部材11,12の長さ
θ:高低検出角度計18の出力
なお、本実施例では、図示しないが、さらに、距離パルス発生器、データ処理部、電源スイッチ、ディスプレイ、操作パネル等を備えている。距離パルス発生器は例えば走行ローラ14,15,16に取り付けられており、レールRを走行した距離に応じた数の距離パルスを出力する。データ処理部は、CPU,ROM,RAM等を備えた周知のマイクロコンピュータであり、上述した距離パルスをデジタルデータに変換して入力し、走行距離を算出する。また、データ処理部は、高低検出角度計18の出力である相対角θを基に、上記計算式を用いて高低狂いを算出し、上述の走行距離と対応付けてRAM等のメモリに記憶させる。なお、この記憶させるメモリとしては、データ処理部への電源供給が遮断されても記憶内容を保持可能なメモリを採用してもよい。例えばEEPROMやフラッシュROMあるいはハードディスクなどである。
【0029】
そのため、電源スイッチを操作して電源を投入し、操作パネルを介して測定位置の設定(スタート位置のキロ程のセットなど)を行い、軌道狂い測定装置10をレールRに沿って押していけば、その走行距離に応じた高低狂いが順次メモリに記憶されていく。
【0030】
従って、本第1実施例の軌道狂い測定装置10によれば、次のような効果が発揮される。
つまり、図11(b)で例示したような従来の基準梁をレールβに押し当ててその梁γの中央点とレールβとの相対変位を変位計で測定する手法のような「高剛性の梁」を必要とせずに、正矢法による高低狂い測定が可能となる。例えば2m正矢法を測定原理とする既存の装置では、弦長となる2mの梁γを前後の測定点で2点支持し、その梁γの撓みを限りなくゼロにする必要がある。しかし、本実施例の軌道狂い測定装置10では、例えば梁部材11,12を同じ長さ(つまりL1=L2)にした場合には、各梁部材11,12は1mでよくなるため、2m弦測定のケースであれば従来技術における弦長の半分、つまり1mの梁の剛性確保で済むこととなる。
【0031】
したがって、高低狂いを正矢法を用いて検測しながら、軽量化も実現できる。さらに、非測定時には2本の梁部材11,12を折り畳むことも可能であり、軌道狂い測定装置10をコンパクトに収納することもできる。これのことから、運搬、載線、測定等の労力が減じられ、例えばこれらの作業を全て1人で行うことも可能となり、可搬式の軌道検測装置の機動性を大幅に増すことができる。
【0032】
[第2実施例]
図2は、第2実施例の軌道狂い測定装置20の概略構成を示す説明図である。第2実施例の軌道狂い測定装置10は、軌道狂いの内の「通り狂い」を測定するための装置であり、2本の梁部材21,22、それら2本の梁部材21,22を接続するジョイント27、そのジョイント27部分に設けられた通り検出角度計28、レールRを走行可能な3つの走行ローラ24,25,26を備えている。なお、走行ローラ24,25,26は、レール踏面Ra(図1(b)も参照)に当接しながら、走行可能に構成されている。
【0033】
2本の梁部材21,22は、それぞれの長さがL1,L2(mm)である。また、ジョイント27は、2本の梁部材21,22同士を折れ曲げ可能に接続する「関節部」に相当し、全ての走行ローラ24,25,26を同一レールR上に当接させた際の梁部材21,22間の折れ曲げが、レール踏面Raに水平な方向にて行われるよう構成されている。なお、2本の梁部材21,22は、軌道に通り狂いが存在しない状態での相対角θ=0となるよう初期設定がされている。そして、通り検出角度計28は、レール踏面Raに水平な面に投影した場合における梁部材21,22間の相対的な折れ曲げ角度(相対角)θを検出可能となっている。
【0034】
このような構成であるため、走行ローラ24,25,26をレールR上に当接させて走行させると、軌道に通り狂いが存在しない場合は2本の梁部材21,22の相対角θは0であるが、軌道に通り狂いが存在すれば、その大きさに応じて2本の梁部材21,22の相対角θに変化が生じ、「通り狂い」は次式で表される。
V={2L1・L2/(L1+L2)}・sin(θ/2)
ここに、 V:通り狂いの大きさ
L1,L2:各々の梁部材21,22の長さ
θ:通り検出角度計28の出力
なお、第1実施例と同様、いずれも図示しない距離パルス発生器、データ処理部、電源スイッチ、ディスプレイ、操作パネル等を備えている。そのため、電源スイッチを操作して電源を投入し、操作パネルを介して測定位置の設定(スタート位置のキロ程のセットなど)を行い、軌道狂い測定装置20をレールRに沿って押していけば、データ処理部は、通り検出角度計28の出力である相対角θを基に、上記計算式を用いて通り狂いを算出し、走行距離と対応付けてメモリに記憶させる。
【0035】
従って、本第2実施例の軌道狂い測定装置20によれば、上記第1実施例の場合同様の効果が発揮される。つまり、通り狂いを正矢法を用いて検測しながら、軽量化も実現できる。
[第3実施例]
図3(a)は、第3実施例の軌道狂い測定装置30の概略構成を示す説明図である。第3実施例の軌道狂い測定装置30は、軌道狂いの内の「高低狂い」及び「通り狂い」を共に測定するための装置であり、上述した第1実施例の軌道狂い測定装置10及び第2実施例の軌道狂い測定装置20の構成を組み合わせたものとなっている。具体的には、軌道狂い測定装置30は、2本の梁部材31,32、それら2本の梁部材31,32を接続するユニバーサルジョイント37、そのユニバーサルジョイント37部分に設けられた高低検出角度計38及び通り検出角度計39、レールRを走行可能な3つの走行ローラ34,35,36を備えている。なお、走行ローラ34,35,36は、レール踏面Ra(図1(b)も参照)に当接しながら、走行可能に構成されている。
【0036】
2本の梁部材31,32は、それぞれの長さがL1,L2(mm)である。また、ユニバーサルジョイント37は、2本の梁部材31,32同士を折れ曲げ可能に接続する「関節部」に相当し、全ての走行ローラ34,35,36を同一レールR上に当接させた際の梁部材31,32間の折れ曲げが、レール踏面Raに垂直な方向にて行われると共にレール踏面Ra水平な方向にても行われるよう構成されている。なお、本実施例においては、2本の梁部材31,32は、軌道に高低狂い及び通り狂いの何れも存在しない状態での相対角θ=0となるよう初期設定がされている。そして、高低検出角度計38は、レールRを含みレール踏面Raに垂直な面に投影した場合における梁部材31,32間の相対的な折れ曲げ角度(相対角)θkを検出可能となっており、通り検出角度計39は、レール踏面Raに水平な面に投影した場合における梁部材31,32間の相対的な折れ曲げ角度(相対角)θtを検出可能となっている。
【0037】
このような構成であるため、走行ローラ34,35,36をレールR上に当接させて走行させると、軌道に高低狂いや通り狂いが存在しない場合は2本の梁部材31,32の相対角は0であるが、軌道に高低狂いや通り狂いが存在すれば、その大きさに応じて2本の梁部材31,32の相対角に変化が生じる。
【0038】
図3(b)はレールRの上面より見た概略図であり、この図からも分かるように、「通り狂い」は、次式で表される。
V={2L1・L2/(L1+L2)}・sin(θt/2)
ここに、 V:通り狂いの大きさ
L1,L2:各々の梁部材31,32の長さ
θt:通り検出角度計39の出力
一方、図3(c)はレールRの側面より見た概略図であり、この図からも分かるように、「高低狂い」は、次式で表される。
V={2L1・L2/(L1+L2)}・sin(θk/2)
ここに、 V:高低狂いの大きさ
L1,L2:各々の梁部材31,32の長さ
θk:高低検出角度計38の出力
なお、第1実施例等と同様、いずれも図示しない距離パルス発生器、データ処理部、電源スイッチ、ディスプレイ、操作パネル等を備えている。そのため、電源スイッチを操作して電源を投入し、操作パネルを介して測定位置の設定(スタート位置のキロ程のセットなど)を行い、軌道狂い測定装置30をレールRに沿って押していけば、データ処理部は、通り検出角度計39の出力である相対角θを基に、上記計算式を用いて通り狂いを算出し、また、高低検出角度計38の出力である相対角θを基に、上記計算式を用いて高低狂いを算出し、それら両狂いを走行距離と対応付けてメモリに記憶させる。
【0039】
従って、本第3実施例の軌道狂い測定装置30によれば、上記第1実施例及び第2実施例を組合せた効果、つまり、通り狂い及び高低狂いを正矢法を用いて検測しながら、軽量化も実現できるという効果が得られる。さらに、それら2つの狂い、つまり通り狂い及び高低狂いを共に測定できるという効果もある。
【0040】
[第4実施例]
図4は、第4実施例の軌道狂い測定装置40の概略構成を示す説明図である。第4実施例の軌道狂い測定装置40は、軌道狂いの内の「軌間狂い」を測定するための装置であり、2本の梁部材41,42、それら2本の梁部材41,42を接続するジョイント47、そのジョイント47部分に設けられた軌間検出角度計48、レールR1,R2を走行可能な3つの走行ローラ44,45,46を備えている。なお、走行ローラ44,45,46は、レール踏面Ra(図1(b)も参照)に当接しながら、走行可能に構成されている。
【0041】
また、ジョイント47は、2本の梁部材41,42の端部同士を折れ曲げ可能に接続する「関節部」に相当する。本実施例の軌道狂い測定装置40にて軌間狂いを測定する際には、3つの走行ローラ44,45,46の内の隣接する2つの走行ローラ44,45を一方のレール(例えば左レール)R1に当接させ、残りの1つの走行ローラ46を他方のレール(例えば右レール)R2に当接させる。ここで、左レールR1に当接させた走行ローラ44,45の間に位置する方を第一の梁部材41、左右レールR1,R2の間に位置する方を第二の梁部材42とすると、本実施例では第一の梁部材41の長さがL(mm)である。また、第二の梁部材42の長さは、第一の梁部材41の自由端側の走行ローラ44及び第二の梁部材42の自由端側の走行ローラ46が、レールR1,R2の左右対称位置に配置されるよう設定されている。
【0042】
そして、上述のように2つの走行ローラ44,45を左レールR1に当接させ、残りの1つの走行ローラ46を右レールR2に当接させた状態において、梁部材41,42間の折れ曲げがレール踏面Raに水平な方向にて行われるよう、ジョイント47によって梁部材41,42が接続されている。そして、軌間検出角度計48は、レール踏面Raに水平な面に投影した場合の梁部材41,42間の折れ曲げ角度(相対角)θを検出可能となっている。なお、梁部材41,42が元々レール踏面Raに水平な同一面内にて折れ曲がるよう構成されていれば、その梁部材41,42間の相対角がそのまま「レール踏面Raに水平な面に投影した場合の梁部材41,42間の相対角θ」となる。
【0043】
このような構成であるため、2つの走行ローラ44,45を左レールR1に当接させ、残りの1つの走行ローラ46を右レールR2に当接させて走行させると、軌道に軌間狂いが存在しない場合は2本の梁部材41,42の相対角θは変化しないが、軌道に軌間狂いが存在すれば、その大きさに応じて2本の梁部材11,12の相対角θに変化が生じ、「軌間狂い」は次式で表される。
軌間狂い=Ltanθ−1435(mm) …(新幹線の場合)
軌間狂い=Ltanθ−1067(mm) …(在来線の場合)
なお、第1実施例等と同様、いずれも図示しない距離パルス発生器、データ処理部、電源スイッチ、ディスプレイ、操作パネル等を備えている。そのため、電源スイッチを操作して電源を投入し、操作パネルを介して測定位置の設定(スタート位置のキロ程のセットなど)を行い、軌道狂い測定装置40をレールRに沿って押していけば、データ処理部は、軌間検出角度計49の出力である相対角θを基に、上記計算式を用いて軌間狂いを算出し、走行距離と対応付けてメモリに記憶させる。なお、新幹線及び在来線で兼用する場合には、測定対象を操作パネルを用いて選択できるように構成するとよい。例えば、測定位置の設定を行う際に、測定対象として新幹線か在来線を選択設定するのである。
【0044】
従って、本第4実施例の軌道狂い測定装置40によれば、上記第1〜第3実施例にて用いた基本思想を利用して、軌間狂いを測定することができる。
[第5実施例]
図5(a)は、第5実施例の軌道狂い測定装置50の概略構成を示す説明図である。第5実施例の軌道狂い測定装置50は、軌道狂いの内の「水準狂い」を測定するための装置であり、2本の梁部材51,52、それら2本の梁部材51,52を接続するジョイント57、そのジョイント57部分に設けられた水準検出角度計58、レールR1,R2を走行可能な3つの走行ローラ54,55,56を備えている。なお、走行ローラ54,55,56は、レール踏面Ra(図1(b)も参照)に当接しながら、走行可能に構成されている。
【0045】
また、ジョイント57は、2本の梁部材51,52の端部同士を折れ曲げ可能に接続する「関節部」に相当する。本実施例の軌道狂い測定装置50にて水準狂いを測定する際には、3つの走行ローラ54,55,56の内の隣接する2つの走行ローラ54,55を一方のレール(例えば右レール)R2に当接させ、残りの1つの走行ローラ56を他方のレール(例えば左レール)R1に当接させる。ここで、右レールR2に当接させた走行ローラ54,55の間に位置する方を第一の梁部材51、左右レールR1,R2の間に位置する方を第二の梁部材52とすると、本実施例では第一の梁部材51の長さがL(mm)である。また、第二の梁部材52の長さは、第一の梁部材51の自由端側の走行ローラ54及び第二の梁部材52の自由端側の走行ローラ56が、レールR1,R2の左右対称位置に配置されるよう設定されている。
【0046】
そして、上述のように2つの走行ローラ54,55を右レールR2に当接させ、残りの1つの走行ローラ56を左レールR1に当接させた状態において、梁部材51,52間の折れ曲げがレール踏面Raに垂直な方向にて行われるよう、ジョイント57によって梁部材51,52が接続されている。水準検出角度計58は、図5(b)に示すように、第一の梁部材51を含みレール踏面Raに垂直な面に投影した場合の梁部材51,52間の折れ曲げ角度(相対角)θを検出可能となっている。なお、軌道に水準狂いが存在しない状態での相対角θ=0になるよう初期設定がなされている。
【0047】
このような構成であるため、2つの走行ローラ54,55を右レールR2に当接させ、残りの1つの走行ローラ56を左レールR1に当接させて走行させると、軌道に水準狂いが存在しない場合は水準検出角度計58によって検出される相対角θは0であるが、軌道に水準狂いが存在すれば、その大きさに応じて水準検出角度計58によって検出される相対角θに変化が生じ、「水準狂い」は次式で表されることとなる。
水準狂い=Ltanθ(mm)
なお、第1実施例等と同様、いずれも図示しない距離パルス発生器、データ処理部、電源スイッチ、ディスプレイ、操作パネル等を備えている。そのため、電源スイッチを操作して電源を投入し、操作パネルを介して測定位置の設定(スタート位置のキロ程のセットなど)を行い、軌道狂い測定装置50をレールRに沿って押していけば、データ処理部は、水準検出角度計58の出力である相対角θを基に、上記計算式を用いて水準狂いを算出し、走行距離と対応付けてメモリに記憶させる。
【0048】
従って、本第5実施例の軌道狂い測定装置50によれば、上記第1〜第3実施例にて用いた基本思想を利用して、水準狂いを測定することができる。
[第6実施例]
図6は、第6実施例の軌道狂い測定装置60の概略構成を示す説明図である。第6実施例の軌道狂い測定装置60は、軌道狂いの内の「軌間狂い」及び「水準狂い」を共に測定するための装置であり、上述した第4実施例の軌道狂い測定装置40及び第5実施例の軌道狂い測定装置50の構成を組み合わせたものとなっている。具体的には、軌道狂い測定装置60は、2本の梁部材61,62、それら2本の梁部材61,62を接続するユニバーサルジョイント67、そのユニバーサルジョイント67部分に設けられた軌間検出角度計68及び水準検出角度計69、レールRを走行可能な3つの走行ローラ64,65,66を備えている。なお、走行ローラ64,65,66は、レール踏面Ra(図1(b)も参照)に当接しながら、走行可能に構成されている。
【0049】
また、ユニバーサルジョイント67は、2本の梁部材61,62同士を折れ曲げ可能に接続する「関節部」に相当する。本実施例の軌道狂い測定装置60にて軌道狂いを測定する際には、3つの走行ローラ64,65,66の内の隣接する2つの走行ローラ64,65を一方のレール(例えば右レール)R2に当接させ、残りの1つの走行ローラ66を他方のレール(例えば左レール)R1に当接させる。ここで、右レールR2に当接させた走行ローラ64,65の間に位置する方を第一の梁部材61、左右レールR1,R2の間に位置する方を第二の梁部材62とすると、本実施例では第一の梁部材61の長さがL(mm)である。また、第二の梁部材62の長さは、第一の梁部材61の自由端側の走行ローラ64及び第二の梁部材62の自由端側の走行ローラ66が、レールR1,R2の左右対称位置に配置されるよう設定されている。
【0050】
そして、上述のように2つの走行ローラ64,65を右レールR2に当接させ、残りの1つの走行ローラ66を左レールR1に当接させた状態において、梁部材61,62間の折れ曲げがレール踏面Raに水平な方向にて行われると共に、梁部材61,62間の折れ曲げがレール踏面Raに垂直な方向においても行われるよう、ユニバーサルジョイント67によって梁部材61,62が接続されている。
【0051】
そして、軌間検出角度計68は、レール踏面Raに水平な面に投影した場合の梁部材61,62間の折れ曲げ角度(相対角)θkを検出可能となっており、また、水準検出角度計69は、第一の梁部材61を含みレール踏面Raに垂直な面に投影した場合の梁部材61,62間の折れ曲げ角度(相対角)θsを検出可能となっている。なお、梁部材61,62が元々レール踏面Raに水平な同一面内にて折れ曲がるよう構成されていれば、その梁部材61,62間の相対角がそのまま「レール踏面Raに水平な面に投影した場合の梁部材61,62間の相対角θk」となる。また、軌道に水準狂いが存在しない状態でのレール踏面Raに垂直な面に投影した場合の梁部材61,62間の相対角θs=0となるよう初期設定がなされている。
【0052】
このような構成であるため、2つの走行ローラ64,65を右レールR2に当接させ、残りの1つの走行ローラ66を左レールR1に当接させて走行させると、軌道に軌間狂いが存在しない場合は2本の梁部材61,62間の(レール踏面Raに水平な方向における)相対角θkは変化しないが、軌道に軌間狂いが存在すれば、その大きさに応じてその相対角θkに変化が生じ、「軌間狂い」は次式で表される。
軌間狂い=Ltanθk−1435(mm) …(新幹線の場合)
軌間狂い=Ltanθk−1067(mm) …(在来線の場合)
一方、軌道に水準狂いが存在しない場合は水準検出角度計68によって検出される相対角θは0であるが、軌道に水準狂いが存在すれば、その大きさに応じて水準検出角度計68によって検出される相対角θsに変化が生じ、「水準狂い」は次式で表されることとなる。
水準狂い=Ltanθs(mm)
なお、第1実施例等と同様、いずれも図示しない距離パルス発生器、データ処理部、電源スイッチ、ディスプレイ、操作パネル等を備えている。そのため、電源スイッチを操作して電源を投入し、操作パネルを介して測定位置の設定(スタート位置のキロ程のセットなど)を行い、軌道狂い測定装置60をレールRに沿って押していけば、データ処理部は、軌間検出角度計68の出力である相対角θk及び水準検出角度計69の出力である相対角θsを基に、上記各計算式を用いて軌間狂い及び水準狂いを算出し、走行距離と対応付けてメモリに記憶させる。
【0053】
従って、本第6実施例の軌道狂い測定装置60によれば、上記第4実施例及び第5実施例を組合せた効果、つまり、上記第1〜第3実施例にて用いた基本思想を利用して、軌間狂い及び水準狂いを共に測定できる。
[第6実施例の別態様]
上述した第6実施例の軌道狂い測定装置60において、以下の点を考慮した構成にすれば、軌道上を往復させることで4つの軌道狂い、つまり「高低狂い」「通り狂い」「軌間狂い」及び「水準狂い」を測定することができる。
【0054】
(1)ユニバーサルジョイント67について
3つの走行ローラ64,65,66を全て同一レール(右レールR2又は左レールR1)に当接させた場合であっても、梁部材61,62間の折れ曲げがレール踏面Raに水平な方向にて行われると共に、レール踏面Raに垂直な方向においても行われるよう、構成する。
【0055】
(2)軌間検出角度計68及び水準検出角度計69について
3つの走行ローラ64,65,66を全て同一レール(右レールR2又は左レールR1)に当接させた場合であっても、軌間検出角度計68は、レール踏面Raに水平な面に投影した場合における梁部材61,62間の折れ曲げ角度θkを検出可能であり、水準検出角度計69は、第一の梁部材51を含みレール踏面Raに垂直な面に投影した場合における梁部材61,62間の折れ曲げ角度θsを検出可能となるよう構成する。
【0056】
ここで、例えば往路においては、全ての走行ローラ64,65,66を全て同一レール(右レールR2又は左レールR1)に当接させて走行させることで、図3を参照して説明した第3実施例の場合と同様の機能が発揮でき、「高低狂い」と「通り狂い」を測定できる。そして復路においては、例えば2つの走行ローラ64,65を右レールR2に当接させ、残りの1つの走行ローラ66を左レールR1に当接させて走行させることで、図6を参照して説明したように「軌間狂い」と「水準狂い」を測定できる。もちろん、往路と復路とで測定対象を逆にしてもよい。
【0057】
したがって、このように構成すれば、「高低狂い」及び「通り狂い」を測定する場合と、「軌間狂い」及び「水準狂い」を測定する場合で、同一の構成を共通使用することができ、簡素な構成及び軽量化を実現しながら、4種類の軌道狂いを測定できる。
【0058】
なお、軌道狂いの基本7項目としては、高低狂い(左・右)・通り狂い(左・右)・軌間狂い・水準狂い・平面性狂いがあるが、左右いずれかのレールの高低狂いと通り狂い、及び軌間狂いと水準狂いという4項目を直接測定できれば、残る3項目は演算によって求めることができる。つまり、反対レールの高低狂いは、測定レールの高低狂い+水準狂いで演算でき、反対レールの通り狂いは、測定レールの通り狂い+水準狂いで演算できる。また、平面性狂いは「車軸の間隔に近い距離(JR在来線で5m、新幹線で2.5m)の間の線路のねじれ」であるため、水準データの差分にて演算できる。例えば、ある地点t(m)における水準狂いをX(t)と定義すれば、地点tにおける平面性狂いY(t)は以下のように定義できる。
【0059】
在来線:Y(t)=X(t)−X(t−5)
新幹線:Y(t)=X(t)−X(t−2.5)
[第7実施例]
図7は、第7実施例の軌道狂い測定装置70の概略構成を示す説明図である。
【0060】
上述の第6実施例の別態様では、は往復で上記4つの狂いを測定したため、構成の簡素化や軽量化の点では好ましいが、4つの狂いを測定するためには往復しなければならないため、手間はかかる。そこで、本第7実施例では、4つの軌道狂いを共に測定できる軌道狂い測定装置70を提案する。
【0061】
本実施例の軌道狂い測定装置70は、上述した第3実施例の軌道狂い測定装置30(図3参照)及び第6実施例の軌道狂い測定装置60(図6参照)の構成を組み合わせたような構成となっている。具体的には、軌道狂い測定装置70は、3本の梁部材71,72、73、それら3本の梁部材71,72、73を接続する2つのユニバーサルジョイント111,112、梁部材71,72を接続するユニバーサルジョイント111部分に設けられた高低検出角度計101及び通り検出角度計102、梁部材72,73を接続するユニバーサルジョイント112部分に設けられた軌間検出角度計103及び水準検出角度計104、レールRを走行可能な4つの走行ローラ74,75,76,77を備えている。なお、走行ローラ74,75,76,77は、レール踏面Ra(図1(b)も参照)に当接しながら、走行可能に構成されている。
【0062】
また、ユニバーサルジョイント111は、2本の梁部材71,72同士を折れ曲げ可能に接続し、ユニバーサルジョイント112は、2本の梁部材72,73同士を折れ曲げ可能に接続し、それぞれ「関節部」に相当する。本実施例の軌道狂い測定装置70にて軌道狂いを測定する際には、4つの走行ローラ74,75,76,77の内の隣接する3つの走行ローラ74,75,76を一方のレール(例えば右レール)R2に当接させ、残りの1つの走行ローラ77を他方のレール(例えば左レール)R1に当接させる。ここで、右レールR2に当接させた走行ローラ74,75の間に位置するものを第一の梁部材71、同じく右レールR2に当接させた走行ローラ75,76の間に位置するものを第二の梁部材72、左右レールR1,R2の間に位置するものを第三の梁部材73とすると、本実施例では第一の梁部材71の長さがL1(mm)、第二の梁部材72の長さがL2(mm)である。
【0063】
そして、上述のように3つの走行ローラ74,75,76を右レールR2に当接させ、残りの1つの走行ローラ77を左レールR1に当接させた状態において、第一の梁部材71と第二の梁部材72との間の折れ曲げが、レール踏面Raに垂直な方向にて行われると共にレール踏面Ra水平な方向にても行われるよう構成されている。そして、高低検出角度計101は、レールRを含みレール踏面Raに垂直な面に投影した場合における第一,第二梁部材71,72間の相対的な折れ曲げ角度(相対角)θkoを検出可能となっており、通り検出角度計102は、レール踏面Raに水平な面に投影した場合における第一,第二梁部材71,72間の相対的な折れ曲げ角度(相対角)θtを検出可能となっている。また、第二の梁部材72と第三の梁部材73との間の折れ曲げがレール踏面Raに水平な方向にて行われると共にレール踏面Raに垂直な方向においても行われるよう構成されている。そして、軌間検出角度計103は、レール踏面Raに水平な面に投影した場合における第二,第三梁部材72,73間の折れ曲げ角度(相対角)θkiを検出可能となっており、また、水準検出角度計104は、第一梁部材71を含みレール踏面Raに垂直な面に投影した場合における第一,第三梁部材71,73間の折れ曲げ角度(相対角)θsを検出可能となっている。
【0064】
このような構成であるため、3つの走行ローラ74,75,76を右レールR2に当接させ、残りの1つの走行ローラ77を左レールR1に当接させて走行させると、軌道に存在する「高低狂い」「通り狂い」「軌間狂い」及び「水準狂い」を高低検出角度計101、通り検出角度計102、軌間検出角度計103及び水準検出角度計104によって検出することができる。なお、各軌道狂いの計算式は上述した第3実施例及び第6実施例の場合と同様の考え方であるため、ここでは繰り返さない。
【0065】
また、第1実施例等と同様、いずれも図示しない距離パルス発生器、データ処理部、電源スイッチ、ディスプレイ、操作パネル等を備えている。そのため、電源スイッチを操作して電源を投入し、操作パネルを介して測定位置の設定(スタート位置のキロ程のセットなど)を行い、軌道狂い測定装置70をレールRに沿って押していけば、データ処理部は、高低検出角度計101の出力である相対角θko、通り検出角度計102の出力である相対角θt、軌間検出角度計103の出力である相対角θki及び水準検出角度計104の出力である相対角θsを基に、軌間狂い及び水準狂いを算出し、走行距離と対応付けてメモリに記憶させる。
【0066】
従って、本第7実施例の軌道狂い測定装置70によれば、上記第1〜第3実施例にて用いた基本思想を利用して、高低狂い、通り狂い、軌間狂い及び水準狂いを共に(同時に)測定できる。
[その他の実施例]
(1)上述した各実施例では、基本的に可搬式の軌道検測装置に適用した例を説明した。もちろん、軽量化、非測定時に折り畳み可能、といったことから運搬、載線、測定等の労力が減じられるため、可搬式の軌道検測装置として実現した場合に、そのような利点は最大限に発揮される。但し、もちろん高速軌道検測車や保線機械に組み込まれる検測装置等にも適用可能である。例えば360度検出可能というように相対的に大きな角度を検出可能な回転角度計を使用すれば、検出点間の相対変位が大きくても測定可能であるため、隣接した車両間を跨いで検測機構を構成できる可能性がある。また、剛性の高い測定基準を要しないという特徴のため、従来、軌道検測車の車体に求められていた高剛性車体が不要で、通常の車体を軌道検測車に利用できるという点でも有利である。
【0067】
(2)上述した各実施例では何れも、ある一つの軌道狂いを検出するための構成として、図8(a)に例示するように、2本の梁部材(測定アーム)A1,A2と、それらの両端部を折れ曲げ可能に接続するジョイント部に設けられた1つの角度計B1と、梁部材A1,A2の端部及び梁部材A1,A2の接続部に設けられた3つの走行ローラC1,C2,C3(あるいは3箇所のレール設置面)を備えるようにした。それ以外のバリエーションについて説明する。
【0068】
例えば図8(b)に示すように、梁部材A1の両端に走行ローラC1,C2を設け、その梁部材A1の中央部分に立設したジョイント部分に角度計B1を設けると共に他方の梁部材A2の端部を取り付けるようにしてもよい。
また、例えば図8(c)に示すように、梁部材A1の両端に走行ローラC1,C2を設け、同様に、梁部材A3の両端に走行ローラC3,C4を設け、それら2本の梁部材A1,A3の中央部分にそれぞれ立設したジョイント部分に2つの角度計B1,B2を設けると共に、梁部材A2の両端部をそれらジョイント部分に取り付けるようにしてもよい。
【0069】
また、例えば図8(d)に示すように、梁部材A2の両端に走行ローラC2,C3を設け、その梁部材A1の両端部付近にそれぞれ立設したジョイント部分に2つの角度計B1,B2を設けると共に、2本の梁部材A1,A3の端部をそれらジョイント部分にそれぞれ取り付け、2本の梁部材A1,A3の他端部には走行ローラC1,C4を設けるようにしてもよい。
【0070】
(3)上記(2)のバリエーションにおいても、レールへの当接点数が増えたり、梁部材の長さが不等長となっている。また、上記各実施例の内で、「高低狂い」や「通り狂い」を測定するために用いる梁部材に関しては、それらの長さを不等長にするようにしてもよい。このように、梁部材を不等長にしたり、当接点を増やしたりすることのメリットについて説明する。
【0071】
軌道検測において、梁部材の長さを不等長にしたり、レールへの当接点の数を増やしたりすることで何が変化するのかを端的に表現するならば、「検測特性が変化する」と言える。
まず、ここでいう「検測特性」について説明する。通常現場において行われている糸張りによる「高低狂い」の測定を例にとると、レールの高さを毎回絶対的な基準から測定することは不可能なため、図9(a)に示すようにレールに長さ10mの糸を張り、その中点からレールまでの距離をものさしで測定する。これが軌道狂いの量である。従来技術の説明でも述べたように、この手法を一般に「正矢法」という。図9(b)に示す例からもわかるように、仮に波長5mの軌道狂いが実際の軌道に存在していたとする。このとき10mの糸を用いたこの測定方法では狂いを全く検出することができない。これを「検測倍率が0倍という」。逆に、波長10mの軌道狂いについてこの方法で測定すると、実際の軌道の狂いの2倍の値が検測される。
【0072】
軌道狂いは不規則波の一種と考えることができ、通常の不規則波と同様にそれぞれの波長成分に分解することができる。この正矢法による測定は、軌道狂いの波長によって検測される倍率が異なることを意味する。図9(c)に、正矢法を用いて軌道狂いを測定した場合の各波長の検測倍率を示す。横軸には波長の逆数(空間周波数)をとっている。図9(b)で示した例のように、波長5m(グラフ上では空間周波数が0.2)のところで倍率は0倍になっており、点線で示した波長10mのところで検測倍率が2倍になっていることがわかる。
【0073】
このようにその測定方法によってどの波長の波がどのように検出されるかを示したものを、その測定方法の「検測特性」と言う。図10(a)に示すように、10mの糸の中点にあてていたものさしを、中点からずらした場合(これを「正矢法」に対して「偏心矢法」という)の「検測特性」を図10(b)に示す。図9(c)で示したグラフと比較すると特に10m以下の波長域でグラフが大きく異なることが分かる。検測倍率が0倍になる波長がなくなっていることにも注目されたい。
【0074】
もちろん、これらはあくまで一つの例を示したに過ぎないが、梁部材の長さを不等長(ここで説明した偏心矢)にしたり、レールへの当接点の数を増やしたりすると、その「検測特性」が変わるということが理解できる。
このような事実から、梁部材の長さを不等長にする(「偏心矢法」を用いる)場合のメリットとしては、次のようなことが挙げられる。つまり、特定の波長の軌道狂いの検測倍率が0倍になる(測定できない)ことを避けられることにある。測定できないということは、その波長の軌道狂いは直せないということである。測定できない波長の軌道狂いがなくなれば、当然直せない波長の軌道狂いはなくなり得る。
【0075】
また、当接点の数を増やすことのメリットとしては、次の例を挙げておく。図10(c)には、実際にフランス国鉄に存在する軌道検測車「モザンカー」の検測特性を示す。この車両は12.2mの間に8軸の車輪を配置して軌道検測を行っているものである。「正矢法」や「偏心矢法」の例と比べると、検測倍率が1倍を中心に比較的フラットになっていることがわかる。当接点を増やすほど検測倍率を1倍に近づけることが可能になり、検測倍率を1倍に近づけるほど得られる軌道狂いの波形を実際の線形に近づけることができる。
【図面の簡単な説明】
【図1】第1実施例の軌道狂い測定装置の概略構成を示す説明図である。
【図2】第2実施例の軌道狂い測定装置の概略構成を示す説明図である。
【図3】第3実施例の軌道狂い測定装置の概略構成を示す説明図である。
【図4】第4実施例の軌道狂い測定装置の概略構成を示す説明図である。
【図5】第5実施例の軌道狂い測定装置の概略構成を示す説明図である。
【図6】第6実施例の軌道狂い測定装置の概略構成を示す説明図である。
【図7】第7実施例の軌道狂い測定装置の概略構成を示す説明図である。
【図8】測定機構のバリエーションを示す説明図である。
【図9】正矢法による軌道狂い検測、測定できない波長例、軌道狂いの波長と検測倍率の説明図である。
【図10】偏心矢法による軌道狂い検測、偏心矢の検測特性例等の説明図である。
【図11】従来技術の説明図である。
【符号の説明】
10,20,30,40,50,60,70…軌道狂い測定装置
11,12,21,22,31,32,41,42,51,52,61,62,71,72,73…梁部材
14,15,16,24,25,26,34,35,36,44,45,46,54,55,56,64,65,66,74,75,76,77…走行ローラ
17,27,37,47,57,67,111,112…ジョイント(ユニバーサルジョイント)
18,38,101…高低検出角度計
28,39,102…通り低検出角度計
48,68,103…軌間検出角度計
58,69,104…水準検出角度計
R,R1,R2…レール
Ra…レール踏面
α…水糸
β…レール
γ…基準の梁(弦:測定の基線)

Claims (3)

  1. 下記(a)〜(d)に記載の第1〜第4の軌道狂い測定装置の構成の内、少なくとも2つ以上の構成を備え、且つ、少なくとも1本の梁部材は兼用されていることを特徴とする軌道狂い測定装置。
    (a)第1の軌道狂い測定装置
    n(n≧2)本の梁部材、
    前記n本中の2本の梁部材同士を折れ曲げ可能に接続するn−1個の関節部、
    前記各梁部材に少なくとも1つ対応して設けられ、且ついずれか1つの梁部材については2つ対応して設けられ、レール上に当接可能な当接部材、
    前記各関節部に対応して設けられ、当該関節部にて折れ曲がる2本の梁部材のなす角度を直接又は間接的に検出する角度検出手段、
    を備え、
    前記角度検出手段が検出する前記2本の梁部材のなす角度は、前記全ての当接部材を同一レール上に当接させた際の、レール踏面に垂直な面に投影した前記2本の梁部材のなす角度であること
    を特徴とする軌道狂い測定装置。
    (b)第2の軌道狂い測定装置
    n(n≧2)本の梁部材、
    前記n本中の2本の梁部材同士を折れ曲げ可能に接続するn−1個の関節部、
    前記各梁部材に少なくとも1つ対応して設けられ、且ついずれか1つの梁部材については2つ対応して設けられ、レール上に当接可能な当接部材、
    前記各関節部に対応して設けられ、関節部にて折れ曲がる2本の梁部材のなす角度を直接又は間接的に検出する角度検出手段、
    を備え、
    前記角度検出手段が検出する前記2本の梁部材のなす角度は、前記全ての当接部材を同一レール上に当接させた際の、レール踏面に水平な面に投影した前記2本の梁部材のなす角度であること
    を特徴とする軌道狂い測定装置。
    (c)第3の軌道狂い測定装置
    n(n≧2)本の梁部材、
    前記n本中の2本の梁部材同士を折れ曲げ可能に接続するn−1個の関節部、
    前記各梁部材に少なくとも1つ対応して設けられ、且ついずれか1つの梁部材については2つ対応して設けられ、レール上に当接可能な当接部材、
    前記各関節部に対応して設けられ、関節部にて折れ曲がる2本の梁部材のなす角度を直接又は間接的に検出する角度検出手段、
    を備え、
    前記角度検出手段が検出する前記2本の梁部材のなす角度は、前記一方の梁部材に対応して設けられた当接部材と前記関節部に対応して設けられた当接部材を同一レール上で走行させ、他方の梁部材に対応して設けられた当接部材を他方のレール上で走行させた際の、レール踏面に水平な面に投影した前記2本の梁部材のなす角度であること
    を特徴とする軌道狂い測定装置。
    (d)第4の軌道狂い測定装置
    n(n≧2)本の梁部材、
    前記n本中の2本の梁部材同士を折れ曲げ可能に接続するn−1個の関節部、
    前記各梁部材に少なくとも1つ対応して設けられ、且ついずれか1つの梁部材については2つ対応して設けられ、レール上に当接可能な当接部材、
    前記各関節部に対応して設けられ、関節部にて折れ曲がる2本の梁部材のなす角度を直接又は間接的に検出する角度検出手段、
    を備え、
    前記角度検出手段が検出する前記2本の梁部材のなす角度は、前記一方の梁部材に対応して設けられた当接部材と前記関節部に対応して設けられた当接部材を同一レール上で走行させ、他方の梁部材に対応して設けられた当接部材を他方のレール上で走行させた際の、レール踏面に垂直な面に投影した前記2本の梁部材のなす角度であること
    を特徴とする軌道狂い測定装置。
  2. n(n≧2)本の梁部材、
    前記n本中の2本の梁部材同士を折れ曲げ可能に接続するn−1個の関節部、
    前記各梁部材に少なくとも1つ対応して設けられ、且ついずれか1つの梁部材については2つ対応して設けられ、レール上に当接可能な当接部材、
    前記各関節部に対応して設けられ、関節部にて折れ曲がる2本の梁部材のなす角度を直接又は間接的に検出する角度検出手段、
    を備え、
    前記角度検出手段が検出する前記2本の梁部材のなす角度は、前記一方の梁部材に対応して設けられた当接部材と前記関節部に対応して設けられた当接部材を同一レール上で走行させ、他方の梁部材に対応して設けられた当接部材を他方のレール上で走行させた際の、レール踏面に水平な面に投影した前記2本の梁部材のなす角度であること
    を特徴とする軌道狂い測定装置。
  3. n(n≧2)本の梁部材、
    前記n本中の2本の梁部材同士を折れ曲げ可能に接続するn−1個の関節部、
    前記各梁部材に少なくとも1つ対応して設けられ、且ついずれか1つの梁部材については2つ対応して設けられ、レール上に当接可能な当接部材、
    前記各関節部に対応して設けられ、関節部にて折れ曲がる2本の梁部材のなす角度を直接又は間接的に検出する角度検出手段、
    を備え、
    前記角度検出手段が検出する前記2本の梁部材のなす角度は、前記一方の梁部材に対応して設けられた当接部材と前記関節部に対応して設けられた当接部材を同一レール上で走行させ、他方の梁部材に対応して設けられた当接部材を他方のレール上で走行させた際の、レール踏面に垂直な面に投影した前記2本の梁部材のなす角度であること
    を特徴とする軌道狂い測定装置。
JP2003044639A 2003-02-21 2003-02-21 軌道狂い測定装置 Expired - Fee Related JP3694507B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003044639A JP3694507B2 (ja) 2003-02-21 2003-02-21 軌道狂い測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003044639A JP3694507B2 (ja) 2003-02-21 2003-02-21 軌道狂い測定装置

Publications (2)

Publication Number Publication Date
JP2004251842A JP2004251842A (ja) 2004-09-09
JP3694507B2 true JP3694507B2 (ja) 2005-09-14

Family

ID=33027272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003044639A Expired - Fee Related JP3694507B2 (ja) 2003-02-21 2003-02-21 軌道狂い測定装置

Country Status (1)

Country Link
JP (1) JP3694507B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009018636A (ja) * 2007-07-10 2009-01-29 East Japan Railway Co 軌道検測装置
JP4996498B2 (ja) * 2008-02-18 2012-08-08 公益財団法人鉄道総合技術研究所 構造物変位推定システム及び構造物変位推定方法
JP4996499B2 (ja) * 2008-02-18 2012-08-08 公益財団法人鉄道総合技術研究所 構造物変位推定システム及び構造物変位推定方法
JP5960954B2 (ja) * 2011-06-02 2016-08-02 公益財団法人鉄道総合技術研究所 レール凹凸測定装置
CN102849085B (zh) * 2012-09-04 2014-10-29 长沙南车电气设备有限公司 轨道作业车安全监控装置及其安全监控方法
CN109311492B (zh) * 2016-07-12 2020-07-24 东海旅客铁道株式会社 检测装置以及检测方法
JP7253186B2 (ja) * 2019-04-08 2023-04-06 東海旅客鉄道株式会社 軌道狂い測定装置

Also Published As

Publication number Publication date
JP2004251842A (ja) 2004-09-09

Similar Documents

Publication Publication Date Title
KR101827485B1 (ko) 유압식 궤도 가이드부를 구비하는 트롤리형 궤도검측장비 및 그 방법
US20020166248A1 (en) Method and apparatus for track geometry measurement
FI80790C (fi) Foerfarande och anordning foer bestaemning av ett spaors laege.
CN102304884B (zh) 一种高速铁路轨道平顺性的检测装置
JP6445383B2 (ja) 軌道検測方法及びその装置
KR101840729B1 (ko) 회전경사계와 레일전류 차단장치를 구비한 트롤리형 궤도검측장비
JP2020502401A (ja) 軌道形状を検出するための検測装置および方法
CN107697084B (zh) 轨道车及隧道检测车
JP3694507B2 (ja) 軌道狂い測定装置
EP1785333B1 (en) Track rail maintenance system and track rail maintenance method
JPH11160005A (ja) 軌道形状検出装置及び軌道曲率半径検出装置
JP4067761B2 (ja) 簡易型軌道検測車
JP2004061278A (ja) 鉄道沿い構造物の3次元位置計測装置
ES2225800T3 (es) Procedimiento de medida y dispositivo para registrar la compresibilidad de una via.
CN110966940A (zh) 一种铁轨上测量铁路建筑限界方法
JPH081444Y2 (ja) 軌道の実形状測定装置
CN214523835U (zh) 铁路检修用轨枕检测装置
WO2005118367A1 (ja) 軌道狂い測定装置
KR102534613B1 (ko) 레이저 스캔을 통한 레일 음향 러프니스 측정 장치 및 방법
CN210234964U (zh) 轨道交通隧道三维移动检测小车装置
CN110962878A (zh) 轨上行走测量铁路建筑限界的装置
RU2276216C2 (ru) Способ измерений горизонтальных неровностей (рихтовки) и кривизны в плане рельсовых нитей
JPH027930Y2 (ja)
CN110241722B (zh) 一种用于检测拱桥桥梁的检查车
JP2731335B2 (ja) 構造物の長尺部材の計測装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050624

R150 Certificate of patent or registration of utility model

Ref document number: 3694507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080701

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees