JP3693771B2 - 形状測定方法および装置 - Google Patents

形状測定方法および装置 Download PDF

Info

Publication number
JP3693771B2
JP3693771B2 JP30147696A JP30147696A JP3693771B2 JP 3693771 B2 JP3693771 B2 JP 3693771B2 JP 30147696 A JP30147696 A JP 30147696A JP 30147696 A JP30147696 A JP 30147696A JP 3693771 B2 JP3693771 B2 JP 3693771B2
Authority
JP
Japan
Prior art keywords
observation object
shape
light
observation
shape measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30147696A
Other languages
English (en)
Other versions
JPH10141926A (ja
Inventor
真市 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP30147696A priority Critical patent/JP3693771B2/ja
Priority to US08/967,938 priority patent/US6061136A/en
Priority to EP97309131A priority patent/EP0843154A3/en
Publication of JPH10141926A publication Critical patent/JPH10141926A/ja
Application granted granted Critical
Publication of JP3693771B2 publication Critical patent/JP3693771B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、微小物体の形状を測定、検査する形状測定方法、およびかかる方法を実施する形状測定装置に関するものである。
【0002】
【従来の技術】
干渉計を用いて物体の形状を測定、検査する形状測定装置は、例えば、D.Malacara, “Optical Shop Testing", John Wiley and Sons, New York (1978)に示されているように、従来種々提案されている。特に、フリンジスキャンを用いた位相計測は、使用波長の1/100以下の精度で表面凹凸を検出することが可能なことから、物体の微細表面形状の測定に広く用いられている。
【0003】
ところで、物体表面に段差がある場合、その回折光には、段差の近傍に位相の飛び(特異点)が発生することが、例えば、C.Bouwhius,et.al., “Principles of Optical Disc Systems", Intern.Trens in Optic, Acad.Press (1991) に示されている。この大きさ無限小の特異点は、段差に限らず、物体の光学物性的不連続点(異なる二つの物質の境界または段差位置等)のごく近傍に発生することが多い。したがって、特異点の位置を高い精度で測定することにより、その発生原因となっている光学物性的不連続点を高い精度で測定することができる。
【0004】
さらに、位相計測によれば、従来の解像限界と言われていたレーリーの限界よりも細かいものも観察できるということが、V.P.Tychinsky, “Computerized Phase Microscope for Investigation of Submicron Structure", Optics Communications, Vol.74 (1989), pp.37-40 に示されている。現在、ICパターンや磁気ヘッドのヘッドギャップがますます細かくなり、従来の光学顕微鏡ではそれらの測定検査が困難なものになってきているが、位相計測がその問題解決の鍵になる可能性を示唆している。
【0005】
図3は、従来の形状測定装置の構成を示すものである。この形状測定装置は、トワイマン・グリーンタイプの干渉計を用いたもので、レーザ光源1から平行光となって射出されたコヒーレントな照明光は、ビームエキスパンダ2により適当な径に広げられたのち、ハーフミラーよりなる干渉装置3により、観察物体4へ向かう観察光路5と、参照物体6へ向かう参照光路7とに分割される。観察物体4および参照物体6で反射された光は、観察光路5および参照光路7を引き返し、干渉装置3で合成されて干渉する。この合成された光は、対物レンズ8を通ることにより、観察物体4と参照物体6との合成像が、所定の結像位置に配置されたCCDよりなる撮像装置9上に形成され、その像がコントローラ10を経て画像表示装置11に表示される。
【0006】
ここで、撮像装置9の撮像面上に投影される合成像には、干渉装置3から観察物体4で反射されて再び干渉装置3まで戻る観察光路5の光路長と、干渉装置3から参照物体6で反射されて再び干渉装置3まで戻る参照光路7の光路長のと局所的な差に応じた干渉縞が発生している。したがって、コントローラ10により位相変調器12を駆動して、参照物体6を光軸方向に移動させ、これにより光路長差を少しずつ変化させて、干渉縞を移動させながら複数の干渉画像を撮像装置9によって取り込めば、それらの干渉画像に基づいて観察物体表面近辺の位相分布を算出することができる。なお、フリンジスキャンなどの複数の干渉画像より位相分布を算出する方法は、例えば、Catherine Creath, “PHASE-MEASUREMENT INTERFEROMETRY TECHNIQUES", Progress in Optics XXVI, Amsterdam 1988, pp.350-393、および特開平5−232384号公報に詳しく説明されている。
【0007】
しかし、位相特異点を用いた観察物体の形状測定には、以下の問題がある。すなわち、従来は位相特異点の横位置のみを測定して、観察物体表面の光学物性的不連続点を求めるようにしているため、例えば、観察物体の表面に溝状構造体が存在した場合には、その溝状構造体の幅は測定できても、その深さは測定することができない。
【0008】
さらに、本発明者による観察物体表面近傍における詳細かつ入念な電場解析によれば、特異点は必ずしも観察物体表面上に現れるのではなく、観察物体の形状に敏感に反応して出現する高さ位置を変化させること、そして、特異点が観察物体表面から離れた位置に出現する場合は、その特異点の横位置が必ずしも観察物体の光学物性的不連続点の横位置に一致するものではないことが判明した。このことを図4〜図7を用いて説明する。
【0009】
図4は、本発明者が電場解析に用いた観察物体(回折格子)のモデルを示すものである。このモデルは、酸化シリコン(SiO2 )基板15上に、2μmの周期で、幅1.5μm(w)、間隔(溝幅)0.5μm(w)、厚さtの窒化シリコン(Si34 )膜16を形成したものである。SiO2 基板15およびSi34 膜16の屈折率nは、それぞれn=1.5およびn=2とした。この観察物体に、上方から波長λ=0.633μmの平面波を垂直に入射させる。
【0010】
図5(a)および(b)は、図4に示した観察物体のSi34 膜16の厚さtをt=0.2μmとして、真上からNA=0.9の対物レンズで見たときに、観察物体表面近傍にできる見かけの電場の位相分布の等高線を、P偏光の場合(図5(a))とS偏光の場合(図5(b))とに分けて示したものである。ここで、P偏光とは、観察物体表面の格子に平行(紙面に垂直)な電場成分であり、S偏光とは、P偏光に垂直(紙面に平行)な電場成分である。
【0011】
図5において、位相特異点は、位相分布の等高線が集中している箇所として示されており、観察物体表面の隣接するSi34 膜16の間にできた溝の段差の近傍に出現している。しかし、位相特異点は、必ずしも観察物体表面と一致しておらず、観察物体表面からhの高さ位置に出現し、しかもP偏光とS偏光とで高さhが異なっている。さらに、位相特異点の横位置(間隔)sも、図5(b)に示されているように、観察物体表面の段差の間隔と必ずしも一致するものではない。
【0012】
図6(a)および(b)は、上記観察物体のSi34 膜16の厚さtを変えて、Si34 膜16の上面から見たときの、二つの位相特異点の出現する高さh、およびその二つの位相特異点の間隔sの関係を、P偏光の場合(図6(a))とS偏光の場合(図6(b))とに分けて示したものである。また、図7(a)および(b)は、上記観察物体のSi34 膜16の溝幅(間隔)wを変えて、同様に、Si34 膜16の上面から見たときの、二つの位相特異点の出現する高さh、およびその二つの位相特異点の間隔sの関係を、P偏光の場合(図7(a))とS偏光の場合(図7(b))とに分けて示したものである。
【0013】
図6および図7から明らかなように、位相特異点の出現する観察物体表面からの高さh、および位相特異点の間隔sとも、Si34 膜16の厚さt、および間隔wによって敏感に値を変える。特に、位相特異点の間隔sは、観察物体のSi34 膜16の間隔wと必ずしも一致するものではないことがわかる。
【0014】
【発明が解決しようとする課題】
以上のことから、位相分布と観察物体の形状との相関が正しく把握されていなければ、位相分布の測定から観察物体の形状を正しく特定することはできないことになる。しかしながら、従来の干渉計を用いた形状測定装置にあっては、計測された位相分布をそのまま出力するようにしているため、観察物体の正しい形状を与えていたとは限らない。例えば、位相特異点を用いた光学物性的不連続点の検出においては、検出された位相特異点の横位置は、光学物性的不連続点の横位置と必ずしも一致しないため、例えば溝状構造物の幅測定に関しては、実際の値と異なる測定値を与えることになる。さらに、従来の形状測定装置にあっては、位相特異点の横位置のみを検出するようにしているため、例えば観察物体表面上にある溝状構造物の幅は測定できても、その深さは測定できない。
【0015】
この発明は、このような従来の問題点に着目してなされたもので、その第1の目的は、干渉計を用いて観察物体の形状測定をする場合でも、観察物体の形状を精度良く推定できる形状測定方法を提供しようとするものである。
【0016】
さらに、この発明の第2の目的は、上記の形状測定方法を簡単な構成で実施でき、観察物体の形状を精度良く推定できるようにした形状測定装置を提供しようとするものである。
【0017】
【課題を解決するための手段】
上記第1の目的を達成するため、この発明は、観察物体の形状情報を持つ光と参照光とを干渉させることにより、前記観察物体の形状に依存する干渉像を生成して前記観察物体の形状を推定するにあたり、
前記干渉像を直交する二つの偏光成分を用いて形成して、該干渉像によって観察される位相特異点と前記観察物体の基準点との相対位置を検出し、その相対位置に基づいて前記観察物体の形状を演算して推定することを特徴とするものである。
【0018】
このように、この発明に係る形状測定方法においては、直交する二つの偏光成分毎の位相特異点と観察物体の基準点との相対位置を検出することができるので、上記の相対位置と観察物体の形状との相関を、あらかじめ理論的あるいは経験的に求めておけば、検出した相対位置をその相関に照らし合わせて演算することにより、観察物体の形状を精度良く推定することが可能となる。
【0020】
この発明の好適一実施形態においては、複数の波長の光を用いるのが、観察物体の基準点を容易に検出すると共に、波長毎の位相特異点の位置を検出して観察物体の形状をより正確に推定する点で好ましい。
【0021】
この発明の好適一実施形態では、所定の形状パラメータを用いて観察物体の形状を推定するのが、演算を容易にする点で好ましい。すなわち、所定の形状パラメータと、位相特異点および観察物体の基準点の相対位置との関数を、予想される形状パラメータの範囲内で計算あるいは経験より求めておけば、検出した位相特異点と基準点との相対位置から形状パラメータを代数的に容易に算出することができ、観察物体の形状をより正確に推定することが可能となる。
【0022】
この発明の好適一実施形態では、形状パラメータは観察物体上の構造物の幅、高さ、および屈折率の少なくとも一つを含むようにする。ここで、構造物の幅を含む場合には、例えば、ICや磁気ディスクの検査における線幅を容易に測定することが可能となり、構造物の高さを含む場合には、例えば、IC等のリードパターンの高さを容易に測定することが可能となり、構造物の屈折率を含む場合には、例えば、シリコン基板にドーピングされた不純物のドーピング量を同定することが可能となる。
【0023】
さらに、上記第2の目的を達成するため、この発明の形状測定装置は、
光源と、
この光源から発した照明光を観察物体および参照物体にそれぞれ導く照明手段と、
前記観察物体および前記参照物体をそれぞれ透過あるいは反射した光を干渉させる干渉手段と、
この干渉手段により生成される干渉像を結像させる結像手段と、
この結像手段の光路中に配置した偏光変調手段と、
前記結像手段の焦点合わせを行う焦点調節手段と、
前記観察物体の基準点の位置を検出する観察物体位置検出手段と、
前記干渉像によって観察される位相特異点の位置を検出する特異点位置検出手段と、
前記観察物体位置検出手段で検出した前記基準点の位置と前記特異点位置検出手段で検出した前記位相特異点の位置との相対位置に基づいて前記観察物体の形状を算出する演算手段と、
を有することを特徴とするものである。
【0024】
このように、この発明に係る形状測定装置においては、光源から発せられた照明光により、照明手段、干渉手段、偏光変調手段および結像手段によって干渉像を形成し、焦点調節手段により焦点位置を調節しながら特異点位置検出手段により位相特異点の位置を検出し、観察物体位置検出手段により観察物体の基準点の位置を検出するようにしたので、直交する二つの偏光成分毎の位相特異点と観察物体の基準点との相対位置を検出することが可能となる。したがって、これら位相特異点および基準点の相対位置に基づいて、演算手段において、あらかじめ求められた位相特異点および基準点の相対位置と観察物体の形状との相関を用いて観察物体の形状を算出することにより、観察物体の形状を精度良く推定することが可能となる。
【0026】
この発明の好適一実施形態では、光源を、複数の波長の光を発するよう構成するのが、観察物体の基準点を容易に検出すると共に、波長毎の位相特異点の位置を検出して観察物体の形状をより正確に推定する点で好ましい。
【0027】
【発明の実施の形態】
この発明に係る形状測定方法について、再び図4、図6および図7を用いて説明する。測定対象の観察物体が、図4に示すように、SiO2 基板15上に、2μmの間隔で、幅1.5μm(w)、膜厚tのSi34 膜16を、間隔0.5μm(w)で形成したもので、その厚さtのみが不定であるとする。このような観察物体に対して、観察物体の上方から、波長λ=0.633μmの平面波を、観察物体表面に垂直に入射し、観察物体より反射した光を、真上からNA=0.9の対物レンズで結像させて位相分布を測定した場合、SiO2 基板15上で、膜厚tの隣接するSi34 膜16で挟まれた、幅0.5μm(w)、深さtの溝の両側の段差に対応する二つの位相特異点の、Si34 膜16の上面からの高さh、およびその二つの位相特異点の間隔sが、図6に示すように、溝の深さtにより変化することが、計算で求まっているものとする。
【0028】
したがって、図6の関係を用いれば、S偏光におけるhとsとを測定することにより、観察物体表面の溝の高さtを求めることができる。特に、t=0.15μm〜0.17μmにおいては、S偏光におけるhがtに対して敏感に変化しているので、S偏光におけるhの測定値だけでもtを高い精度で求めることが可能である。同様に、t=0.135μm〜0.15μm、およびt=0.18μm〜0.25μmの場合でも、P偏光におけるhの測定値だけでtを高い精度で求めることが可能である。
【0029】
さらに、溝の深さtだけでなく、溝の幅wも不定である場合には、種々の溝の幅におけるhとsとの相関を、図7に示すようにあらかじめ求めておくことにより、測定対象の観察物体のhとsとを測定することにより、観察物体表面のSi34 膜16の幅wを求めることができる。このように、予想し得る様々なtとwに対するhとsとの関係を計算(シミュレーション)あるいは経験で求めておけば、hとsとの実測値と、図6および図7に例示したような計算あるいは経験で求められたtおよびwに対するhとsとのマッチングにより、測定対象の観察物体のtとwとを推定することが可能となる。
【0030】
なお、使用する光の波長が異なると、相対的にSi34 膜16の間隔wおよび膜厚tが異なる場合と相似となり、図6および図7に示すtおよびwに対するhとsとの関係が全く別のものになるので、使用する光の波長毎のtおよびwに対するhとsとの関係をあらかじめ求めておけばよい。また、このように、複数の波長毎のtおよびwに対するhとsとの関係を求めておけば、複数の波長におけるhとsとの実測値を用いて観察物体の形状を推定することにより、より正確な推定が可能となる。
【0031】
【実施例】
以下、この発明の実施例について図面を参照して説明する。
図1は、この発明を実施する形状測定装置の一実施例を示すものである。この形状測定装置は、高精度な平面ミラーよりなる参照ミラー21と、レーザ光源22と、レーザ光源22から射出される直線偏光を円偏光の照明光に変換する1/4波長板23と、この照明光の径を広げるビームエキスパンダ24と、白色光源25と、白色光源25およびレーザ光源22からの照明光を合成するダクロイックミラー26と、合成された照明光を観察物体27に導く観察光路と参照ミラー21に導く参照光路とに分割すると共に、観察物体27および参照ミラー21でそれぞれ反射される光を再び合成して干渉させるハーフミラー28と、観察物体27および参照ミラー21をそれぞれ拡大投影するために、ハーフミラー28と観察物体27との間およびハーフミラー28と参照ミラー21との間にそれぞれ配置され、それぞれの後側焦点位置が互いに共役関係にある観察対物レンズ29および参照対物レンズ30と、ダイクロイックミラー26とハーフミラー28との間の光路中に挿脱可能で、光路中に挿入された状態では後側焦点位置が観察対物レンズ29および参照対物レンズ30の瞳位置にほぼ一致するように配置したケーラーレンズ31と、ハーフミラー28によって形成される観察物体27と参照ミラー21との干渉像を結像する結像レンズ32と、この結像レンズ32の結像面に受光面を配置した、例えばCCDよりなる撮像素子33と、ハーフミラー28と撮像素子33との間に挿脱可能で、かつ回転可能に配置した偏光変調手段としてのアナライザ34と、観察物体27を保持すると共に、該観察物体27を観察対物レンズ29に対して焦点調節するための、例えばピエゾ素子を有する焦点調節装置35と、参照ミラー21を保持すると共に、参照光路のリタデーションを調節する、例えばピエゾ素子を有するリタデーション調節装置36と、撮像素子33、焦点調節装置35およびリタデーション調節装置36に電気的に接続したコントローラ37と、このコントローラ37に電気的に接続した演算装置38とを有する。
【0032】
次に、図1に示す形状測定装置の動作を、図2に示すフローチャートを参照しながら説明する。
先ず、ステップ51および52で、観察物体27を焦点調節装置35上にセットすると共に、アナライザ34を選択的に回動させて位相特異点を検出する際の偏光(P偏光またはS偏光)を選択する。その後、ステップ53において、観察対物レンズ29の焦点位置が、観察物体27の段差表面近傍に位置するように、観察物体27を移動させて焦点調節を行う。
【0033】
この焦点調節においては、アナライザ34を光路から退去させ、例えば、ケーラーレンズ31を光路に挿入して、白色光源25を点灯させ、その照明光(白色光)をダイクロイックミラー26、ケーラーレンズ31およびハーフミラー28を経て観察対物レンズ29の瞳位置に集光させるようにし、これにより照明光を観察物体27に平行光で入射させて、該観察物体27を広い範囲で照明する。なお、この場合、照明光は、参照対物レンズ30の瞳位置にも集光して参照ミラー21にも導かれるようになるが、この参照光路の照明光は、例えばシャッタ(図示せず)等により遮断して、ハーフミラー28に反射光が戻らないようにしておく。
【0034】
このようにして、白色光源25からの照明光で観察物体27を照明して、その像を観察対物レンズ29、ハーフミラー28および結像レンズ32を経て撮像素子33の受光面に形成し、この撮像素子33の出力をコントローラ37を経て図示しない画像表示装置に供給して明視野像を表示させ、この明視野像を観察しながら、焦点調節装置35を手動で駆動して、観察対物レンズ29の焦点位置が、観察物体27の段差表面近傍に位置するように焦点調節する。なお、この焦点調節は、撮像素子33の出力をコントローラ37を経て演算装置38に供給し、ここで焦点調節のための所要の演算を行い、その演算結果に基づいて、コントローラ37により焦点調節装置35を駆動して自動的に行うようにすることもできる。
【0035】
その後、白色光源25を消灯すると共に、アナライザ34を光路中に挿入し、ケーラーレンズ31を光路から退去させて、レーザ光源22からレーザ光を射出させる。このレーザ光は、1/4波長板23で円偏光に変換した後、ビームエキスパンダ24で光束径の大きい平行光束に変換してダイクロイックミラー26で反射させ、さらにハーフミラー28で二分割して、それぞれ観察対物レンズ29および参照対物レンズ30を経て観察物体27および参照ミラー21の表面に集光させて、観察したい微小な領域を照明する。これら観察物体27および参照ミラー21で反射された照明光は、それぞれ観察対物レンズ29および参照対物レンズ30を経てハーフミラー28で合成し、これにより形成される干渉像を結像レンズ32を経てアナライザ34を通すことにより、あらかじめ選択した偏光成分のコヒーレントな干渉像を撮像素子33の受光面上に形成する。
【0036】
次に、ステップ54において、コントローラ37により、リタデーション調節装置36を駆動してフリンジスキャンを行い、その各位置での撮像素子33の出力(干渉像)をステップ55において演算装置38に取り込む。その後、ステップ56において、演算装置38に取り込んだフリンジスキャンの各位置での干渉像に基づいて、該演算装置38において位相パターンを算出した後、ステップ57において、算出した位相パターンに特異点があるか否かを判定する。
【0037】
ここで、位相特異点が検出された場合には、次に、ステップ58において、そのときの焦点調節装置35における位置情報t1をコントローラ37を経て演算装置38に取り込む。これに対し、ステップ57で位相特異点が検出されない場合には、ステップ59において、コントローラ37により焦点調節装置35を駆動して観察物体27を観察対物レンズ29の光軸方向に微小移動させて、上記のステップ54に戻り、位相特異点が検出されるまで繰り返す。なお、複数の異なる波長の光を用いての位相特異点の位置検出に際しては、波長毎の位相特異点の合焦位置を演算装置38に取り込む。その後、ステップ60においてその位相特異点の間隔sを演算装置38で算出して保存する。
【0038】
次に、ステップ61において、レーザ光源22をオフ、またはレーザ光を図示しないシャッタ等により遮断すると共に、白色光源25を点灯させて光源を切り換え、ステップ62において、ステップ53で説明したと同様にして、観察対物レンズ29の焦点位置が観察物体27の段差表面近傍に位置するように焦点調節する。その後、白色光源25からの照明光により、上述したレーザ光の場合と同様にして、観察物体27および参照ミラー21を照明し、それぞれの反射光をハーフミラー28で合成して、撮像素子33の受光面上にインコヒーレントな干渉像を形成する。なお、アナライザ34は、光路から退去させたままとする。
【0039】
この撮像素子33の出力は、ステップ63において演算装置38に取り込む。その後、ステップ64において、取り込んだ撮像素子33の出力(インコヒーレントな干渉像)に基づいて、演算装置38において干渉縞コントラストを算出する。ここで、撮像素子33の受光面上に形成されるインコヒーレントな干渉像は、観察光路と参照光路との光路長が一致したときのみ最大の干渉縞コントラストを与えるので、次に、ステップ65で算出した干渉縞コントラストが最大か否かを判定し、最大でない場合には、ステップ66で、コントローラ37により焦点調節装置35を駆動して観察物体27を観察対物レンズ29の光軸方向に微小移動させて、上記のステップ63に戻り、最大の干渉縞コントラストが得られるまで繰り返す。
【0040】
このようにして、最大の干渉縞コントラストが得られるように、焦点調節装置35の駆動を制御することにより、観察対物レンズ29を観察物体27の段差表面に精度良く合焦させることができる。上記のステップ65において、最大の干渉縞コントラストが得られたら、次に、ステップ67において、そのときの焦点調節装置35における位置情報t2をコントローラ37を経て演算装置38に取り込む。
【0041】
以上のようにして、位相特異点の位置情報t1および観察物体表面の位置情報t2が得られたら、ステップ68において、演算装置38でそれらの差を演算して位相特異点の相対位置hを求める。その後、ステップ69において、上記のステップ60で算出した位相特異点の間隔sおよびステップ68で算出した位相特異点の相対位置hに基づいて、演算装置38で、あらかじめ理論的あるいは経験的に求まっているそれらの情報と、観察物体の不定な形状パラメータ、この場合は、段差の深さtおよび段差の間隔wとの関係を用いて演算して、それらの形状パラメータの値tおよびwを推定して、例えば図示しない画像表示装置に表示する。
【0042】
この実施例によれば、位相特異点の間隔sに加え、位相特異点と観察物体27との相対位置hが検出できるので、例えば、観察物体27の表面上の溝構造物の幅を、従来の形状測定装置におけるよりも精度良く推定できるとともに、従来の形状測定装置では検出不可能であった溝構造物の深さも精度良く推定することができる。
【0043】
また、アナライザ34を回転させることにより、P偏光成分またはS偏光成分の干渉像を選択することができるので、それぞれの偏光成分による位相特異点の位置を検出することにより、観察物体27の形状をより正確に推定することができる。
【0044】
さらに、ケーラーレンズ31を光路に対して挿脱可能に設けたので、これを光路に挿入することにより、照明光を観察対物レンズ29の瞳位置に集光して、観察物体27を広い範囲で観察することができる。したがって、図2に示したステップ53および62での焦点調節を容易に行うことが可能となる。
【0045】
なお、この発明は、上述した実施例にのみ限定されるものではなく、幾多の変更または変形が可能である。例えば、観察物体の基準位置については、その位置が検出し易いものを設定すれば良く、例えば、観察物体の表面にある程度広い平面が存在する場合には、その平面を基準位置として、その高さを干渉計を用いて測定したり、あるいは、観察物体の一部にマーカを付し、そのマーカを基準位置として設定することもできる。
【0046】
また、観察物体の基準位置は、白色光を用いた干渉に限らず、複数の波長を発するレーザ光源を用いたヘテロダイン検出法により検出するようにすることもできるし、原子間力顕微鏡等のように、プローブを用いて直接検出するようにすることもできる。
【0048】
【発明の効果】
以上のように、この発明に係る形状測定方法によれば、直交する二つの偏光成分を用いて干渉像を形成して、各干渉像によって観察される位相特異点と観察物体の基準点との相対位置を検出し、その相対位置に基づいて観察物体の形状を演算して推定するようにしたので、観察物体の形状を精度良く推定することができると共に、従来の位相特異点の横位置のみの検出による形状測定方法では不可能であった観察物体表面上における段差測定などの形状測定が可能となる。
【0049】
また、この発明に係る形状測定装置によれば、公知の干渉計に、偏光変調手段、焦点調節手段、特異点位置検出手段、観察物体位置検出手段および演算手段を付加し、偏光変調手段による直交する二つの偏光成分毎に焦点調節手段により焦点位置を調節しながら特異点位置検出手段により位相特異点の位置を検出し、観察物体位置検出手段により観察物体の基準点の位置を検出して、偏光成分毎の位相特異点および基準点の相対位置に基づいて、演算手段により観察物体の形状を算出するようにしたので、簡単な構成で、観察物体の形状を精度良く推定することが可能となる。
【図面の簡単な説明】
【図1】この発明に係る形状測定方法を実施する形状測定装置の一実施例を示す図である。
【図2】図1の動作を説明するためのフローチャートである。
【図3】従来の形状測定装置の構成を示す図である。
【図4】本発明者が電場解析に用いた観察物体のモデルを示す図である。
【図5】図4に示した観察物体の表面近傍にできる見かけの電場のP偏光成分とS偏光成分との位相分布を示す図である。
【図6】図4に示す観察物体において、Si34 膜の厚さtを変えたときの、P偏光およびS偏光における二つの位相特異点の出現する高さh、およびその二つの位相特異点の間隔sの関係を示す図である。
【図7】同じく、Si34 膜の溝幅wを変えたときの、P偏光およびS偏光における二つの位相特異点の出現する高さh、およびその二つの位相特異点の間隔sの関係を示す図である。
【符号の説明】
21 参照ミラー
22 レーザ光源
23 1/4波長板
24 ビームエキスパンダ
25 白色光源
26 ダクロイックミラー
27 観察物体
28 ハーフミラー
29 観察対物レンズ
30 参照対物レンズ
31 ケーラーレンズ
32 結像レンズ
33 撮像素子
34 アナライザ
35 焦点調節装置
36 リタデーション調節装置
37 コントローラ
38 演算装置

Claims (6)

  1. 観察物体の形状情報を持つ光と参照光とを干渉させることにより、前記観察物体の形状に依存する干渉像を生成して前記観察物体の形状を推定するにあたり、
    前記干渉像を直交する二つの偏光成分を用いてそれぞれ形成して、各干渉像によって観察される位相特異点と前記観察物体の基準点との相対位置を検出し、その相対位置に基づいて前記観察物体の形状を演算して推定することを特徴とする形状測定方法。
  2. 請求項1記載の形状測定方法において、
    前記観察物体の形状情報を持つ光および前記参照光として、複数の波長の光を用いることを特徴とする形状測定方法。
  3. 請求項1または2記載の形状測定方法において、
    前記観察物体の形状を、所定の形状パラメータを用いて推定することを特徴とする形状測定方法。
  4. 請求項3記載の形状測定方法において、
    前記パラメータは、前記観察物体上の構造物の幅、高さ、および屈折率の少なくとも一つを含むことを特徴とする形状測定方法。
  5. 光源と、
    この光源から発した照明光を観察物体および参照物体にそれぞれ導く照明手段と、
    前記観察物体および前記参照物体をそれぞれ透過あるいは反射した光を干渉させる干渉手段と、
    この干渉手段により生成される干渉像を結像させる結像手段と、
    この結像手段の光路中に配置した偏光変調手段と、
    前記結像手段の焦点合わせを行う焦点調節手段と、
    前記観察物体の基準点の位置を検出する観察物体位置検出手段と、
    前記干渉像によって観察される位相特異点の位置を検出する特異点位置検出手段と、
    前記観察物体位置検出手段で検出した前記基準点の位置と前記特異点位置検出手段で検出した前記位相特異点の位置との相対位置に基づいて前記観察物体の形状を算出する演算手段と、
    を有することを特徴とする形状測定装置。
  6. 請求項5記載の形状測定装置において、
    前記光源を、複数の波長の光を発するよう構成したことを特徴とする形状測定装置。
JP30147696A 1996-11-13 1996-11-13 形状測定方法および装置 Expired - Fee Related JP3693771B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP30147696A JP3693771B2 (ja) 1996-11-13 1996-11-13 形状測定方法および装置
US08/967,938 US6061136A (en) 1996-11-13 1997-11-12 Method for measuring shape of object and apparatus for carrying out the same
EP97309131A EP0843154A3 (en) 1996-11-13 1997-11-13 Method for measuring shape of object and apparatus for carrying out the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30147696A JP3693771B2 (ja) 1996-11-13 1996-11-13 形状測定方法および装置

Publications (2)

Publication Number Publication Date
JPH10141926A JPH10141926A (ja) 1998-05-29
JP3693771B2 true JP3693771B2 (ja) 2005-09-07

Family

ID=17897369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30147696A Expired - Fee Related JP3693771B2 (ja) 1996-11-13 1996-11-13 形状測定方法および装置

Country Status (3)

Country Link
US (1) US6061136A (ja)
EP (1) EP0843154A3 (ja)
JP (1) JP3693771B2 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3423229B2 (ja) * 1998-11-17 2003-07-07 株式会社ミツトヨ 光波干渉計及び光波干渉計を用いた測長方法
JP2002544555A (ja) * 1999-05-18 2002-12-24 アプライド マテリアルズ インコーポレイテッド マスターとの比較による物品の検査方法および装置
JP4765140B2 (ja) * 2000-05-22 2011-09-07 株式会社ニコン 干渉計測方法および干渉計測装置
DE10202120A1 (de) * 2002-01-21 2003-07-31 Scinex Ag Zug Interferometrische optische Anordnung
JP2006300661A (ja) * 2005-04-19 2006-11-02 Kobe Steel Ltd 干渉計,フーリエ分光装置
JP4197340B2 (ja) * 2006-01-16 2008-12-17 アンリツ株式会社 三次元形状測定装置
JP4197339B2 (ja) * 2006-01-16 2008-12-17 アンリツ株式会社 三次元形状測定装置
JP4180084B2 (ja) * 2006-03-30 2008-11-12 アンリツ株式会社 三次元形状測定装置及び測定方法
JP4452815B2 (ja) * 2007-07-31 2010-04-21 レーザーテック株式会社 深さ測定装置
ATE481631T1 (de) * 2008-07-11 2010-10-15 Optopol Technology S A Spektrumstomographie mit optischer kohärenz
US20110032534A1 (en) * 2009-05-19 2011-02-10 Camtek Ltd System and a method for broadband interferometry
CN103424077A (zh) * 2012-05-23 2013-12-04 联想(北京)有限公司 运动检测装置、检测方法和电子设备
JP5704150B2 (ja) * 2012-11-21 2015-04-22 株式会社東京精密 白色干渉装置及び白色干渉装置の位置及び変位測定方法
CN106441157B (zh) * 2016-11-25 2019-01-22 天津大学 一种复杂形貌快速测量方法
CN106767500B (zh) * 2016-11-25 2019-03-22 天津大学 用于形貌测量的光路系统
KR102019326B1 (ko) * 2018-06-25 2019-09-06 케이맥(주) 내진동 백색광 간섭현미경 및 그 진동영향 제거방법
CN117006971A (zh) * 2023-09-25 2023-11-07 板石智能科技(深圳)有限公司 一种三维形貌测量系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5479259A (en) * 1991-05-20 1995-12-26 Hitachi, Ltd. Method and apparatus for detecting photoacoustic signal
JPH05232384A (ja) * 1992-02-18 1993-09-10 Olympus Optical Co Ltd 干渉顕微鏡
US5390023A (en) * 1992-06-03 1995-02-14 Zygo Corporation Interferometric method and apparatus to measure surface topography
DE4429416A1 (de) * 1994-08-19 1996-02-22 Velzel Christiaan H F Verfahren und Interferenzmikroskop zum Mikroskopieren eines Objektes zur Erzielung einer Auflösung jenseits der Beugungsgrenze (Superauflösung)
US5555471A (en) * 1995-05-24 1996-09-10 Wyko Corporation Method for measuring thin-film thickness and step height on the surface of thin-film/substrate test samples by phase-shifting interferometry

Also Published As

Publication number Publication date
JPH10141926A (ja) 1998-05-29
EP0843154A3 (en) 2000-04-05
US6061136A (en) 2000-05-09
EP0843154A2 (en) 1998-05-20

Similar Documents

Publication Publication Date Title
JP3693771B2 (ja) 形状測定方法および装置
US5956141A (en) Focus adjusting method and shape measuring device and interference microscope using said focus adjusting method
US5202748A (en) In situ process control system for steppers
US10288408B2 (en) Scanning white-light interferometry system for characterization of patterned semiconductor features
Bowe et al. White light interferometric surface profiler
JP4782958B2 (ja) 表面形状測定装置及びその方法、プログラム並びに記憶媒体
JP2010515027A5 (ja)
JP5268425B2 (ja) 表面形状測定装置及び露光装置
JP2009098215A (ja) 顕微鏡装置、及び顕微鏡装置における位相変化量の算出方法。
JP2003075134A (ja) 光干渉を用いた形状測定方法および形状測定装置
JP4766989B2 (ja) 位相シフトデジタルホログラフィ法を用いた歪計測方法および歪計測装置
US6433876B1 (en) Multiple wavelength or multiple shear distance quantitative differential interference contrast microscopy
JP4100553B2 (ja) 動的形状及び動的位置の同時測定装置及び同時測定方法
JPH1089912A (ja) 干渉顕微鏡
US6950194B2 (en) Alignment sensor
JP2003294418A (ja) 微小周期構造評価装置及び微小周期構造評価方法
JP3327998B2 (ja) 形状測定方法及び装置
JP3693767B2 (ja) 形状測定器
JP2020153992A (ja) 白色干渉計による形状測定装置
Li et al. Measurement of diameter of metal cylinders using a sinusoidally vibrating interference pattern
WO2011135698A1 (ja) 変形計測方法
JPS63229309A (ja) 微細パタ−ンの深さ測定方法及びその装置
JP3964260B2 (ja) 形状測定装置
JP4177188B2 (ja) 動的形状及び動的位置の同時測定方法、装置、光学素子
JP2000097633A (ja) マーク位置検出装置およびこれを用いたマーク位置検出方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees