JP3692808B2 - 半導体装置 - Google Patents
半導体装置 Download PDFInfo
- Publication number
- JP3692808B2 JP3692808B2 JP36630198A JP36630198A JP3692808B2 JP 3692808 B2 JP3692808 B2 JP 3692808B2 JP 36630198 A JP36630198 A JP 36630198A JP 36630198 A JP36630198 A JP 36630198A JP 3692808 B2 JP3692808 B2 JP 3692808B2
- Authority
- JP
- Japan
- Prior art keywords
- region
- channel
- fixed potential
- contact
- drain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Junction Field-Effect Transistors (AREA)
Description
【発明の属する技術分野】
本発明は、バイポーラ型の縦型パワー素子に関する。
【0002】
【従来の技術】
本発明の背景となる従来技術として本出願人が出願した特開平6−252408号公開特許公報を引用する。図7並びに図8は前記公報から引用した半導体装置の構造図である。なお、図中番号および部位の名称などは説明のため適宜変更して記載する。図7は基本構造を説明する斜視図、図8は図7の側面と同じ断面図であり、図7に示した基本構造の2単位分を示している。
【0003】
前記の図中、番号51はn+型の基板領域、52はn型のドレイン領域、53はn+型のソース領域、54はMOS型電極、55は絶縁膜である。MOS型電極54は高濃度のp+型ポリシリコンよりなる。61はドレイン電極で、基板領域51とオーミックコンタクトしている。63はソース電極で、ソース領域53およびMOS型電極54とオーミックコンタクトしてる。すなわち、MOS型電極54はソース電位に固定されている。よって、このMOS型電極54と絶縁膜55を合わせて「固定電位絶縁電極」56と呼ぶ。この固定電位絶縁電極56の断面構造は、例えば「U」の字のように側壁がほぼ垂直な溝の中に形成されている。また、固定電位絶縁電極56の間に挟まれたドレイン領域52をチャネル領域57と呼ぶ。
【0004】
さらに、絶縁膜55に接してソース領域53とは離れたところに、p型のゲート領域58が存在する。図8中、68はこのゲート領域58とオーミックコンタクトする電極で「ゲート電極」と呼ぶ。なお、60は層間絶縁膜である。また、図8中の「破線」は図7との関係から分かるように紙面の奥行き方向にある固定電位絶縁電極56の存在を示したものである。
【0005】
この素子は、例えばソース電極63を接地(0Vに)し、ドレイン電極61は負荷を介してしかるべき正の電位を与えて使用する。ゲート電極68が接地もしくは負電位に印加されているとき、固定電位絶縁電極56の周囲にはMOS型電極54のビルトイン電位に伴う空乏層が形成されており、チャネル領域57にはこの空乏領域によって伝導電子に対する充分なポテンシャル障壁が形成されるため、素子は遮断状態となる。また、ゲート電極68に正電位を印加すると、p型のゲート領域58の電位は上昇し、絶縁膜55の界面に正孔が流れ込んで反転層が形成される。反転層はp+型であるMOS型電極54からチャネル領域57への電気力線を遮蔽するので、前記空乏領域は縮小もしくは消滅してチャネルが開き、導通状態となる。
【0006】
さらに、ゲート電極68に印加する電位を高くすると、ゲート領域58と周辺のn型領域からなるpn接合が順バイアス状態となり、正孔は直接ドレイン領域52ならびにチャネル領域57へと注入される。これらn型領域は、耐圧もしくはチャネルの遮断性を保つために不純物濃度が低く作られているので、正孔が大量に注入されると伝導度が向上し、ソース領域53から放出された電子は高い伝導度で基板領域51へと移動する。すなわち、n型領域は高水準注入状態となり、ドレイン電流は低い抵抗で流れる。
【0007】
【発明が解決しようとする課題】
この素子を導通状態から遮断状態へとスイッチ動作させるために、ゲート電極68に接地もしくは負電位を印加すると、ドレイン領域52並びにチャネル領域57にあった過剰な正孔はp型ゲート領域58へと流れ込み始める。やがてドレイン領域52並びにチャネル領域57内の過剰な正孔はなくなり、チャネル領域57には電子に対するポテンシャル障壁が復活して、ドレイン電流は遮断される。このとき、チャネル領域57内の正孔が急激に引き抜かれ、電子に対するポテンシャル障壁が急激に復活すると、流れていたドレイン電流を維持しようと、この素子のドレイン電位は急峻に上昇し、負荷を介して印加されていた所定の電圧を超える電位がドレイン電極61に印加される。つまり、ターンオフ時のドレイン電圧のオーバーシュート量が大きくなってしまう。
【0008】
また、このターンオフ時のドレイン電圧のオーバーシュート量を外部回路によって低減すべく、ゲート電極68に抵抗を介してターンオフ信号を印加すると、チャネル領域57内から正孔が引き抜かれる速度が緩和され、前記課題は解決するのであるが、それと同時にドレイン領域52から正孔が引き抜かれる速度も緩和されてしまうため、ターンオフ信号をゲート電極68に印加してから主電流が遮断するまでのターンオフ時間が長くなってしまう。すなわち、この従来の構造ではターンオフ時間を延ばさずに、ターンオフ時のドレイン電圧のオーバーシュート量を低減するには限界があった。
【0009】
本発明は前記のような従来技術の問題点を解決するためになされたものであり、ターンオフ時間の延長を抑制しながら、ターンオフ時のドレイン電圧のオーバーシュート量を小さくした半導体装置を提供することを目的としている。
【0010】
【課題を解決するための手段】
前記の目的を達成するため、本発明においては特許請求の範囲に記載するような構成をとる。すなわち、請求項1に記載の発明においては、ドレイン領域である一導電型(たとえばn型)の半導体基体の一主面に接して同一導電型(ここではn型)のソース領域を有し、前記主面に接して前記ソース領域を挟み込むように配置された溝を有する。前記溝の内側には絶縁膜によって前記ドレイン領域と絶縁され、かつ、前記ソース領域と同電位に保たれた固定電位絶縁電極を有し、前記固定電位絶縁電極は、前記絶縁膜を介して隣接する前記ドレイン領域に空乏領域を形成するような仕事関数の導電性材料(たとえばp型ポリシリコン)から成る。そして、前記ソース領域に接する前記ドレイン領域の一部であって、前記固定電位絶縁電極によって挟み込まれたチャネル領域を有する。そして、前記チャネル領域には前記固定電位絶縁電極の周囲に形成された前記空乏領域によって多数キャリアの移動を阻止するポテンシャル障壁が形成されていて、遮断状態における前記ドレイン領域側からの電界が前記ソース領域近傍に影響を及ぼさないように、前記チャネル領域にあって前記溝の底部から前記ソース領域までの距離すなわちチャネル長は、前記チャネル領域にあって対面する前記溝の側壁同士の距離すなわちチャネル厚みの、少なくとも2乃至3倍以上となっている。さらに、前記固定電位絶縁電極を取り囲む前記絶縁膜の界面に少数キャリアを導入して反転層を形成し、前記固定電位絶縁電極から前記ドレイン領域への電界を遮蔽して前記チャネル領域に形成されたポテンシャル障壁を減少もしくは消滅させてチャネルを開くべく、前記絶縁膜ならびに前記ドレイン領域に接して、前記ソース領域には接しない、反対導電型(たとえばp型)のゲート領域を有する。さらに、前記ゲート領域内に前記少数キャリアに対する障害物を設け、前記ゲート領域内で前記少数キャリアを迂回させて経路長を長くすることより、前記チャネル領域以外のドレイン領域に導入された少数キャリアを引き抜く際の排出経路の抵抗は変えずに、前記チャネル領域に導入された少数キャリアを引き抜く際の排出経路の抵抗を大きくしている。
【0012】
また、請求項2に記載の発明においては、請求項1に記載の障害物として、前記ソース領域を挟み込む前記固定電位絶縁電極同士が前記ゲート領域内でつながった形状に形成されたものを用いている。
【0013】
また、請求項3に記載の発明においては、請求項1に記載の障害物として、前記ゲート領域内に絶縁層または溝を設けている。
【0014】
また、請求項4に記載の発明においては、請求項1に記載の半導体装置において、前記チャネル領域に導入された少数キャリアの排出経路に高抵抗領域を設けることにより、前記チャネル領域に導入された少数キャリアの排出経路の抵抗を大きくしたものである。
【0015】
また、請求項5に記載の発明は、請求項4の具体的構成を示すものであり、前記主面並びに前記ゲート領域に接して、前記ソース領域には接しないように低濃度の反対導電型の抵抗領域を設けたものである。
【0016】
このような構成による作用について説明する。前記ゲート領域に正電位を印加して導通状態になっている素子を遮断状態に転じるために、接地もしくは負電位を印加すると、前記ドレイン領域内に蓄積されていた少数キャリア(ここでは正孔)は反対導電型(p型)の前記ゲート領域へと流れ込み、前記少数キャリア(正孔)濃度は前記ゲート領域近傍から順々に減少していく。また、前記チャネル領域においては前記少数キャリア(正孔)の供給が止り、逆に排出され前記少数キャリア(正孔)密度が低下してくると、高注入水準状態が解かれ、前記少数キャリア(正孔)は前記絶縁膜界面に反転層を形成し、以後前記少数キャリア(正孔)は反転層中を伝わって反対導電型(p型)の前記ゲート領域へと流れ込む。さらに前記絶縁膜界面の前記少数キャリア(正孔)も枯渇すると、前記少数キャリア(正孔)によって遮蔽されていた前記固定電位絶縁電極から前記チャネル領域への電気力線が復活し、前記多数キャリア(ここでは伝導電子)に対するポテンシャル障壁が再び形成されてチャネルは遮断状態になる。このとき前記少数キャリアの排出経路の抵抗を大きくする構造が存在すると、前記チャネル領域にあった前記少数キャリア(正孔)の急激な枯渇が緩和され、多数キャリア(電子)に対するポテンシャル障壁の急激な復活が緩和される。その結果、この素子のドレイン電圧のオーバーシュート量は小さくなる。
【0017】
例えば請求項1に記載のように、前記ゲート領域内に前記少数キャリア(正孔)に対する前記障害物を設けることにより、前記少数キャリア(正孔)を迂回させられるので、排出経路の長さが長くなり、それによって少数キャリア(正孔)の排出経路の抵抗は大きくなる。
【0018】
前記の障害物は、請求項2に記載のように、前記ゲート領域内で前記ソース領域を挟み込む前記固定電位絶縁電極同士がつながった構造でもよいし、或いは請求項3に記載のように、前記ゲート領域内に絶縁層または溝を設けてもよい。
【0019】
また、請求項4に記載のように、前記チャネル領域に導入された前記少数キャリア(正孔)の排出経路に高抵抗領域を設けてもよい。具体的には、例えば、請求項5に記載のように、前記主面並びに前記ゲート領域に接して、前記ソース領域には接しないように低濃度の反対導電型(p型)の抵抗領域を設ける。
【0020】
また、前記の構造において、ターンオフ時にゲート電極に接地もしくは負電位を印加すると、前記ドレイン領域内にあった過剰な前記少数キャリア(正孔)は前記ゲート領域へと流れ込み、前記少数キャリア(正孔)濃度は前記ゲート領域近傍から順々に減少していくが、この動作は従来の素子と同様である。つまり、前記チャネル領域以外の前記ドレイン領域に導入された前記少数キャリア(正孔)を引き抜く際の排出経路の抵抗は変わっていないので、前記ドレイン領域中の前記少数キャリア(正孔)の引き抜き速さは従来の素子と同等である。そのためゲート電極にターンオフ信号を印加してからドレイン電流が遮断するまでのターンオフ時間は従来の素子と変わらない。したがってターンオフ時間の延長を抑制しながら、ターンオフ時のドレイン電圧のオーバーシュート量を小さくすることが出来る。
【0021】
【発明の効果】
本発明によれば、ターンオフ時間の延長を抑制しながら、ターンオフ時のドレイン電圧のオーバーシュート量を小さくすることが出来る、という優れた効果が得られる。
【0022】
また、請求項1乃至請求項3の構成によれば、本発明を容易に実現することが出来る。特に、請求項2によれば、従来の製造工程で容易に実現できる。また、請求項4の構成によれば、請求項1とは別の構成で本発明を実現できる。また、請求項5によれば、請求項4の発明を容易に実現できる。
【0023】
【発明の実施の形態】
以下、本発明を実施の形態に基づいて詳細に説明する。図1〜図4は、本発明の第1の実施の形態を示す図である。図1は素子の基本構造を説明する斜視図、図2は図1の前面と同じ部分を示す断面図、図3は図1の表面と同じ部分を示す表面図、図4は図1の側面と同じ断面図である。図3の表面図中の線分A−Aに沿って紙面に垂直に切った断面図が図2であり、同じく線分B−Bに沿って切った断面図が図4である。なお図3と図4は、ともに図1に示した基本構造の2単位分を示している。また、図1と図3においては、説明のため表面の電極である金属膜ならびに表面保護膜を除去した様子を描いている。なお、この実施の形態では半導体をシリコンとして説明するが、それに限られるものではない。
【0024】
初めに素子構造を説明する。まず図1〜図4中において、番号1はn+型の基板領域、2はn型のドレイン領域、3はn+型のソース領域、4はMOS型電極、5は絶縁膜である。MOS型電極4は高濃度のp+型ポリシリコンよりなる。11はドレイン電極で、基板領域1とオーミックコンタクトしている。13はソース電極で、ソース領域3およびMOS型電極4とオーミックコンタクトしている。したがってMOS型電極4はソース電位に固定されている。よって、このMOS型電極4と絶縁膜5を合わせて「固定電位絶縁電極」6と呼ぶ。この固定電位絶縁電極6の断面構造は図2に示すように例えば「U」の字のように側壁がほぼ垂直な溝の中に形成されている。また図中、ソース領域3は絶縁膜5に接しているように描いているが、ソース領域3が固定電位絶縁電極6に挟み込まれるように配置されていれば接していなくてもよい。また図2において固定電位絶縁電極6の間に挟まれたドレイン領域2をチャネル領域7と呼ぶ。さらに図1ならびに図4に示すように、絶縁膜5に接してソース領域3とは離れたところに、p型のゲート領域8が存在する。図4中、18はこのゲート領域8とオーミックコンタクトする電極で「ゲート電極」と呼ぶ。なお、10は層間絶縁膜である。ここまでは前記図7の従来例と同等の構成である。
【0025】
さらに本発明では、ソース領域3を挟み込むように配置されている固定電位絶縁電極6同士が、ゲート領域8内でつながった構造をしている。つまり、ソース領域を挟み込むストライプ状の固定電位絶縁電極6と交わるようにゲート領域8内に同じ固定電位絶縁電極6が形成された構造をしている。なお、本実施の形態では、ソース領域3を挟み込むストライプ状の固定電位絶縁電極6の端部でかつ直交するように固定電位絶縁電極6を連結した構造を示しているが、端部で接続していなくても、或いは直交していなくても構わない。
【0026】
次に、動作を説明する。この素子は、例えばソース電極13を接地(0V)し、ドレイン電極11は負荷を介してしかるべき正の電位を印加して使用する。まず、ゲート電極18に負の電位を印加されているとき、素子は遮断状態にある。図2を使って説明すると、固定電位絶縁電極6の周囲にはMOS型電極4のビルトイン電位に伴う空乏層が形成されているが、チャネル領域7内で対向する2つの固定電位絶縁電極6間の距離(以下、これを「チャネル厚みH」と呼ぶことにする)が充分狭ければ、チャネル領域7にはこの空乏領域によって伝導電子に対する充分なポテンシャル障壁が形成される。例えば絶縁膜5の厚さを100nm以下、チャネル領域7の不純物濃度を1×1014cm-3以下、前記「チャネル厚みH」を2μm以下に設定すれば、ソース領域3の伝導電子がチャネル領域7を通ってドレイン領域2側へ移動することを阻む充分なポテンシャル障壁を形成することができる。また、ドレイン領域2からの電界の影響によってポテンシャル障壁が低下することがないように、ソース領域3から固定電位絶縁電極6の底部までの距離(以下、これを「チャネル長L」と呼ぶことにする)は、チャネル厚みHの2〜3倍以上に設定されている。
【0027】
次に導通状態であるが、ゲート電極18の電位すなわちp型ゲート領域8の電位として例えば+0.5Vの正電位を印加すると、正孔は前記とは逆にp型ゲート領域8から、絶縁膜5の界面へと流れ込んで反転層を形成し、ポテンシャル障壁を作っているMOS型電極4からチャネル領域7への電気力線を遮蔽し、チャネル領域7中の伝導電子に対するポテンシャル障壁を低下させる。すなわち、ドレイン領域2とソース領域3は導通状態となる。さらに、ゲート電極18の電位を上げていくと、p型ゲート領域8と周辺のn型領域からなるpn接合が順バイアスされ、正孔は直接ドレイン領域2ならびにチャネル領域7へと注入される。すると、素子耐圧を保つために不純物濃度を薄く、高抵抗に作られていたこれらn型の領域は伝導度が高められ、電流は低い抵抗で流れるようになる。
【0028】
次に、この素子をターンオフさせるために、ゲート電極18に接地もしくは負電位を印加すると、ドレイン領域2内にあった過剰な正孔はp型のゲート領域8へと流れ込み、正孔濃度はゲート領域8近傍から順々に減少していく。この動作は従来の素子と同様である。つまり、チャネル領域7以外のドレイン領域2に導入された少数キャリアを引き抜く際の排出経路の抵抗は変わっていないので、ドレイン領域2中の正孔の引き抜き速さは従来の素子と同等である。そのためゲート電極18にターンオフ信号を印加してからドレイン電流が遮断するまでのターンオフ時間は従来の素子と変わらない。
【0029】
また、チャネル領域7においては正孔の供給が停止し、正孔密度が低下してくると、高水準注入状態が解かれ、正孔は絶縁膜5界面に反転層を形成し、以後は反転層中を伝わってp型ゲート領域8へと流れ込み、ゲート電極18に排出される。このとき、図4に示すように、ゲート領域8内にチャネル領域7と直交する固定電位絶縁電極6があるので、チャネル領域7から排出される正孔にとっては、固定電位絶縁電極6を迂回するように流れるため、ゲート領域8内の高抵抗の領域での経路が長くなっている。つまり、正孔にとって排出経路の抵抗が大きくなっているため、チャネル領域7内にある正孔の急激な枯渇が緩和される。
【0030】
このことにより、図7に示すような従来の構造では、固定電位絶縁電極56の絶縁膜55界面に反転層を形成していた正孔が急激に枯渇し、正孔によって遮蔽されていた固定電位絶縁電極56からチャネル領域57への電気力線が急激に復活するため、それまで流れていたドレイン電流を維持すべく、急峻にドレイン電位が上昇していたのに対して、本第1の実施の形態ではドレイン電位の上昇が緩和される。つまり、ターンオフ時のドレイン電位のオーバーシュート量が小さくなる。
【0031】
なお、本第1の実施の形態の構造は、ソース領域3を挟み込むように配置されている固定電位絶縁電極6同士を固定電位絶縁電極6で接続した形状としているので、従来の製造工程で容易に実現できる。また、上記の構造に限らず、ターンオフ時にチャネル領域7から排出される正孔にとっての排出経路の抵抗が大きくなるような効果を有する障害物が形成されていればよい。例えば、ゲート領域8内に酸化膜等の絶縁層や単なる溝が形成されていてもよい。また、固定電位絶縁電極6同士が連結した形状でなくても構わない。
【0032】
次に、図5および図6は、本発明の第2の実施の形態を示す図である。図5は素子の基本構造を説明する斜視図、図6は図5の側面と同じ断面図である。なお図6は、図5に示した基本構造の2単位分を示している。また、図5においては、説明のため表面の電極である金属膜ならびに表面保護膜を除去した様子を描いている。なお、この実施の形態では半導体をシリコンとして説明するが、それに限られるものではない。
【0033】
図5および図6の構造において、前記図1〜図4と異なる点について説明する。本第2の実施の形態の構造においては、ゲート領域8と接し、固定電位絶縁電極6同士に挟み込まれる位置に、p型の高抵抗領域9が存在する。なお、第2の実施の形態では、この高抵抗領域9は表面にイオン注入をして熱拡散によって形成した形状となっているが、埋め込み領域として形成しても構わない。
【0034】
次に、動作を説明する。基本的動作は前記第1の実施の形態と同じであるため、ターンオフ時の動作のみを説明する。
【0035】
この素子をターンオフさせるために、ゲート電極18に接地もしくは負電位を印加すると、ドレイン領域2内にあった過剰な正孔はp型ゲート領域8へと流れ込み、正孔濃度はゲート領域8近傍から順々に減少していく。この動作は従来の素子と同様である。つまり、チャネル領域7以外のドレイン領域2に導入された正孔を引き抜く際の排出経路の抵抗は変わっていないので、ドレイン領域2中の正孔の引き抜き速さは従来の素子と同等のため、ゲート電極18にターンオフ信号を印加してからドレイン電流が遮断するまでのターンオフ時間は従来の素子と変わらない。また、チャネル領域7においては正孔の供給が停止し、正孔密度が低下してくると、高水準注入状態が解かれ、正孔は絶縁膜5界面に反転層を形成し、以後は反転層中を伝わってp型ゲート領域8へと流れ込み、ゲート電極18に排出される。このとき、図6に示すように、チャネル領域7から引き抜かれる正孔が高抵抗領域9を通って排出される。つまり、チャネル領域7から引き抜かれる正孔にとって排出経路の抵抗が大きくなっているため、チャネル領域7内にある正孔の急激な枯渇が緩和される。したがって前記第1の実施の形態で説明したのと同様の効果が得られる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の斜視図。
【図2】本発明の第1の実施の形態の断面図。
【図3】本発明の第1の実施の形態における表面構造を示す断面図。
【図4】本発明の第1の実施の形態の他の角度から見た断面図。
【図5】本発明の第2の実施の形態の斜視図。
【図6】本発明の第2の実施の形態の断面図。
【図7】従来例の斜視図。
【図8】従来例の断面図。
【符号の説明】
1…基板領域 2…ドレイン領域
3…ソース領域 4…MOS型電極
5…絶縁膜 6…固定電位絶縁電極
7…チャネル領域 8…ゲート領域
9…高抵抗領域 10…層間絶縁膜
11…ドレイン電極 13…ソース電極
18…ゲート電極
51…基板領域 52…ドレイン領域
53…ソース領域 54…MOS型電極
55…絶縁膜 56…固定電位絶縁電極
57…チャネル領域 58…ゲート領域
60…層間絶縁膜 61…ドレイン電極
63…ソース電極 68…ゲート電極
H…チャネル厚み L…チャネル長
Claims (5)
- ドレイン領域である一導電型の半導体基体の一主面に接して同一導電型のソース領域を有し、
前記主面に接して前記ソース領域を挟み込むように配置された溝を有し、
前記溝の内部には絶縁膜によって前記ドレイン領域と絶縁され、かつ、前記ソース領域と同電位に保たれた固定電位絶縁電極を有し、
前記固定電位絶縁電極は、前記絶縁膜を介して隣接する前記ドレイン領域に空乏領域を形成するような仕事関数の導電性材料から成り、
前記ソース領域に接する前記ドレイン領域の一部であって、前記固定電位絶縁電極によって挟み込まれたチャネル領域を有し、
前記チャネル領域には前記固定電位絶縁電極の周囲に形成された前記空乏領域によって多数キャリアの移動を阻止するポテンシャル障壁が形成されていて、遮断状態における前記ドレイン領域側からの電界が前記ソース領域近傍に影響を及ぼさないように、前記チャネル領域にあって前記溝の底部から前記ソース領域までの距離すなわちチャネル長は、前記チャネル領域にあって対面する前記溝の側壁同士の距離すなわちチャネル厚みの少なくとも2乃至3倍以上となっており、
さらに、前記固定電位絶縁電極を取り囲む前記絶縁膜の界面に少数キャリアを導入して反転層を形成し、前記固定電位絶縁電極から前記ドレイン領域への電界を遮蔽して前記チャネル領域に形成されたポテンシャル障壁を減少もしくは消滅させてチャネルを開くべく、前記絶縁膜ならびに前記ドレイン領域に接して、前記ソース領域には接しない、反対導電型のゲート領域を有する半導体装置において、
前記ゲート領域内に前記少数キャリアに対する障害物を設け、前記ゲート領域内で前記少数キャリアを迂回させることにより、前記チャネル領域以外のドレイン領域に導入された少数キャリアを引き抜く際の排出経路の抵抗は変えずに、前記チャネル領域に導入された少数キャリアを引き抜く際の排出経路の抵抗を大きくしたことを特徴とする半導体装置。 - 前記障害物は、前記ソース領域を挟み込む前記固定電位絶縁電極同士が前記ゲート領域内でつながった形状に形成されたものである、ことを特徴とする請求項1に記載の半導体装置。
- 前記障害物は、前記ゲート領域内に設けた絶縁層または溝である、ことを特徴とする請求項1に記載の半導体装置。
- ドレイン領域である一導電型の半導体基体の一主面に接して同一導電型のソース領域を有し、
前記主面に接して前記ソース領域を挟み込むように配置された溝を有し、
前記溝の内部には絶縁膜によって前記ドレイン領域と絶縁され、かつ、前記ソース領域と同電位に保たれた固定電位絶縁電極を有し、
前記固定電位絶縁電極は、前記絶縁膜を介して隣接する前記ドレイン領域に空乏領域を形成するような仕事関数の導電性材料から成り、
前記ソース領域に接する前記ドレイン領域の一部であって、前記固定電位絶縁電極によって挟み込まれたチャネル領域を有し、
前記チャネル領域には前記固定電位絶縁電極の周囲に形成された前記空乏領域によって多数キャリアの移動を阻止するポテンシャル障壁が形成されていて、遮断状態における前記ドレイン領域側からの電界が前記ソース領域近傍に影響を及ぼさないように、前記チャネル領域にあって前記溝の底部から前記ソース領域までの距離すなわちチャネル長は、前記チャネル領域にあって対面する前記溝の側壁同士の距離すなわちチャネル厚みの少なくとも2乃至3倍以上となっており、
さらに、前記固定電位絶縁電極を取り囲む前記絶縁膜の界面に少数キャリアを導入して反転層を形成し、前記固定電位絶縁電極から前記ドレイン領域への電界を遮蔽して前記チャネル領域に形成されたポテンシャル障壁を減少もしくは消滅させてチャネルを開くべく、前記絶縁膜ならびに前記ドレイン領域に接して、前記ソース領域には接しない、反対導電型のゲート領域を有する半導体装置において、
前記チャネル領域に導入された少数キャリアの排出経路に高抵抗領域を設けることにより、前記チャネル領域以外のドレイン領域に導入された少数キャリアを引き抜く際の排出経路の抵抗は変えずに、前記チャネル領域に導入された少数キャリアを引き抜く際の排出経路の抵抗を大きくしたことを特徴とする半導体装置。 - 前記主面並びに前記ゲート領域に接して、前記ソース領域には接しないように低濃度の反対導電型の抵抗領域を設けたことを特徴とする請求項4に記載の半導体装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36630198A JP3692808B2 (ja) | 1998-12-24 | 1998-12-24 | 半導体装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36630198A JP3692808B2 (ja) | 1998-12-24 | 1998-12-24 | 半導体装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000188398A JP2000188398A (ja) | 2000-07-04 |
JP3692808B2 true JP3692808B2 (ja) | 2005-09-07 |
Family
ID=18486442
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP36630198A Expired - Fee Related JP3692808B2 (ja) | 1998-12-24 | 1998-12-24 | 半導体装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3692808B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110137242B (zh) * | 2019-04-03 | 2024-02-23 | 杭州士兰微电子股份有限公司 | 双向功率器件及其制造方法 |
-
1998
- 1998-12-24 JP JP36630198A patent/JP3692808B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000188398A (ja) | 2000-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE38953E1 (en) | Insulated gate semiconductor device and method of manufacturing the same | |
JP2561413B2 (ja) | 半導体装置 | |
JP2007043123A (ja) | 半導体装置 | |
KR100577950B1 (ko) | 반도체 장치 | |
CN108305893B (zh) | 半导体装置 | |
JP3329642B2 (ja) | 半導体装置 | |
JP3189576B2 (ja) | 半導体装置 | |
JP3692808B2 (ja) | 半導体装置 | |
JP3991803B2 (ja) | 半導体装置 | |
JP3214242B2 (ja) | 半導体装置 | |
JP3189543B2 (ja) | 半導体装置 | |
JPS639386B2 (ja) | ||
JP3692786B2 (ja) | 半導体装置 | |
JP3533925B2 (ja) | 半導体装置 | |
JP3539367B2 (ja) | 半導体装置 | |
JP3473271B2 (ja) | 半導体装置 | |
JP3399218B2 (ja) | 半導体装置 | |
JP3722046B2 (ja) | 半導体装置 | |
JP3279092B2 (ja) | 半導体装置 | |
JP3588671B2 (ja) | 半導体装置 | |
JP2000299476A (ja) | 半導体装置 | |
JP3528393B2 (ja) | 半導体装置 | |
JP3589091B2 (ja) | 半導体装置 | |
JP3206289B2 (ja) | 絶縁ゲートバイポーラトランジスタとその製造方法 | |
CN115084225A (zh) | 一种绝缘栅双极晶体管及其制作方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040203 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040331 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050531 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050613 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090701 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100701 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110701 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120701 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120701 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130701 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |