JP3679051B2 - 回転数検出装置 - Google Patents

回転数検出装置 Download PDF

Info

Publication number
JP3679051B2
JP3679051B2 JP2001387029A JP2001387029A JP3679051B2 JP 3679051 B2 JP3679051 B2 JP 3679051B2 JP 2001387029 A JP2001387029 A JP 2001387029A JP 2001387029 A JP2001387029 A JP 2001387029A JP 3679051 B2 JP3679051 B2 JP 3679051B2
Authority
JP
Japan
Prior art keywords
output
register
phase
reset
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001387029A
Other languages
English (en)
Other versions
JP2003185473A (ja
Inventor
郁雄 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP2001387029A priority Critical patent/JP3679051B2/ja
Publication of JP2003185473A publication Critical patent/JP2003185473A/ja
Application granted granted Critical
Publication of JP3679051B2 publication Critical patent/JP3679051B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は輪転印刷機の高精度同期制御、精密な位置決め装置、搬送装置や樹脂、金属などの延伸装置の高精度同調制御に用いられるもので、インクリメンタルエンコーダの回転数を高速運転中であっても高い信頼で高精度に検出することが可能な回転数検出装置に関するものである。
【0002】
【従来の技術】
従来、複数の電動機の高精度な同期制御、工作機械などの精密な位置決めなどには電動機または回転体の回転位相を検出し、これをフィードバックとする制御がおこなわれている。そして、これらの回転位相の検出はアブソリュートエンコーダが広く使用されている。
【0003】
アブソリュートエンコーダは図15にその概要を示すように、被検出体である回転円板上に同心円状の複数のトラックを設け、該トラック上に回転位相を示す絶対位置情報を2進化コードで構成し、これを発光素子、受光素子などにより回転位相をB0からBn−1のnビットの2進化信号で検出するものである。このアブソリュートエンコーダは絶対回転位相を常時検出できる長所があるが、
1.位相検出の分解能を高くする為には回転円板上のトラックの数を多くする必要があり、高い分解能のものは実現が困難もしくは不可能である。
2.同じく位相検出の分解能を高くする程2進化信号線の本数が多くなり、長距離の上記信号の伝送を困難としている。
3.絶対位置を検出するとき位置情報の変化と同期して検出する必要があり、高速回転においてリアルタイムに検出することが困難もしくは不可能である。
などの困難がある。
【0004】
また、回転位相を検出するためにアブソリュートエンコーダの他、図16に示すインクリメンタルエンコーダが用いられる。
図16はZ相付きインクリメンタルエンコーダ(以下インクリメンタルエンコーダと称す)の概略を示すもので、被検出体である回転円板上に放射状に光学的なスリットを設け、これを発光素子、受光素子などにより回転運動に応じてパルス列を発生するA相、B相の信号と1回転に1個のパルスを発生するZ相の信号を得るものである。
ここで、上記A相とB相は電気角で90°の位相差を有し正転/逆転の検出に用いるものである。また、図16ではA相とB相の2つのパルス列出力の場合を示したが、回転方向を検出する必要がないときは例えばA相のみ1つのパルス列出力のエンコーダが使用される。
【0005】
上記インクリメンタルエンコーダは、そのままでは絶対回転位相を検出できるものでないが、
1.高分解能のものが可能である。
2.検出出力の信号がA、B、Z相と数が少なく長距離伝送に耐え得る。
3.位相の変化をシリアルなパルス列で検出するので、高速回転中であってもリアルタイムに回転位相を検出ができる。
4.出力信号がA相、B相、Z相の矩形波信号のみで受信側のインターフェイスを簡単に構成でき、温度変化や経年変化の少ないインターフェイスが可能である。
5.アブソリュートエンコーダに比して一般的に安価である。
などの長所がある。
【0006】
ここで、インクリメンタルエンコーダはそのままでは絶対回転位相を検出できないが、近年絶対回転位相の検出が考案されおり、その概要は図17に示すもので、Pm、Ps1はそれぞれマスターセクションとスレーブセクションのインクリメンタルエンコーダ、Rpは該インクリメンタルエンコーダから回転に応じて出力されるパルス列、Zpは上記インクリメンタルエンコーダの1回転毎に出力されるZ相信号である。
また、Cm1は上記Pmから出力される上記パルス列Rpをカウントし上記Zpによりクリアされるマスター位相カウンターであり絶対回転位相Cmを出力し、Cs1は該マスター位相カウンターCm1と同様な機能を有するスレーブ位相カウンターであり絶対回転位相Csを出力する。かように上記位相カウンターCm1とCs1はそれぞれエンコーダの付属する電動機の絶対回転位相CmとCsを検出する。
さらに図17におけるHs1は位相偏差演算器であり、次に示す(1)式により位相偏差Hsを下記により演算する。
Hs=Nmax×Covf+Cm−Cs ・ ・ ・ ・ ・ (1)
該(1)式において、NmaxはインクリメンタルエンコーダPm、Ps1の1回転当たりのパルス数、Covfはマスター位相カウンターCm1がクリアする毎に1ずつ加算され、スレーブ位相カウンターCs1がクリアする毎に1ずつ減算される。そして、CmとCsは前記のとおりそれぞれの絶対回転位相である。
【0007】
ここで図17において、スレーブセクションのインクリメンタルエンコーダPs1が絶対回転位相Csがゼロで停止したままとすれば、上記(1)式は、
Hs=Nmax×Covf‘+Cm (2)
となり、該(2)式のCovf‘はマスター位相カウンターCm1がクリアする回数、すなわちインクリメンタルエンコーダPmの回転数を表すことは明らかである。
【0008】
前記図17および(2)式を時間とともに変化する状態を図示すれば図18の如くなる。
図18において、(a)はマスター位相カウンターCm1の出力Cmの時間的な遷移、(b)はCovf’の前記(2)式におけるインクリメンタルエンコーダの回転数の遷移、(c)のRpと(d)のZpはそれぞれ図17に付す同じ記号を付す信号の状態を示し、(e)と(f)は前記(c)と(d)を時間軸を拡大し図示するものである。
前記図18において、マスター位相カウンターの出力Cmはインクリメンタルエンコーダの出力Rpを常時カウントし、そして例えば図示する時刻t1、t2、t3においてZpがHiとなることによりクリアされ、これによりCovf’は1ずつカウントアップし回転数を計数することとなる。
【0009】
【発明が解決しようとする課題】
ところで、産業用電気機器が使用される環境において、電源供給系統の電源変動や瞬時停電による障害、あるいは照明、インバータ機器などの負荷の増大によりノイズの発生が避けられない。
かかる状況において、近年、ノイズ対策に考慮がなされているとは言え、エンコーダを用いる場合でも信号線にノイズが進入することが避けられない。
この様子を、インクリメンタルエンコーダを用いることによって、ノイズの進入による影響を図19により説明する。
図19において、(a)、(b)、(c)、(d)はそれぞれ図18で付したものと同じ信号を表し説明を割愛する。
図19(d)のZ相信号Zpにおいて、時刻tnz1、tnz2にてノイズが侵入したとすれば、マスター位相カウンターの出力Cmはクリアされることとなる。これにより、図19(b)で示すCovf’は時刻tnz1において2、時刻tnz2において4とカウントアップされ、時刻t3においては6にカウントアップされることとなり、通常の動作を図示する図18の同時刻t3のCovf’=4と比して相違が発生し正しい回転数を検出できないこととなる。
また、前述したように、従来は位相カウンターの出力がクリアすることによりCovfが計数されており、かようなノイズなどの異種信号の混入に対する処理はなされていなかった。
【0010】
本発明は上記した問題点を解決するためになされたものであって、その目的とするところは、インクリメンタルエンコーダを使用する場合において、ノイズが侵入した場合であっても該エンコーダもしくはエンコーダが付属する回転体の回転数を正しく検出する手段を提供することにある。
【0011】
【課題を解決するための手段】
つまり、その目的を達成するための手段は、
1.請求項1において、
電動機もしくは回転する機械軸に設置されたZ相付きインクリメンタルエンコーダと、該インクリメンタルエンコーダからの回転に応じて出力するパルスをカウントするリセット検出カウンターを備える回転数検出装置であり、
上記リセット検出カウンターは上記Z相付きインクリメンタルエンコーダからの1回転毎に出力するZ相信号でリセットするものであって、
前記回転数検出装置に、上記リセット検出カウンターの出力を現在値としてラッチする第1の現在値ラッチゲート部と、該第1の現在値ラッチゲート部の出力を前回値としてラッチする第2の前回値ラッチゲート部を備え、
上記第2の前回値ラッチゲート部の出力と上記第1の現在値ラッチゲート部の出力の偏差を検出する位相偏差検出器と、上記リセット検出カウンターの出力の最大値の1/2の値を有するリセット設定器を備え、
該リセット設定器の出力と上記位相偏差検出器の出力を比較するリセット検出器を備え、
該リセット検出器は上記リセット設定器の出力が上記位相偏差検出器の出力より小さいとき上記Z相付きインクリメンタルエンコーダの1回転とし、それ以外は1回転としない回転数判別手段を備え、
該回転数判別手段によりインクリメンタルエンコーダが回転したときのリセット検出器の出力をカウントする回転数検出器と、該回転数検出器の出力及び前記第1の現在値ラッチゲート部の出力を入力とする中央演算処理装置を備えることを特徴とする回転数検出装置である。
【0012】
2.請求項2において、
電動機もしくは回転する機械軸に設置されたZ相付きインクリメンタルエンコーダと、該インクリメンタルエンコーダからの回転に応じて出力するパルスをカウントするリセット検出カウンターを備える回転数検出装置であり、
上記リセット検出カウンターは上記Z相付きインクリメンタルエンコーダからの1回転毎に出力するZ相信号でリセットするものであって、
前記回転数検出装置に、上記リセット検出カウンターの出力を現在値としてラッチする現在値ラッチゲート部と、該現在値ラッチゲート部の出力を入力とする中央演算処理装置(マイクロプロセッサ)を備え、
該中央演算処理装置は、メモリに接続されているものであって、上記現在値ラッチゲート部からの入力をメモリ内の現在回転位相レジスタに格納するとともに、該現在回転位相レジスタの内容を同じメモリ内の前回回転位相レジスタに格納することにより前回回転位相を記憶する記憶手段を備え、
上記前回回転位相レジスタと上記現在回転位相レジスタの偏差を演算した後格納する位相偏差レジスタと、上記リセット検出カウンターの出力の最大値の1/2の値を有するリセット設定レジスタと、上記Z相付きインクリメンタルエンコーダの回転数をカウントする回転数レジスタを備え、
上記中央演算処理装置は、該リセット設定レジスタの出力と上記位相偏差レジスタの出力を比較することにより、上記リセット設定レジスタの出力が上記位相偏差レジスタの出力より小さいとき上記Z相付きインクリメンタルエンコーダの1回転とし上記回転数レジスタをカウントするカウント手段を備え、
上記位相偏差レジスタの出力がリセット設定レジスタの出力より小さいか又は等しいとき上記Z相付きインクリメンタルエンコーダの1回転とせず上記回転数レジスタの値を変更しない判定手段を備えたことを特徴とする回転数検出装置である。
【0013】
3.請求項3において、
電動機もしくは回転する機械軸に設置されたZ相付きインクリメンタルエンコーダと、該インクリメンタルエンコーダからの回転に応じて出力するパルスをカウントするリセット検出カウンターを備える回転数検出装置であり、
上記リセット検出カウンターは上記Z相付きインクリメンタルエンコーダからの1回転毎に出力するZ相信号でリセットするものであって、
該回転数検出装置に、上記リセット検出カウンターの出力を現在値としてラッチする現在値ラッチゲート部と、該現在値ラッチゲート部の出力を入力とする中央演算処理装置を備え、
該中央演算処理装置は、上記現在値ラッチゲート部からの入力を現在回転位相レジスタに格納するとともに、該現在回転位相レジスタの内容を前回回転位相レジスタに格納することにより前回回転位相を記憶する記憶手段を備え、
上記中央演算処理装置は、上記前回回転位相レジスタと上記現在回転位相レジスタの偏差を演算した後格納する位相偏差レジスタと、上記リセット検出カウンターの出力の最大値の1/2以上で該最大値未満の値を有するリセット設定レジスタと、上記Z相付きインクリメンタルエンコーダの回転数をカウントする回転数レジスタと、前記位相偏差レジスタの出力のリセット値を積算するリセット積算レジスタを備え、上記リセット設定レジスタの出力と上記位相偏差レジスタの出力を比較することにより、上記リセット設定レジスタの出力が上記位相偏差レジスタの出力より小さいとき上記Z相付きインクリメンタルエンコーダの1回転として上記回転数レジスタをカウントするカウント手段を備え、
上記位相偏差レジスタの出力がリセット設定レジスタの出力より小さいか又は等しいとき、上記位相偏差レジスタの出力をリセット積算レジスタに積算し、上記リセット設定レジスタの出力が上記リセット積算レジスタの出力より小さいとき上記Z相付きインクリメンタルエンコーダの1回転として上記回転数レジスタをカウントし、上記リセット積算レジスタの出力が上記リセット設定レジスタの出力より小さいか又は等しいとき上記Z相付きインクリメンタルエンコーダの1回転とせず上記回転数レジスタの値を変更しない判定手段を備えたことを特徴とする回転数検出装置である。
【0014】
4.請求項4において、
電動機もしくは回転する機械軸に設置されたZ相付きインクリメンタルエンコーダと、該インクリメンタルエンコーダからの回転に応じて出力するパルスをカウントするリセット検出カウンターを備える回転数検出装置であり、
上記リセット検出カウンターは上記Z相付きインクリメンタルエンコーダからの1回転毎に出力するZ相信号でリセットするものであって、
該回転数検出装置に、上記リセット検出カウンターの出力を現在値としてラッチする現在値ラッチゲート部と、該現在値ラッチゲート部の出力を入力とする中央演算処理装置を備え、
該中央演算処理装置は、上記現在値ラッチゲートからの入力を現在回転位相レジスタに格納するとともに、該現在回転位相レジスタの内容を前回回転位相レジスタに格納することにより前回回転位相を記憶する記憶手段を備え、
上記中央演算処理装置は、上記前回回転位相レジスタと上記現在回転位相レジスタの偏差を演算した後格納する位相偏差レジスタとリセット設定レジスタと通信インターフェイスを備え、
該リセット設定レジスタは、外部入力装置から上記通信インターフェイスを介して上記リセット検出カウンターの出力の最大値の1/2以上で該最大値未満の値を任意に設定できるものであって、
上記Z相付きインクリメンタルエンコーダの回転数をカウントする回転数レジスタと、前記位相偏差レジスタの出力のリセット値を積算するリセット積算レジスタを備え、
上記中央演算処理装置は、上記リセット設定レジスタの出力と上記位相偏差レジスタの出力を比較することにより、上記リセット設定レジスタの出力が上記位相偏差レジスタの出力より小さいとき上記Z相付きインクリメンタルエンコーダの1回転とし上記回転数レジスタをカウントするカウント手段を備え、
上記位相偏差レジスタの出力がリセット設定レジスタの出力より小さいか又は等しいとき、上記位相偏差レジスタの出力をリセット積算レジスタに積算し、上記リセット設定レジスタの出力が上記リセット積算レジスタの出力より小さいとき上記Z相付きインクリメンタルエンコーダの1回転として上記回転数レジスタをカウントし、上記リセット積算レジスタの出力が上記リセット設定レジスタの出力より小さいか又は等しいとき上記Z相付きインクリメンタルエンコーダの1回転とせず上記回転数レジスタの値を変更しない判定手段を備えたことを特徴とする回転数検出装置である。
【0015】
【発明の実施の形態】
以下、本発明の一実施例を図面に基づいて詳述する。
図1は本発明の請求項1記載の第1の実施例を示す回転数検出装置の構成図であり、図2は図1の動作を説明する図、図3と図4は図1の実施例により得られる効果を説明する説明図である。
【0016】
図1において、1はインクリメンタルエンコーダであり、該インクリメンタルエンコーダ1の出力A相、B相、Z相の信号は回転数検出装置2に接続される。
【0017】
回転数検出装置2において、3a、3b、3cはDフリップフロップ、4は×1倍、×2倍または×4倍に逓倍するものであるが、以下の説明を容易にする為に仮に×2倍の逓倍器とし、5はリセット検出カウンターである。ここで、本実施例では該リセット検出カウンター5は、CKに入力されるパルスの立ち上がりエッジでカウントし、RESETに入力されるパルスのHiレベルでカウント値がクリアするものとしている。
インクリメンタルエンコーダ1からのA相、B相信号は、Dフリップフロップ3a、3bで後述するタイミングで波形整形した後、逓倍器4で所定の周波数に変換されリセット検出カウンター5のCKに入力され、インクリメンタルエンコーダの出力するA相、B相のパルス列をカウントする。一方、インクリメンタルエンコーダ1からのZ相信号はDフリップフロップ3cで後述するタイミングで波形整形した後、リセット検出カウンター5のRESETに入力され該リセット検出カウンター5をクリアするものである。
【0018】
次に図1において、6aは現在値ラッチゲート部、6bは前回値ラッチゲート部であり、共にD0、D1〜Dm−1のmビットをデータ入力としCK入力の立ち下がりでデータ入力をラッチし、Q0、Q1〜Qm−1に出力するものである。
ここで、該現在値ラッチゲート部6aの出力は前回値ラッチゲート部6bの入力に接続されており、第1の前回値ラッチゲート部6bのCKに信号が入力され現在値ラッチゲート部の出力を保持し、後述する遅れの後、現在値ラッチゲート部6aのCKに信号が入力されリセット検出カウンター5の現在値を保持する。
【0019】
また図1において、7は減算器よりなる位相偏差検出器、8はリセット設定器、9はコンパレータからなるリセット検出器、10はDフリップフロップ、11はカウンターによる回転数検出器である。
位相偏差検出器7の入力CP(N)とCP(N−1)には、それぞれ上記現在値ラッチゲート部6aの出力と上記前回値ラッチゲート部6bの出力が入力され、該位相偏差検出器7は、
ΔCP(N)=CP(N−1)−CP(N) (3)
を演算し出力する。そして、0<ΔCP(N)のときは上記リセット検出カウター5のRESET入力に信号が入力されカウント値がクリアされたことを示し、これは上記Dフリップフロップ3cにHiの入力があったことを示す。
次に、リセット検出カウンター5のカウントする最大値をCmaxとすれば、リセット設定器8は
Cref=Cmax/2(整数演算による) (4)
なる値Crefを出力するもので、該リセット設定器8と上記位相偏差検出器7の出力ΔCP(N)はリセット検出器9で比較し、
ΔCP(N) ≦ Cref のときは0 (5)
Cref < ΔCP(N) のときは1 (6)
を該リセット検出器9は出力する。そして、上記(5)、(6)式の結果はDフリップフロップ11で後述するタイミングで安定化した後、カウンターからなる回転数検出器11のCKに入力される。すなわち、該回転数検出器11は上記(6)式が成立する回数をカウントするものである。
【0020】
また、21は発信器、22aはDフリップフロップからなる分周器、23a、23bはANDゲートで、これらは回転数検出装置2のA相、B相、Z相の入力信号と上記現在値ラッチゲート部6a、上記前回値ラッチゲート部6bおよびリセット検出器9間のタイミングを生成し、回転数検出器11を正しく動作させるものでこれの概要は図2において説明を行う。
【0021】
図2は動作説明図であり、上記回転数検出器11が回転数検出にいたる動作を図1を参照して説明する。
図2において、(a)は発信器21の出力波形、(b)、(d)、(e)は回転数検出装置2のそれぞれZ相、A相、B相入力を示し、この出力は図1のDフリップフロップ3c、3a、3bにより発信器21の出力周波数の例えば立ち上がりエッジに同期化され、(c)、(f)、(g)に示す波形となり、次に図1の逓倍器4で×2倍の周波数に変換され、(h)に示す逓倍器4の出力となる。そして、該(h)の立ち上がりエッジをリセット検出カウンター5はカウントし、(i)に示す如く、CP−1、CP、CP+1と遷移し、やがては回転数検出装置2のZ相入力(b)にHiレベルが入力されることにより0にクリアされる。
【0022】
図2(j)は分周器22aの出力を示すもので、上記発信器21の出力(a)を分周したものであって、該分周器22aの出力(j)とANDゲート23a、23bの作用により、発信器21の出力(a)はゲート23aの出力(k)とゲート23bの出力(l)に分離される。該(k)と(l)において、図2中に示すゲート23aの出力の立ち下がりエッジ▲1▼、ゲート23bの出力の立ち上がりエッジ▲2▼、立ち下がりエッジ▲3▼により以下の動作を行う。
上記▲1▼のタイミングにより、リセット検出カウンター5の出力(i)は現在値ラッチゲート部6aでラッチされ、現在値ラッチゲート部6aの出力(m)となり、CP−1、CP、CP+1、0と遷移する。すなわち該(m)はリセット検出カウンター5の現在値を保持する。また、上記▲3▼のタイミングにより(m)はラッチゲート部6bでラッチされ、前回値ラッチゲート部6bの出力(n)を生成する。ここで、図2の例えば時刻t2において、(m)に示す出力はCP+1であり、(n)に示す出力はCPである。すなわち、前回値ラッチゲート部6bの出力(n)はリセット検出カウンター5の前回値を保持するものである。
【0023】
そして、上記(m)と(n)に示す値は位相偏差検出器7で常時、前記(3)式の演算がなされてリセット検出器9の入力となり、該リセット検出器9の出力は図2の(o)に示すもので、前記(5)、(6)式により該(o)は下記の値をとなる。
時刻t1:
ΔCP(N)=CP−CP=0となり前記(5)式により0
時刻t2:
ΔCP(N)=CP−(CP+1)=−1となり前記(5)式により0
時刻t3:
ΔCP(N)=(CP+1)−0=CP+1となり、Cref<CP+1
とすれば、前記(6)式により1
該(o)に示す出力は、図2の▲2▼の各々のタイミングでDフリップフロップ10により同期化され、回転数検出器11のカウント入力となり、該11の出力は(p)に示すとおりとなる。
(p)において、時刻t1、t2では回転数検出器11の入力は0のままなのでカウント値CRを保持し、時刻t3では該回転数検出器11の入力は1となるので出力はCR+1となる。
すなわち、回転数検出装置2のZ相入力(b)にHi信号が入力され、前記(5)、(6)式の判定により回転数検出器11はカウントされ、インクリメンタルエンコーダ、もしくは該エンコーダの付属する回転体の回転数を検出するに至る。
【0024】
更に図3により、図1,図2の実施例による効果を説明する。
図3において、(a)は図1のリセット検出カウンター5の出力の時間的推移をグラフで示し、(p)、(d)、(e)、(b)はそれぞれ図2に示す符号のそれと同じ信号である。ここで図3は図2に比して時間軸を縮小している。
図3(a)において、上記リセット検出カウンター5の出力する最大値をCmaxとし、図1のリセット設定器8の設定値CrefをCmax/2とし、図中に点線で示すものである。
【0025】
また、図3の回転数検出装置2のZ相入力(b)において、時刻t1、t2、t3にZ相に正規のHiの入力がなされ、この時刻において(i)に図示するようにリセット検出カウンター5の出力はクリアされる。次に、図19の従来の実施例と同様に時刻tnz1、tnz2において、予期せぬノイズが侵入したときもリセット検出カウンター5の出力はクリアされる。
【0026】
そして、図3の(i)ではリセット検出カウンター5の出力は次の如く遷移するとしている。
時刻tnz1:Cd1から0へ、ここでCmax/2 < Cd1
時刻t1: Cd2から0へ、ここでCd2 < Cmax/2
時刻t2: Cd3から0へ、ここでCmax/2 < Cd3
以下、時刻tnz2、t3は図示のとおりである。
【0027】
そして、図3の回転数検出器11の出力(p)は、図2において説明した経緯より、下記のとおりとなる。
時刻tnz1:
ΔCP(N)=Cd1−0=Cd1
Cmax/2 < Cd1より前記(6)式より回転数検出器11の出力は+1し2となる。
時刻t1:ΔCP(N)=Cd2−0=Cd2
Cd2 < Cmax/2より前記(5)式より回転数検出器11の出力は2のまま変わらず。
時刻t2:
ΔCP(N)=Cd3−0=Cd3
Cmax/2 < Cd3より前記(6)式より回転数検出器11の出力は+1し3となる。
上記に示す動作に準じて、時刻tnz2においては回転数検出器11は3で変化せず、時刻t3においては+1し4となる。これは、従来例の図18、図19と比較して明らかなように、ノイズが回転数検出装置2のZ相入力に侵入した場合であっても、時刻t2、t3において正しい回転数が得られることとなる。
【0028】
次に図4(a)、(b)はCrefを上記第(4)式とする理由を更に詳細に説明するものである。
はじめに、図4(a)はリセット設定器8の出力CrefがCmax/2より大きいときの動作を示すもので、ここでは説明を容易にする為にCrefを例えば3/4Cmaxとしている。
図4(a)において、偶発的に時刻tnz1にノイズが回転数検出装置2のZ相入力に侵入した場合を示している。そして、時刻tnz1及びt2におけるCd1とCd2は共にCrefより小さいので、回転数検出器11の出力はCR=2のままで正しい回転数を得ることはできない。
すなわち、リセット設定器8の出力CrefがCmax/2より大きいときは、図4(a)のT2の区間にノイズが侵入するときは正しい回転数が得られるが,T1の区間にノイズが侵入したとき正しい回転数を得ることはできない。
【0029】
次に、図4(b)はリセット設定器8の出力CrefがCmax/2より小さいときの動作を示すもので、ここでは説明を容易にする為にCrefを例えば1/4Cmaxとしている。該図4(b)においても時刻tnz1にノイズが回転数検出装置2のZ相入力に侵入した場合を示しており、このときは時刻tnz1及びt2におけるCd1とCd2は共にCrefより大きいので、回転数検出器11の出力はCR=2、3と多く進み正しい回転数を得ることはできない。
【0030】
それ故、インクリメンタルエンコーダもしくは該エンコーダの付属する回転体の1回転に1つの侵入する予期せぬノイズの影響を排除する為に、Crefを上記(4)式のとおりとするものである.次に該(4)式について更に説明する。図1において、インクリメンタルエンコーダ1の1回転当たりのパルス数をPmaxとし,該Pmaxを説明を容易とする為、例えば2400PPRとすれば逓倍器4で×2倍される。従って、リセット検出カウンター5の出力は0〜(2400×2―1)=4799の範囲で変化するものであり、この場合のCrefは上記(4)式より整数演算にて下記のとおりとなる。
Cref=(2400×2―1)/2=2399 (7)
従って、逓倍器4の逓倍比をA(A=1、2または4)とすれば上記(4)式は下記のとおりとなる。
Cref=(Pmax×A−1)/2(整数演算による) (8)
【0031】
該Crefが偶数であるとき、図3においてCd1とCd2が等しくなるのはインクリメンタルエンコーダ1の1回転の中間にノイズが侵入するときのみでこの確率は極めて低いものであり、通常は下記のとおりである。
Cd1<Cd2 このときは Cref<Cd2 (9)
Cd2<Cd1 このときは Cref<Cd1 (10)
更に、(8)式による上記Crefは通常は奇数であり、必ず上記(9)、(10)式のどちらか一方となり、図1、図2、図3にて動作を説明した位相偏差検出器7、リセット設定器8、リセット検出器9、Dフリップフロップ10と回転数検出器11の作用により回転数を検出する。
【0032】
かようにして、本発明では電磁障害、誘導障害などによりインクリメンタルエンコーダのZ相信号に該エンコーダの1回転に1回の偶発的に侵入するノイズの障害を排除し、インクリメンタルエンコーダ、もしくは該エンコーダの付属する回転体の回転数を正しく検出せしめることを可能とするものである。これにより、インクリメンタルエンコーダを用いる場合において、高速に動作する回転体の回転数を高い信頼性で精度を損なうこと無く検出することを実現し、高精度の位置決めや同期制御を可能とした。
【0033】
図5は本発明の請求項1記載の第2の実施例の回転数検出を示す構成図であり、図6は図5の動作を説明する図である。
【0034】
以下、本発明の第2の実施例について説明する。
図5において、22a、22b、22cはDフリップフロップ、23a、23b、23c,23dはANDゲートである。また、1は図1と同様インクリメンタルエンコーダであり、この他図1と同じ記号を付すものは該図1と同様の機能を有しこれらの説明は割愛する。
【0035】
図5において前記図1と相違する箇所の説明を行う。
マイクロプロセッサ12は、回転数検出器11からインクリメンタルエンコーダもしくは、該エンコーダの付属する回転体の回転数を読み出すときは出力ポートPをHiとしリード信号を出力する。該リード信号はDフリップフロップ22aにより発信器21が出力する周波数信号に同期化された後、更にDフリップフロップ22b、22cにより一定時間遅延され、次にANDゲート23a、23b、23c及び23dの作用により、回転検出装置2のA相、B相、Z相の入力信号と、現在値ラッチゲート部6a、前回値ラッチゲート部6b及びリセット検出器9間のタイミングを生成し、回転数検出器11を正しく動作せしめるものでこれの詳細は図6において更に説明を行う。
【0036】
図6において、時刻t(N)はマイクロプロセッサ12が回転数検出器11の出力をリードする現在時刻であり、時刻t(N+1)は次回のリードする時刻である。また、図5の(a)〜(i)、および(m)〜(p)は図2の同じ記号を付すものと同様の信号であり説明は割愛する。ここで、(i)においてCP(N)は上記現在時刻t(N)におけるリセット検出カウンター5の出力値である。また、回転数検出装置2のZ相入力(b)においてHiが入力されると、上記リセット検出カウンターの出力(i)は図示するとおり0となる。
【0037】
マイクロプロセッサ12は回転数検出器11の出力をリードするとき、現在時刻t(N)に先立ち(q)に示す如くHi信号を出力ポートPから出力する。該(q)の信号はDフリップフロップ22aで発信器21が出力する周波数に同期化され、次にDフリップフロップ22bとANDゲート23a、23bにより遅延処理を行い(r)に示す信号を生成する。また、上記Dフリップフロップ22bの出力は、更にDフリップフロップ22cとANDゲート23c、23dにより遅延処理を行い(s)に示す信号を生成する。該(r)と(s)において、図6中に示すゲート23bの出力(r)の立ち下がりエッジ▲1▼、ゲート23dの出力(s)の立ち上がりエッジ▲2▼及び立ち下がりエッジ▲3▼は、図2の▲1▼、▲2▼、▲3▼と同様の機能を有すものである。
【0038】
すなわち、現在時刻t(N)に先立ち上記▲1▼のタイミングにて、リセット検出カウンター5の出力(i)のCP(N)は現在値ラッチゲート部6aでラッチされ、該現在値ラッチゲート部6aの出力は(m)で示すとおり前回時刻のリード値CP(N−1)から現在値CP(N)となる。同様に次回時刻t(N+1)に先立つ▲1▼と同じタイミングで現在値ラッチゲート部6aの出力は(m)で示すとおり現在値CP(N)から0となる。すなわち、該(m)はマイクロプロセッサ12がリードするときのリセット検出カウンター5の現在値を保持する。
また、上記▲3▼のタイミングにより(m)はラッチゲート部6bでラッチされ前回値ラッチゲート部6bの出力(n)を生成する。
ここで、図6の時刻t(N)において、(m)に示す出力は現在値CP(N)であり(n)に示す出力は前回時刻にリードされた前回値CP(N−1)である。すなわち、前回値ラッチゲート部6bの出力(n)はリセット検出カウンター5の前回値を保持するものである。
【0039】
そして、図6の(o)、(p)は図2と同様の動作を行うもので、回転数検出装置2のZ相入力がHiになった後リードする次回時刻T(N+1)において、回転数検出器11の出力(p)はCRからCR+1にカウントアップするもので、インクリメンタルエンコーダ、もしくは該エンコーダの付属する回転体の回転数を検出するに至る。
かようにして、本発明では電磁障害、誘導障害などによりインクリメンタルエンコーダのZ相信号に該エンコーダの1回転に1回の偶発的に侵入するノイズの障害を排除し、インクリメンタルエンコーダ、もしくは該エンコーダの付属する回転体の回転数を正しく検出せしめることを可能とするものである。これにより、インクリメンタルエンコーダを用いる場合において、高速に動作する回転体の回転数を高い信頼性で精度を損なうこと無く検出することを実現し、高精度の位置決めや同期制御を可能とした。
【0040】
図7は本発明の請求項2記載の一実施例の回転数検出を示す構成図であり、図8は図7の動作を説明する図である。
【0041】
図7において、12はマイクロプロセッサであり13は該マイクロプロセッサ12と接続されたメモリである。該メモリ12には、前回回転位相レジスタ13a、現在回転位相レジスタ13b、リセット設定レジスタ13c、位相偏差レジスタ13dおよび回転数レジスタ13eを内蔵する。そして、上記前回回転位相レジスタ13aはCP(N−1)なる値を有し、13b、13c、13d、13eの各レジスタはそれぞれCP(N)、Cref、ΔCP(N)、CRである値を有す。また、図7において示すインクリメンタルエンコーダ1など図1と同じ記号を付すものは該図1と同様の機能を有しこれらの説明は割愛する。
【0042】
図7において、マイクロプロセッサ12は毎スキャン毎に現在値ラッチゲートゲート部6aの出力をリードし現在回転位相レジスタ13bにCP(N)として格納する。リセット設定レジスタ13cのCrefは前記(4)式、(8)式により定める値に設定するものである。
【0043】
そして、マイクロプロセッサ12は図8に示すフローの処理により回転数検出装置2のZ相入力にインクリメンタルエンコーダの1回転に1回、偶発的に侵入するノイズを排除し正しい回転数を得るもので、図7を参照しつつ図8に示すマイクロプロセッサ12の動作について以下に説明する。
f1:CP(N−1)=CP(N)とし、現在回転位相レジスタCP(N)を前回回転位相レジスタCP(N−1)にセーブし、CP(N)の更新に備える。
f2:現在値ラッチゲートゲート部6aの出力をリードし現在回転位相レジスタCP(N)を更新し現在値とする。
f3:ΔCP(N)=CP(N−1)−CP(N)を演算する。
f4:ΔCP(N)≦Crefのときは、インクリメンタルエンコーダ1は1回転に至らないとしf1へ戻る。
Cref<ΔCP(N)のときは、インクリメンタルエンコーダ1は1回転したものでありf5へ。
f5:回転数レジスタCRをカウントアップした後f1へ戻る。
【0044】
かようにして、図7の第3の実施例は前記図1、5で示すものと同様の機能を有し、電磁障害、誘導障害などによりインクリメンタルエンコーダのZ相信号に該エンコーダの1回転に1回の予期せぬノイズの進入による障害を排除し、インクリメンタルエンコーダ、もしくは該エンコーダの付属する回転体の回転数を正しく検出せしめることを可能とするものである。これにより、インクリメンタルエンコーダを用いる場合においても、高い信頼性を有して高速に動作する回転体の回転数を精度を損なうこと無く検出することを実現し、高精度の位置決めや同期制御を可能とした。
【0045】
図9は次に示す本発明の実施例が解決しようとする課題を示し、図10は本発明の請求項3記載の実施例の拡張した回転数検出を示す構成図であり、図11は図10の動作を説明し、図12,図13は図10の効果を説明する図である。
【0046】
始めに、図9に本発明の解決しようとする課題を説明する。
図9において、リセット検出カウンター5の出力(i)から回転数検出装置2のZ相入力(b)までは、図3において同じ記号を付すものと同じものである。
図9では,インクリメンタルエンコーダの1回転において、回転数検出装置2のZ相入力に時刻tnz1、tnz2と2回のノイズが侵入した例を示している。この場合においてCrefをCmax/2としたとき、図9に示すとおり時刻tnz1、tnz2、tnz3におけるCd2、Cd3、Cd4はいずれもCref以下であり、回転数検出器11の出力(p)はCR=2のままで変化せず正しい回転数を検出することはできない。
【0047】
この発明は、インクリメンタルエンコーダもしくは該エンコーダの付属する回転体の回転数を検出する回転数検出装置において、電源急変や負荷急変などによる電磁障害、誘電障害により誘因される偶発的なノイズがエンコーダの1回転に複数回侵入した場合であっても、これを排除し正しい回転数を得るものである。
【0048】
次に、図10において、12はマイクロプロセッサであり13は該マイクロプロセッサ12と接続されたメモリであり、該メモリ12には、前回回転位相レジスタ13a、現在回転位相レジスタ13b、リセット設定レジスタ13c、位相偏差レジスタ13dおよび回転数レジスタ13eを内蔵し、これらは図7に示すものと同一の機能を有するものでその機能の説明は割愛する。また、13fはリセット積算レジスタでありΣΔCPなる値を保持する。この他、図10において示すインクリメンタルエンコーダ1など図7と同じ記号を付すものは該図7と同様の機能を有しこれらの説明は割愛する。
【0049】
次に図11により図10の構成の動作を説明する。
f1:回転数レジスタCRとリセット積算レジスタΣΔCPを0に初期化する。
f2:CP(N−1)=CP(N)とし、現在回転位相レジスタCP(N)を前回回転位相レジスタCP(N−1)に格納し、CP(N)の更新に備える。
f3:現在値ラッチゲートゲート部6aの出力をリードし現在回転位相レジスタCP(N)を更新し現在値とする。
f4:ΔCP(N)=CP(N−1)−CP(N)を演算する。
f5:ΔCP(N)≦0のときは、回転数検出装置2のZ相入力はLoのままなのでf2へ戻る。
0<ΔCP(N)のときは、回転数検出装置2のZ相入力にHiが入力されたときでありf6へ。
f6:ΔCP(N)≦Crefのときは、回転数検出装置2のZ相入力にノイズによる影響が認められるのでf7のチェックへ。
Cref<ΔCP(N)のときは、インクリメンタルエンコーダ1は1回転したものとしf9へ。
f7:ΣΔCP=ΣΔCP+ΔCP(N)を演算する。
f8:ΣΔCP(N)≦Crefのときは、インクリメンタルエンコーダ1は1回転に至らないとしf2へ戻る。
Cref<ΣΔCPのときは、インクリメンタルエンコーダ1は1回転したものとしf9へ。
f9:回転数レジスタCRをカウントアップした後f10へ。
f10:リセット積算レジスタΣΔCPを0に再初期化しf2へ戻る。
【0050】
次に図12により、図10、図11の実施例による効果を説明する。図12において、(a)は図10のリセット検出カウンター5の出力の時間的推移をグラフで示し、(b)は回転数レジスタ13eの値CRを、(c)、(d)は回転数検出装置2のA相、B相入力を、(e)は該回転数検出装置2のZ相入力の時間的推移を示す。
図12(a)において、リセット検出カウンター5の出力する最大値をCmaxとし、図10のリセット設定レジスタ13cの値Crefを例えばCmax/2とし図中に点線で示すものである。
【0051】
また、図12の回転数検出装置2のZ相入力(e)において、時刻t1、t2、t3にZ相に正規のHiの入力がなされ、この時刻において(a)に図示するようにリセット検出カウンター5(a)の出力はクリアされる。次に、図9と同様に時刻t1〜t2のエンコーダの1周期内の時刻tnz1、tnz2において、偶発的なノイズが侵入したときもリセット検出カウンター5(a)の出力も図示するとおりクリアされる。
【0052】
そして、図12の(a)ではリセット検出カウンター5の出力は次の如く遷移するとしている。
時刻t1: Cd1から0へ、ここでCmax/2<(Cd1=Cmax)
時刻tnz1:Cd2から0へ、ここでCd2<Cmax/2
時刻tnz2:Cd3から0へ、ここでCd3<Cmax/2
また、Cmax/2<(Cd2+Cd3)
時刻t2:Cd4から0へ、ここでCd4<Cmax/2
【0053】
そして、図12の回転数レジスタ13eの値(b)は図11において説明した経緯より、時刻t1、tnz1、tnz2において下記のとおりとなる。
時刻t1:
f4:ΔCP(N)=Cd1−0=Cd1
f5:0<Cd1なのでf6へ
f6:Cmax/2 < Cd1よりf9へ
f9:回転数レジスタ13eの値CRを+1し2とする
f10:ΣΔCP=0に再び初期化する
時刻tnz1:
f4:ΔCP(N)=Cd2−0=Cd2
f5:0<Cd2なのでf6へ
f6:Cd2 < Cmax/2なのでf7へ
f7:ΣΔCP=Cd2としf8へ
f8:ΣΔCP<Cmax/2なので、回転数レジスタ13eの値CRは2のままでf2へ
時刻tnz2:
f4:ΔCP(N)=Cd3−0=Cd3
f5:0<Cd3なのでf6へ
f6:Cd3 < Cmax/2なのでf7へ
f7:ΣΔCP=Cd2+Cd3としf8へ
f8:Cmax/2<ΣΔCPなのでf9へ
f9:回転数レジスタ13eの値CRを+1し3とする
f10:ΣΔCP=0に再び初期化する
かように、回転数レジスタCRは時刻t1、tnz2において2、3となるもので、同様の処理により時刻t3にて4となる。すなわち、時刻t3において回転数レジスタCRは正しい回転数が得られるものである。
【0054】
図12ではCrefがCmax/2の例を示したが、次に図13でCrefを例えば3/4Cmaxに設定する場合を示す。図13で(a)〜(e)と記号を付すものは図12で同じ記号を付すものと同じ信号である。そして、同様に時刻tnz1、tnz2で回転数検出装置2のZ相入力(e)に2回のノイズが侵入したとしている。そして図12と同様、図13の(a)ではリセット検出カウンター5の出力は次の如く遷移するとしている。
時刻t1: Cd1から0へ、ここで3/4Cmax<(Cd1=Cmax)
時刻tnz1:Cd2から0へ、 ここでCd2<3/4Cmax
時刻tnz2:Cd3から0へ、 ここでCd3<3/4Cmax
また、(Cd2+Cd3)<3/4Cmax
時刻t2:Cd4から0へ、 ここでCd4<3/4Cmax
また、3/4Cmax<(Cd2+Cd3+Cd4)
【0055】
そして、図13の回転数レジスタ13eの値(b)は図11において説明した経緯より、時刻t1、tnz1、tnz2において下記のとおりとなる。
時刻t1:
f4:ΔCP(N)=Cd1−0=Cd1
f5:0<Cd1なのでf6へ
f6:3/4Cmax < Cd1よりf9へ
f9:回転数レジスタ13eの値CRを+1し2とする
f10:ΣΔCP=0に再び初期化する
時刻tnz1:
f4:ΔCP(N)=Cd2−0=Cd2
f5:0<Cd2なのでf6へ
f6:Cd2 < 3/4Cmaxなのでf7へ
f7:ΣΔCP=Cd2としf8へ
f8:ΣΔCP<3/4Cmaxなので、回転数レジスタ13eの値CRは2のままでf2へ
時刻tnz2:
f4:ΔCP(N)=Cd3−0=Cd3
f5:0<Cd3なのでf6へ
f6:Cd2 < 3/4Cmaxなのでf7へ
f7:ΣΔCP=ΣΔCP+Cd3としf8へ
ここで、ΣΔCP=Cd2+Cd3である
f8:ΣΔCP<3/4Cmaxなので、回転数レジスタ13eの値CRは2のままでf2へ
時刻t2:
f4:ΔCP(N)=Cd4−0=Cd4
f5:0<Cd4なのでf6へ
f6:Cd4 < 3/4Cmaxなのでf7へ
f7:ΣΔCP=ΣΔCP+Cd4としf8へ
ここで、ΣΔCP=Cd2+Cd3+Cd4=Cmaxである
f8:3/4Cmax<ΣΔCPなのでf9へ
f9:回転数レジスタ13eの値CRを+1し3とする
f10:ΣΔCP=0に再び初期化する
【0056】
かように、回転数レジスタCRは時刻t1、t2において2、3となり、同様の処理により時刻t3にて4となる。そして、ノイズの侵入があっても、図12では1周期遅れの時刻t3において回転数レジスタ12eのCRは正しい回転数が得られたが、Crefを3/4Cmaxとすることにより図13ではt2にて正しい回転数を得ることができる。
【0057】
図13では説明を容易とする為に、t1〜t2の1周期に2回のノイズが回転数検出装置2のZ相入力に侵入した例を示した。ここで、該回転数検出装置2のZ相入力にt1〜t2の一周期内の時刻tnz1、tnz2 ・ ・ ・ tnznにN回のノイズが侵入し、該ノイズ侵入時刻におけるリセット検出カウンター5の出力(a)の変化量をそれぞれCdnz1、Cdnz2 ・ ・ ・ Cdnznとし、時刻t2における変化量をCdt2とすれば下記の式が常に成立する。
Figure 0003679051
また、本発明の実施例1においてはリセット設定器8の値Crefは前記(4)式により定めるものであったが、ここで説明する実施例4では図10のリセット設定レジスタ13cの値Crefは拡張して、下記の値を設定するものである。
Figure 0003679051
そして、上記(12)式を満たす範囲でCrefを大きい値とするもので、通常Crefは0.8Cmax〜0.9Cmaxに設定する。
【0058】
かように、本発明の実施例4では、回転数検出装置2のZ相入力にエンコーダの1周期内に複数回のノイズが侵入した場合であってもインクリメンタルエンコーダもしくは該エンコーダの付属する回転体の回転数を正しい時刻に得ることができる。これにより、インクリメンタルエンコーダを使用するときにおいて極めて信頼性と精度の高い位置決め制御や同期制御を可能とした。
【0059】
図14は本発明の請求項4記載の拡張回転数検出の構成を示すものである。図14において、2は回転数検出装置、3は外部入力装置、14は上記回転数検出装置2に内蔵する通信インターフェイスである。ここで、図14において図10と同じ記号を付すものは同様の機能を有すものでこれらの説明は割愛する。
【0060】
図14において、外部入力装置3は通信インターフェイス14を介して回転検出装置2が内蔵するマイクロプロセッサ13の通信ポートSと接続されている。そして、外部入力装置3により設定される値は、上記の接続によりマイクロプロセッサに送信されリセット設定レジスタCrefに設定するものである。
これにより、インクリメンタルエンコーダの1回転当たりのパルス数がいかなる値のものであっても、上記(12)式によるCrefを適切に設定できるものである。これにより、インクリメンタルエンコーダがいかなるパルス数のものであっても、回転数検出装置2の内部構成を変更することなく対応できるものである。
【0061】
【発明の効果】
以上説明したように、コストが低く設置においても容易なインクリメンタルエンコーダを用いるときにおいて、該エンコーダの1回転に1回または複数回のノイズが侵入するときであっても、インクリメンタルエンコーダもしくは該インクリメンタルエンコーダが付属する回転体の回転数を正しく確実に検出し、高い信頼性と高精度の位置決め制御や同期制御を可能とすした。また、該インクリメンタルエンコーダが設置毎に1回転当たりのパルス数が異なっても、外部からリセット設定器もしくはリセット設定レジスタの値を設定できるものとし、いかなるパルス数のエンコーダに容易に使用できるもので、実用上、極めて有用性の高いものである。
【図面の簡単な説明】
【図1】本発明の請求項1記載の第1の実施例の回転数検出の構成を示す図である。
【図2】図1の動作を説明する図である。
【図3】図1の効果を説明する図である。
【図4】図1のリセット設定器の効果を説明する図である。
【図5】本発明の請求項1記載の第2の実施例の回転数検出の構成を示す図である。
【図6】図5の動作を説明する図である。
【図7】本発明の請求項2記載の回転数検出の構成を示す図である。
【図8】図7の動作を説明する図である。
【図9】回転の1周期においてZ相に複数のノイズが混入するときの図である。
【図10】本発明の請求項3記載の拡張回転数検出の構成を示す図である。
【図11】図10の動作を説明する図である。
【図12】図10の効果を説明する図である。
【図13】図10の効果を説明する図である。
【図14】本発明の請求項4記載の拡張回転数検出の構成を示す図である。
【図15】アブソリュートエンコーダを説明する図である。
【図16】インクリメンタルエンコーダを説明する図である。
【図17】従来の実施例を説明する図である。
【図18】従来の実施例の動作を説明する図である。
【図19】従来の実施例でZ相にノイズが混入したときの動作を説明する図である。
【符号の説明】
1 インクリメンタルエンコーダ
2 回転数検出装置
3 外部入力装置
3a、3b、3c Dフリップフロップ
4 逓倍器
5 リセット検出カウンター
6a 現在値ラッチゲート部
6b 前回値ラッチゲート部
7 位相偏差検出器
8 リセット設定器
9 リセット検出器
10 Dフリップフロップ
11 回転数検出器
12 マイクロプロセッサ
13 メモリ
13a 前回回転位相レジスタ
13b 現在回転位相レジスタ
13c リセット設定レジスタ
13d 位相偏差レジスタ
13e 回転数レジスタ
13f リセット積算レジスタ
14 通信インターフェイス
21 発信器
Pm、Ps1 インクリメンタルエンコーダ
As1 スレーブセクション
Cm1 マスター位相カウンター
Cs1 スレーブ位相カウンター
Hs1 位相偏差演算器
Cm、Cs 絶対回転位相
Rp エンコーダの回転に応じて出力されるパルス列
Zp エンコーダの1回転毎に出力されるパルス信号

Claims (4)

  1. 電動機もしくは回転する機械軸に設置されたZ相付きインクリメンタルエンコーダと、該インクリメンタルエンコーダからの回転に応じて出力するパルスをカウントするリセット検出カウンターを備える回転数検出装置であり、
    上記リセット検出カウンターは上記Z相付きインクリメンタルエンコーダからの1回転毎に出力するZ相信号でリセットするものであって、
    前記回転数検出装置に、上記リセット検出カウンターの出力を現在値としてラッチする第1の現在値ラッチゲート部と、該第1の現在値ラッチゲート部の出力を前回値としてラッチする第2の前回値ラッチゲート部を備え、
    上記第2の前回値ラッチゲート部の出力と上記第1の現在値ラッチゲート部の出力の偏差を検出する位相偏差検出器と、上記リセット検出カウンターの出力の最大値の1/2の値を有するリセット設定器を備え、
    該リセット設定器の出力と上記位相偏差検出器の出力を比較するリセット検出器を備え、
    該リセット検出器は上記リセット設定器の出力が上記位相偏差検出器の出力より小さいとき上記Z相付きインクリメンタルエンコーダの1回転とし、それ以外は1回転としない回転数判別手段を備え、
    該回転数判別手段によりインクリメンタルエンコーダが回転したときのリセット検出器の出力をカウントする回転数検出器と、該回転数検出器の出力及び前記第1の現在値ラッチゲート部の出力を入力とする中央演算処理装置を備えることを特徴とする回転数検出装置。
  2. 電動機もしくは回転する機械軸に設置されたZ相付きインクリメンタルエンコーダと、該インクリメンタルエンコーダからの回転に応じて出力するパルスをカウントするリセット検出カウンターを備える回転数検出装置であり、
    上記リセット検出カウンターは上記Z相付きインクリメンタルエンコーダからの1回転毎に出力するZ相信号でリセットするものであって、
    前記回転数検出装置に、上記リセット検出カウンターの出力を現在値としてラッチする現在値ラッチゲート部と、該現在値ラッチゲート部の出力を入力とする中央演算処理装置(マイクロプロセッサ)を備え、
    該中央演算処理装置は、メモリに接続されているものであって、上記現在値ラッチゲート部からの入力をメモリ内の現在回転位相レジスタに格納するとともに、該現在回転位相レジスタの内容を同じメモリ内の前回回転位相レジスタに格納することにより前回回転位相を記憶する記憶手段を備え、
    上記前回回転位相レジスタと上記現在回転位相レジスタの偏差を演算した後格納する位相偏差レジスタと、上記リセット検出カウンターの出力の最大値の1/2の値を有するリセット設定レジスタと、上記Z相付きインクリメンタルエンコーダの回転数をカウントする回転数レジスタを備え、
    上記中央演算処理装置は、該リセット設定レジスタの出力と上記位相偏差レジスタの出力を比較することにより、上記リセット設定レジスタの出力が上記位相偏差レジスタの出力より小さいとき上記Z相付きインクリメンタルエンコーダの1回転とし上記回転数レジスタをカウントするカウント手段を備え、
    上記位相偏差レジスタの出力がリセット設定レジスタの出力より小さいか又は等しいとき上記Z相付きインクリメンタルエンコーダの1回転とせず上記回転数レジスタの値を変更しない判定手段を備えたことを特徴とする回転数検出装置。
  3. 電動機もしくは回転する機械軸に設置されたZ相付きインクリメンタルエンコーダと、該インクリメンタルエンコーダからの回転に応じて出力するパルスをカウントするリセット検出カウンターを備える回転数検出装置であり、
    上記リセット検出カウンターは上記Z相付きインクリメンタルエンコーダからの1回転毎に出力するZ相信号でリセットするものであって、
    該回転数検出装置に、上記リセット検出カウンターの出力を現在値としてラッチする現在値ラッチゲート部と、該現在値ラッチゲート部の出力を入力とする中央演算処理装置を備え、
    該中央演算処理装置は、上記現在値ラッチゲート部からの入力を現在回転位相レジスタに格納するとともに、該現在回転位相レジスタの内容を前回回転位相レジスタに格納することにより前回回転位相を記憶する記憶手段を備え、
    上記中央演算処理装置は、上記前回回転位相レジスタと上記現在回転位相レジスタの偏差を演算した後格納する位相偏差レジスタと、上記リセット検出カウンターの出力の最大値の1/2以上で該最大値未満の値を有するリセット設定レジスタと、上記Z相付きインクリメンタルエンコーダの回転数をカウントする回転数レジスタと、前記位相偏差レジスタの出力のリセット値を積算するリセット積算レジスタを備え、上記リセット設定レジスタの出力と上記位相偏差レジスタの出力を比較することにより、上記リセット設定レジスタの出力が上記位相偏差レジスタの出力より小さいとき上記Z相付きインクリメンタルエンコーダの1回転として上記回転数レジスタをカウントするカウント手段を備え、
    上記位相偏差レジスタの出力がリセット設定レジスタの出力より小さいか又は等しいとき、上記位相偏差レジスタの出力をリセット積算レジスタに積算し、上記リセット設定レジスタの出力が上記リセット積算レジスタの出力より小さいとき上記Z相付きインクリメンタルエンコーダの1回転として上記回転数レジスタをカウントし、上記リセット積算レジスタの出力が上記リセット設定レジスタの出力より小さいか又は等しいとき上記Z相付きインクリメンタルエンコーダの1回転とせず上記回転数レジスタの値を変更しない判定手段を備えたことを特徴とする回転数検出装置。
  4. 電動機もしくは回転する機械軸に設置されたZ相付きインクリメンタルエンコーダと、該インクリメンタルエンコーダからの回転に応じて出力するパルスをカウントするリセット検出カウンターを備える回転数検出装置であり、
    上記リセット検出カウンターは上記Z相付きインクリメンタルエンコーダからの1回転毎に出力するZ相信号でリセットするものであって、
    該回転数検出装置に、上記リセット検出カウンターの出力を現在値としてラッチする現在値ラッチゲート部と、該現在値ラッチゲート部の出力を入力とする中央演算処理装置を備え、
    該中央演算処理装置は、上記現在値ラッチゲートからの入力を現在回転位相レジスタに格納するとともに、該現在回転位相レジスタの内容を前回回転位相レジスタに格納することにより前回回転位相を記憶する記憶手段を備え、
    上記中央演算処理装置は、上記前回回転位相レジスタと上記現在回転位相レジスタの偏差を演算した後格納する位相偏差レジスタとリセット設定レジスタと通信インターフェイスを備え、
    該リセット設定レジスタは、外部入力装置から上記通信インターフェイスを介して上記リセット検出カウンターの出力の最大値の1/2以上で該最大値未満の値を任意に設定できるものであって、
    上記Z相付きインクリメンタルエンコーダの回転数をカウントする回転数レジスタと、前記位相偏差レジスタの出力のリセット値を積算するリセット積算レジスタを備え、
    上記中央演算処理装置は、上記リセット設定レジスタの出力と上記位相偏差レジスタの出力を比較することにより、上記リセット設定レジスタの出力が上記位相偏差レジスタの出力より小さいとき上記Z相付きインクリメンタルエンコーダの1回転とし上記回転数レジスタをカウントするカウント手段を備え、
    上記位相偏差レジスタの出力がリセット設定レジスタの出力より小さいか又は等しいとき、上記位相偏差レジスタの出力をリセット積算レジスタに積算し、上記リセット設定レジスタの出力が上記リセット積算レジスタの出力より小さいとき上記Z相付きインクリメンタルエンコーダの1回転として上記回転数レジスタをカウントし、上記リセット積算レジスタの出力が上記リセット設定レジスタの出力より小さいか又は等しいとき上記Z相付きインクリメンタルエンコーダの1回転とせず上記回転数レジスタの値を変更しない判定手段を備えたことを特徴とする回転数検出装置。
JP2001387029A 2001-12-20 2001-12-20 回転数検出装置 Expired - Lifetime JP3679051B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001387029A JP3679051B2 (ja) 2001-12-20 2001-12-20 回転数検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001387029A JP3679051B2 (ja) 2001-12-20 2001-12-20 回転数検出装置

Publications (2)

Publication Number Publication Date
JP2003185473A JP2003185473A (ja) 2003-07-03
JP3679051B2 true JP3679051B2 (ja) 2005-08-03

Family

ID=27595984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001387029A Expired - Lifetime JP3679051B2 (ja) 2001-12-20 2001-12-20 回転数検出装置

Country Status (1)

Country Link
JP (1) JP3679051B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009153335A (ja) * 2007-12-21 2009-07-09 Mitsuba Corp ブラシレスサーボモータ

Also Published As

Publication number Publication date
JP2003185473A (ja) 2003-07-03

Similar Documents

Publication Publication Date Title
US5438330A (en) Absolute encoder
US7397393B2 (en) Encoder count error detection circuitry and encoder count error detection method
EP1600741A2 (en) Pulse width modulation based digital incremental encoder
JP2720642B2 (ja) 多回転絶対値エンコーダ
CN101382443A (zh) 光学式编码器以及具有它的电子设备
CN101534109B (zh) 带滤波功能的正交信号倍频鉴相逻辑电路
US6127948A (en) Bidirectional synthesis of pseudorandom sequences for arbitrary encoding resolutions
JP3679051B2 (ja) 回転数検出装置
JP3047809B2 (ja) ロータリーエンコーダ
JPH07154256A (ja) A/d変換装置及び物理量検出装置
JP3111546B2 (ja) アブソリュートエンコーダ
TWI777686B (zh) 電子式旋轉編碼器
US5105159A (en) Evaluating circuit for square wave signals
JP2719480B2 (ja) 多回転位置検出装置
CN111224679A (zh) 一种z相信号产生电路及编码器
JP3067729B2 (ja) エンコーダの信号処理方法及び装置
KR0153641B1 (ko) 전동기 제어용 인크리멘탈엔코더에 의한 위치판별회로
JPH06160113A (ja) 高分解能アブソリュート信号の作成方法
EP2144041A2 (en) A/B phase signal generator, RD converter, and angle detection unit
CN218411219U (zh) 码盘式编码器
US4973959A (en) Digital pulse circuit for processing successive pulses
US4939756A (en) Two-phase encoder circuit
JP3283188B2 (ja) パルスカウント回路
JP3456556B2 (ja) アブソリュートエンコーダ装置
JP2582786Y2 (ja) エンコーダカウンタ

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050511

R150 Certificate of patent or registration of utility model

Ref document number: 3679051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080520

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 9

EXPY Cancellation because of completion of term