JP3679015B2 - Cdma方式の受信装置 - Google Patents

Cdma方式の受信装置 Download PDF

Info

Publication number
JP3679015B2
JP3679015B2 JP2001052518A JP2001052518A JP3679015B2 JP 3679015 B2 JP3679015 B2 JP 3679015B2 JP 2001052518 A JP2001052518 A JP 2001052518A JP 2001052518 A JP2001052518 A JP 2001052518A JP 3679015 B2 JP3679015 B2 JP 3679015B2
Authority
JP
Japan
Prior art keywords
unit
signal
output
amplitude
despreading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001052518A
Other languages
English (en)
Other versions
JP2002261732A (ja
Inventor
彦惣桂二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2001052518A priority Critical patent/JP3679015B2/ja
Publication of JP2002261732A publication Critical patent/JP2002261732A/ja
Application granted granted Critical
Publication of JP3679015B2 publication Critical patent/JP3679015B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、CDMA(Code Division Multiplex Access)方式を利用した無線通信システムにおける受信装置に関するものである。
【0002】
【従来の技術】
直接拡散のスペクトル拡散通信およびスペクトル拡散通信技術を利用したCDMAシステムは、マルチパスフェージングに強く、データの高速化が可能であるとともに、通信品質が良好であり、さらに周波数利用効率が良いため、次世代の移動通信およびマルチメディア無線通信に有望な通信方式となっている。
【0003】
図6を用いて、従来のCDMA方式の受信装置について説明する。
従来のCDMA方式を用いた受信装置では、直接拡散通信方式で送信された信号をアンテナで受信し、可変利得制御部101を経由して直交検波部102に入力する。この可変利得制御部101は、後述する制御電圧生成部107から入力される制御電圧に応じて利得が可変となっている。
【0004】
直交検波部102では、可変利得制御部101から入力される信号を、位相直交したローカル信号を用いて、直交基底信号に変換する。
直交検波部102の出力は、A/D変換部103に入力され、ディジタル値化される。一般的には、ハードウェア規模の問題から、限られたビット数に制限される。
【0005】
ディジタル値化された受信基底信号は、逆拡散部604に入力される。図7に、逆拡散部604の概略構成を示す。
逆拡散部604は、図7に示すように、相関演算部201と符号生成部202とから構成される。
符号生成部202では、送信側で用いられた拡散符号群において、予め既知である、受信すべき情報信号の拡散符号のレプリカを生成し、相関演算部201において、受信基底信号との相関演算処理が行われる。一般的には、拡散符号群は、それぞれの間で直交したような符号が用いられる。
【0006】
このような処理により、予め送信側で情報信号帯域より拡散された帯域で送信されていた信号が、情報信号帯域信号となる。この逆拡散部604からの出力は、それぞれ複数の復調部105に入力され、送信側で行われた一次変調に対応した検波処理および復調処理が行われる。一般的には、予め送信側で既知の情報信号を送信し、復調部において該既知の情報信号の平均化処理により伝播路推定を行い、その推定結果の複素共役を受信信号に乗ずることにより同期検波を行う。
【0007】
一般的に、受信基底信号のディジタル値化を行う際に、振幅が小さくなり過ぎると量子化誤差の影響を大きく受け、振幅が大きくなり過ぎると、クリップ現象が生じ、逆拡散時の処理利得が減少してしまうため、振幅には最適値が存在する。
【0008】
制御電圧生成部107は、A/D変換部103に入力される受信基底信号の振幅が最適になるよう制御するために設置されている。ディジタル値化された受信基底信号は、制御電圧生成部107に入力され、受信基底信号の振幅、もしくは振幅に対応した電力等を演算により求め、平均化等の処理を行い、受信基底信号の振幅を最適値で一定になるよう、可変利得制御増幅部101を制御するための制御電圧を生成する。
【0009】
上述したように、CDMA方式では、直交した信号が同一周波数内に多重されて送信されるため、受信すべき情報信号に対して、より大電力の信号が入力されることがある。この受信信号のトータル電力に含まれる所望信号の比は、多重信号数によって異なる。したがって、制御電圧生成部107において、A/D変換部103への入力電力を一定に保つような制御を行った場合には、逆拡散部604の出力信号の振幅は大きく異なることとなる。
【0010】
一般的に、逆拡散部604においてレプリカ信号との相関演算処理を行うため、拡散符号長(処理利得と同意)に応じて、A/D変換部103のビット数に対して大きくビット数が増大する。このため、後段におかれた復調部105のハードウェア規模の問題から、逆拡散部604の出力ビットに対して丸め込み処理を行う。
【0011】
上述したように、A/D変換部103の入力は、逆拡散部604においてより効率よく逆拡散処理を行うために、量子化雑音とクリップによる処理利得の減少分とのトレードオフで決まる。このため、受信トータル電力に対する所望信号の受信電力比が比較的小さい場合には、これに合わせてA/D変換部103の入力電力を大きくすると、逆拡散時の処理利得が低減する。逆に、受信トータル電力に対する所望信号の受信電力比が比較的大きい場合には、これに合わせてA/D変換部103の入力電力を小さくすると、量子化雑音の影響が大きくなり、ともに信号が劣化する結果となる。
したがって、A/D変換部103の入力電力は、上述したように量子化雑音とクリップによる処理利得の減少分のトレードオフにより、最適な振幅に調整しておく必要がある。
【0012】
もし、ハードウェア規模の削減の目的から、逆拡散部604の出力のビット数削減を行った場合、上述したA/D変換部103と同様に、後段の復調部105においても、量子化雑音とクリップによる劣化とのトレードオフにより、最適な入力振幅が存在する。
この入力振幅を最適化する目的から、特開平10−107765号公報には、逆拡散部604と復調部105の間に、上述したのと同様の機能を有する第2の可変利得増幅部を設置するとともに、逆拡散部604にアナログ相関器を用いたものが開示されている。
【0013】
【発明が解決しようとする課題】
特開平10−107765号公報に開示された技術では、マルチパスが存在するような環境下における手法も述べられており、RAKE合成後の出力レベルを用いた手法、および同相加算等のレベル合成を行った結果を出力レベルとして用いた手法が提案されている。
このような手法を用いた場合、マルチパス毎のレベルに差が存在すると、ある特定のパスについては非常に効率よく復調することができるが、他のパスについては、クリップによる処理利得が減少したり、量子化雑音の影響により信号の劣化が生ずることとなる。
【0014】
本発明は、上述した事情に鑑みなされたものであり、マルチパス伝播環境下において、ハードウェアを大幅に増大させることなく、より最適な復調性能を得ることが可能なCDMA方式の受信装置を提供することを目的とする。
【0015】
【課題を解決するための手段】
本発明に係るCDMA方式の受信装置は、上述した目的を達成するため、以下の特徴点を備えている。
【0016】
すなわち、本発明に係るCDMA方式の受信装置は、受信信号を制御電圧に応じて増幅するための可変利得制御増幅部と、可変利得制御された受信信号を直交信号に変換するための直交検波部と、前記直交検波部の出力をディジタル信号に変換するためのA/D変換部と、前記A/D変換部に入力される信号電力を一定に保つように、前記可変利得制御増幅部を制御する制御電圧を生成するための制御電圧生成部と、前記A/D変換部の出力に基づいて、前記受信信号に含まれる複数のマルチパス成分に対応するタイミングに同期し、前記受信信号に対応した拡散符号を用いて逆拡散処理を行うための逆拡散部と、前記複数のマルチパス成分に対応する前記逆拡散部の出力を用いて、検波および復調を行うための複数の復調部とを備えたCDMA方式の受信装置において、
前記逆拡散部は、各マルチパス成分に対応した各出力に対して、制御信号に応じて出力信号の振幅を変更し、予め定められたビット数に丸め込む機能を有する可変振幅制御部と、相関パワーを演算するための相関パワー演算部と、出力信号の振幅を予め定められた目標値に保つように、前記制御信号を生成するための振幅制御信号生成部と、前記振幅制御信号生成部からの制御信号に応じて、前記複数の復調部の出力振幅を補正するためのレベル補正部を有する合成部と、を備えたことを特徴とするものである。
【0019】
このような構成とすることにより、簡易でかつ最適なRAKE合成を実現することができる。
【0020】
【発明の実施の形態】
以下、図面に示す具体的な実施例に基づいて、本発明に係るCDMA方式の受信装置の実施形態を説明する。
【0021】
<実施例1>
本発明の実施例1に受信装置の利得制御回路は、複数の逆拡散部が備える相関演算部の出力側に可変振幅制御部が配置されており、この可変振幅制御部により、後段に配置された複数の復調部の入力振幅を最適化するものである。
【0022】
図1は、本発明の実施例1に係る受信装置の概略構成を示すブロック図である。
実施例1に係る受信装置は、可変利得制御増幅部101、直交検波部102、A/D変換部103、複数の逆拡散部104a〜n、複数の復調部105a〜n、合成部106および制御電圧生成部107を備えて構成されている。
【0023】
実施例1に係る受信装置では、アンテナで受信した信号を、可変利得制御部101を経由して直交検波部102に入力する。この可変利得制御部101は、制御電圧生成部107から入力される制御電圧に応じて利得が可変となっている。直交検波部102では、可変利得制御部101から入力される信号を、位相直交したローカル信号を用いて、直交基底信号に変換する。
直交検波部102の出力は、A/D変換部103に入力され、ディジタル値化され、逆拡散部104a〜nに入力される。この逆拡散部104a〜nからの出力は、それぞれ複数の復調部105a〜nに入力され、送信側で行われた一次変調に対応した検波処理および復調処理が行われ、合成部106により合成される。
この実施例1に係る受信装置は、上述した従来の受信装置と比較して、逆拡散部604の内部構造が異なっている。
【0024】
図2は、実施例1に係る受信装置における逆拡散部の詳細構成を示すブロック図である。
実施例1の受信装置における逆拡散部104a〜nは、図2に示すように、相関演算部201、符号生成部202、可変振幅制御部203、振幅制御信号生成部204、相関パワー演算部205とを備えて構成されている。
従来の受信装置と比較して新たに追加された相関パワー演算部205、可変振幅制御部203および振輻制御信号生成部204により、第1の利得制御回路が構成される。
【0025】
以下、逆拡散部104a〜nの動作について説明する。
逆拡散部104a〜nでは、符号生成部202により、受信すべき信号に対応して拡散符号が生成される。そして、A/D変換部103より入力される直交入力信号が、相関演算部201において、符号生成部202により入力される拡散符号により逆拡散処理される。ここでは、直交入力信号が入力されているため、直交信号のそれぞれに対して逆拡散処理が施されることとなる。
【0026】
一般的に、ディジタル値化された入力信号に対する逆拡散処理は、各入力信号のサンプルにそれぞれ対応した拡散符号を乗算し、その結果を情報信号レートにおける1シンボルの時間幅区間だけ積分することにより実現される。したがって、例えば、A/D変換部103の量子化ビット数を「5」、サンプリングレートをチップレート(拡散符号レート)の4倍、処理利得を「128」として積分に用いると、相関演算部201の出力は12ビットに膨れることとなる。さらに、全てのサンプルを積分に用いると、出力振幅は4倍となり、14ビットになる。
【0027】
相関演算部201および符号生成部202については、従来から用いられているものと同様であり、どのような構成であっても構わない。相関演算部201には、一般的にマッチトフィルタ方式と、スライディング相関方式とが存在するが、情報信号レートの信号に戻れば、手法はどちらでも構わない。本実施例1では、スライディング相関方式を用いて説明しているが、マッチトフィルタ方式であれば、相関演算部201および符号生成部202は1系統で構成され、得られる相関演算結果から所望の複数マルチパスタイミングの相関演算結果を抽出し、その結果をそれぞれラッチして出力する構成が一般的であり、複数の出力がスライディング相関方式を用いた場合の出力とほぼ同等となるので、後段の処理は同等となる。
【0028】
相関演算部201からの直交出力は、相関パワー演算部205に入力される。この相関パワー演算部205では、逆拡散後の振幅を演算する。例えば、直交逆拡散信号の同相成分をI、直交成分をQとすると、
【数1】
Figure 0003679015
により容易に演算を行うことができる。
【0029】
相関パワー演算部205の出力は、振幅制御信号生成部204に入力される。振幅制御信号生成部204では、相関パワー演算部205の出力を適切な区間、積分、平均化し、平均化された相関パワーと、予め定められた基準振幅との比をとる。そして、この比の逆数を振幅制御信号として出力し、可変振幅制御部203を制御する。
可変振幅制御部203では、振幅制御信号生成部204より入力される振幅制御信号を、相関演算部201から入力される信号に乗算し、その後、予め定められたビット部分を、予め定められたビット幅だけ抽出して出力する。
【0030】
例えば、相関演算部201の出力が12ビットであり、振幅制御信号生成部204により平均化された平均信号振幅が10ビット(512程度)であり、さらに振幅制御信号生成部204から出力される制御信号自体のビット数が6ビットであり、可変振幅制御部203の出力は相関演算部201の出力である12ビットと振幅制御信号との乗算結果である18ビットのうち12ビット目から7ビット目までの6ビットであり、出力平均振幅として、この6ビット中の約5ビット程度の振幅に調整されるものとする。
【0031】
この場合、まず振幅制御信号生成部204では、出力としで「000010(バイナリ)」を出力するよう動作する。つまり、振幅制御信号生成部204では、相関演算部201の出力平均信号の振幅と、予め定められた可変振幅制御部203の出力との関係に基づいて一義的に決まる信号を出力している。
【0032】
本実施例1では、予め最終出力が乗算結果18ビットのうちの12ビット目から7ビット目の計6ビットが出力され、さらに該6ビットのうちの5ビット程度の平均振幅と定められているため、該18ビットから見ると、平均11ビット程度の振幅が出力されるように制御する必要がある。この11ビットと相関演算部201の出力平均信号振幅との比が、振幅制御信号生成部204の出力となる。
【0033】
可変振幅制御部203では、まず相関演算部201からの入力[11:0](第1ビットから第0ビットまで)と、振幅制御信号生成部204からの入力[7:0]とが乗算され、18ビット[17:0]となる。その後、該18ビットのうち、6ビット[11:6]が抽出され、出力段に渡される。
相関演算部201からの入力[11:0]は、情報シンボル毎に異なる値を出力し、振幅制御信号生成部204からの入力[5:0]は、ある区間の平均値であるため、当該区間はほぼ一定値となる。したがって、乗算結果は、情報シンボル毎に異なる値となる。
【0034】
平均的には、乗算結果の18ビットは、振幅制御信号により約11ビット程度(10進数で1024程度)の振幅に制御されているが、雑音等により12ビットで表現できる値(10進数で4095)より大きくなることもある。例えば、乗算結果の18ビットが「1024」のときには、出力6ビットとして「32」が出力されるが、乗算結果の18ビットが「1024」よりも大きい「4608」であるときには、出力6ビットは「16」となってしまい、ビットリバースが生じてしまう。これを回避するため、可変振幅制御部203は、クリップ機能を備えている。
【0035】
上述したように乗算結果の18ビットでは「4095」を上限としているため、もし乗算結果の18ビットが「4095」よりも大きい場合には、クリップ機能により、出力6ビットを必ず「127」に丸め込む。このクリップ機能は、例えば、可変振幅制御部203がオフセットバイナリ(最下位「0000…000」、最上位「111…111」で表現される2進数)で処理されている場合に、乗算結果の18ビットのうち、上位6ビットのいずれかが「1」(バイナリ)であれば、出力を必ず「127」に固定するような制御を行うことにより実現することができる。
【0036】
可変振幅制御部203が、2の補数モード(最下位「1000…000」、最上位「011…111」で表現される2進数)で処理されており、出力6ビットも2の補数モードで出力される場合には、以下の動作となる。
最上位ビットは符号ビットであり、残り上位5ビットのうち、1ビットでも符号ビットと異なるビットがある場合で、符号ビットが「0」であれば、出力6ビットを「011111」(10進数で「63」)に固定し、符号ビットが「1」であれば、出力6ビットを「100000」(10進数で「−64」)に固定する。
【0037】
このようなクリップ機能により得られた逆拡散部104a〜nの出力6ビットが、復調部105a〜nに入力され、適切な検波が行われ、復調結果が得られる。ここでは、後段でのRAKE合成のため、軟判定結果が出力される。もし、後段において最大比合成等を行わず、多数決判定等を行うのであれば、特に軟判定結果である必要はなく、硬判定結果であっても構わない。復調部105a〜nの入力が、複数の逆拡散部104a〜nにおいてそれぞれ適切なレベルに調整されているので、全ての復調部105a〜nにおいてほぼ理想的な復調が可能となることが本発明に係る受信装置の特徴である。
【0038】
上述した従来の受信装置の構成のように、各逆拡散部604において、各マルチパス成分毎に可変振幅制御部を有さない場合には、伝播路環境によって、ある逆拡散部604の出力に対して、異なる逆拡散部604の出力が比較的小さくなるような状況となる場合がある。このような場合には、振幅差のある信号それぞれを理想的に復調しようとすると、振幅の大きい信号に対しても6ビット程度の精度が要求され、振幅の小さな信号に対しても6ビット程度の精度が要求されるため、結果的に6ビットでは足りなくなり、より多くのビットを復調部105に入力する必要が生じてくる。
例えば、復調段において、既知のパイロットシンボルを用いた内挿補間を用いるような復調部の構成とすると、内挿補間に必要な区間だけ、逆拡散部の出力を貯える必要があり、復調部の入力ビット数の増大がハードウェア規模を増大させる要因となってしまう。
【0039】
これに対して、本実施例1に係る受信装置の構成によれば、復調部105a〜nのハードウェア規模を増大させることなく、復調性能を向上させることが可能となる。
複数の復調部105a〜nにより得られた情報シンボルは、合成部106に入力され、上述したように最大比合成、多数決判定等により、マルチパス成分を有効に用い、より精度の高い復調結果を得ることが可能となる。
【0040】
<実施例2>
図3は、本発明の実施例2に係る受信装置の概略構成を示すブロック図である。
実施例2に係る受信装置は、上述した実施例1に係る受信装置とほぼ同様の構成を備えているが、合成部の構成と逆拡散部の出力信号が新たに追加されている点で異なっている。したがって、図3において、実施例1に係る受信装置と同様の機能を有する部分には、同一の符号を付して、詳細な説明を省略する。
【0041】
また、実施例2に係る受信装置における可変振幅制御部は、上述した実施例1に係る受信装置におけるものと同等であり、第2の可変振幅制御部が合成部におかれている。そして、複数の逆拡散部における相関演算部の出力側に設置された可変振幅制御部により、後段に配置された複数の復調部の入力振幅を最適化し、復調部における復調結果に対して、第2の可変振幅制御部により、より最適な最大比合成を可能とするものである。
【0042】
一般的に、伝播路によって生じるマルチパス成分を最も効率よく利用するためには、最大比合成が用いられる。この最大比合成は、理想的には各パスの復調結果に対して、各パスのSIR(信号電力対雑音成分電力比)に比例した重み付けを行った後に合成することが望ましい。
しかしながら、SIR演算は分散を求める必要があるため、ハードウェア規模は非常に大型化し、ソフトウェアで行う場合にも、各パス毎に行う必要があることから、処理量が増大する。
【0043】
したがって、特に既知のパイロットシンボルや、パイロットチャネルのように予め同時に送信される位相基準を用いて同期検波を行うようなシステムでは、同期検波の際に、振幅に比例した重み付けが同時になされるため、簡易的に復調結果をそのまま合成する手法が用いられる。
このような手法では、上述した実施例1に係る受信装置で説明した第1の可変振幅制御部203を用いると、各マルチパス成分の受信振幅成分が、第1の可変振幅制御部203において変更される。このため、単純な合成を行うと、重み付けがほとんど行われないこととなり、最大比合成が実現できなくなるという問題が生ずる。
本実施例2に係る受信装置は、このような問題を解決するものである。
【0044】
以下、図4、図5を用いて、実施例2の受信装置について、さらに詳しく説明する。
図4は、実施例2に係る受信装置における逆拡散部404a〜nの詳細構成を示すブロック図である。
この逆拡散部404a〜nの動作は、実施例1に係る受信装置において説明したものとほぼ同様であるが、図4に示すように、振幅制御信号生成部204からの出力が、可変振幅制御部203に対して出力されるとともに、外部にも出力される点で異なっている。
【0045】
図5は、実施例2に係る受信装置における合成部306の詳細構成を示すブロック図である。
この合成部306は、図5に示すように、複数の第2の可変振幅制御部501a〜n、複数の第2の振幅制御信号生成部502a〜nおよび加算部503を備えて構成されている。
【0046】
以下、合成部306の動作について説明する。
合成部306には、上述した実施例1に係る受信装置で説明したのと同様の動作で復調された信号と、各逆拡散部404a〜nにおける第1の振幅制御信号生成部204からの制御信号が入力される。
各パスの動作は、上述した実施例1に係る受信装置と同様であるため、1パスについてのみ説明する。
【0047】
復調部105(例えば105a)により復調された情報シンボルは、第2の可変振幅制御部501aに入力される。
第2の可変振幅制御部501aでは、第2の振幅制御信号生成部502aより入力される第2の振幅制御信号を復調部105aから入力される信号に乗算する。この際、より大きい振幅信号において、ビットリバースにより振幅が小さく見えないように、第1の可変振幅制御部203と同様のクリップ処理が施される。
【0048】
第2の振幅制御信号生成部502aでは、まず第1の振幅制御信号生成部204の出力の逆数がとられる。これは正確に逆数である必要はなく、逆数に比例した値でかまわない。例えば、第1の振幅制御信号生成部204の出力が「001000」(バイナリ)であるとすると、逆数は「000100」となる。また、例えば、第1の振幅制御信号生成部204の出力が「010000」(バイナリ)であるとすると、逆数は「000010」となればよい。
【0049】
その後、この逆数演算結果が二乗され、第2の振幅制御信号生成部502aの出力となる。すなわち、第2の振幅制御信号生成部502aの出力は、16ビットで出力されることとなる。例えば、第1の振幅制御信号生成部204の出力が「000100」(バイナリ)であるとすると、第2の振幅制御信号生成部502aの出力は「000000010000」となる。また、例えば、第1の振幅制御信号生成部204の出力が「010000」(バイナリ)であるとすると、第2の振幅制御信号生成部502aの出力は「000000000100」となればよい。
この演算結果が、第2の可変振幅制御部501aに入力され、復調部105aからの入力と乗算される。
【0050】
もし逆数が乗算されたのみとすると、逆拡散部404aにおいて、第1の可変振幅制御部203の制御結果のみを補正しただけとなり、重み付けがなされないこととなる。したがって、さらに逆数がもう一度乗算される(結果的に逆数の二乗を乗算する)ことにより、振幅に比例した重み付けがなされることとなる。
第2の可変振幅制御部501a〜nの出力は、それぞれ加算部503に入力される。この乗算結果が、加算および合成されることにより、最大比合成が実現され、ほぼ最適な復調結果を得ることができる。
【0051】
【発明の効果】
本発明に係るCDMA方式の受信装置は、上述した構成を備えているため、以下の効果を奏する。
【0052】
すなわち、本発明に係るCDMA方式の受信装置によれば、各パス毎に逆拡散部の出力を調整する可変振幅制御部を設けることにより、ハードウェア規模を増大することなく、各パスの復調部に対して、安定かつ最適な振幅で信号を入力することにより、復調性能を向上さることが可能となる。
【0053】
また、本発明に係るCDMA方式の受信装置によれば、RAKE合成を行う際、可変振幅制御部の制御結果を補正し、さらに重み付けを行う第2の可変振幅制御部を設けることにより、最適な最大比合成を実現し、復調性能を向上させることが可能となる。
【図面の簡単な説明】
【図1】本発明の実施例1に係る受信装置の概略構成を示すブロック図である。
【図2】本発明の実施例1に係る受信装置における逆拡散部の詳細構成を示すブロック図である。
【図3】本発明の実施例2に係る受信装置の概略構成を示すブロック図である。
【図4】本発明の実施例2に係る受信装置における逆拡散部の詳細構成を示すブロック図である。
【図5】本発明の実施例2に係る受信装置における合成部の詳細構成を示すブロック図である。
【図6】従来の受信装置の概略構成を示すブロック図である。
【図7】従来の受信装置における逆拡散部の概略構成を示すブロック図である。
【符号の説明】
101 可変利得制御増幅部
102 直交検波部
103 A/D変換部
104,404,604 逆拡散部
105 復調部
106,306 合成部
107 制御電圧生成部
201 相関演算部
202 符号生成部
203,501 可変振幅制御部
204,502 振幅制御信号生成部
205 相関パワー演算部
503 加算部

Claims (1)

  1. 受信信号を制御電圧に応じて増幅するための可変利得制御増幅部と、 可変利得制御された受信信号を直交信号に変換するための直交検波部と、
    前記直交検波部の出力をディジタル信号に変換するためのA/D変換部と、
    前記A/D変換部に入力される信号電力を一定に保つように、前記可変利得制御増幅部を制御する制御電圧を生成するための制御電圧生成部と、
    前記A/D変換部の出力に基づいて、前記受信信号に含まれる複数のマルチパス成分に対応するタイミングに同期し、前記受信信号に対応した拡散符号を用いて逆拡散処理を行うための逆拡散部と、
    前記複数のマルチパス成分に対応する前記逆拡散部の出力を用いて、検波および復調を行うための複数の復調部とを備えたCDMA方式の受信装置において、
    前記逆拡散部は、
    各マルチパス成分に対応した各出力に対して、制御信号に応じて出力信号の振幅を変更し、予め定められたビット数に丸め込む機能を有する可変振幅制御部と、
    相関パワーを演算するための相関パワー演算部と、
    出力信号の振幅を予め定められた目標値に保つように、前記制御信号を生成するための振幅制御信号生成部と、
    記振幅制御信号生成部からの制御信号に応じて、前記複数の復調部の出力振幅を補正するためのレベル補正部を有する合成部と、を備えたことを特徴とするCDMA方式の受信装置。
JP2001052518A 2001-02-27 2001-02-27 Cdma方式の受信装置 Expired - Fee Related JP3679015B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001052518A JP3679015B2 (ja) 2001-02-27 2001-02-27 Cdma方式の受信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001052518A JP3679015B2 (ja) 2001-02-27 2001-02-27 Cdma方式の受信装置

Publications (2)

Publication Number Publication Date
JP2002261732A JP2002261732A (ja) 2002-09-13
JP3679015B2 true JP3679015B2 (ja) 2005-08-03

Family

ID=18913135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001052518A Expired - Fee Related JP3679015B2 (ja) 2001-02-27 2001-02-27 Cdma方式の受信装置

Country Status (1)

Country Link
JP (1) JP3679015B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE536666T1 (de) * 2004-12-20 2011-12-15 Ericsson Telefon Ab L M Skalierung in einem empfänger für codierte digitale datasymbole

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05344092A (ja) * 1992-06-08 1993-12-24 Sony Corp 受信装置
WO1995005038A1 (fr) * 1993-08-11 1995-02-16 Ntt Mobile Communications Network Inc. Appareil de commande automatique de gain, appareil de communications et procede de commande automatique de gain
JPH10107765A (ja) * 1996-09-26 1998-04-24 Kokusai Electric Co Ltd Cdma用agc回路
JPH10173626A (ja) * 1996-12-10 1998-06-26 N T T Ido Tsushinmo Kk 直接拡散cdma伝送方式の受信装置
JP2000252868A (ja) * 1999-03-01 2000-09-14 Toshiba Corp Cdma通信装置とその自動利得制御回路
US6480528B1 (en) * 1999-06-11 2002-11-12 Qualcomm Incorporated Automatic gain control for improved decoding of multi-carrier signal
JP2001168780A (ja) * 1999-12-08 2001-06-22 Sharp Corp ダイバーシチー受信装置
JP4558225B2 (ja) * 2001-02-15 2010-10-06 株式会社日立国際電気 符号分割多重アクセス受信機

Also Published As

Publication number Publication date
JP2002261732A (ja) 2002-09-13

Similar Documents

Publication Publication Date Title
US7313167B2 (en) Signal-to-noise ratio estimation of CDMA signals
JP3305639B2 (ja) 直接拡散cdma伝送方式におけるrake受信機
CN1086081C (zh) 瑞克接收机以及具有该瑞克接收机的频谱扩展通信装置
JP3805520B2 (ja) 移動通信における速度推定装置および方法
JP3204925B2 (ja) Cdma通信システムにおける信号受信装置
JP2001313589A (ja) Ds−cdma方式の受信機におけるパスサーチ回路
JP3228405B2 (ja) 直接拡散cdma伝送方式の受信機
JPH1051424A (ja) Cdma復調装置
JP3003006B2 (ja) 直交変調信号の信号復調およびダイバーシティ合成の方法および装置
WO1995005038A1 (fr) Appareil de commande automatique de gain, appareil de communications et procede de commande automatique de gain
JP3462364B2 (ja) 直接拡散cdma伝送方式におけるrake受信機
JP3891373B2 (ja) 復調装置及び復調方法
US7668226B2 (en) Method and apparatus for estimating gain offsets for amplitude-modulated communication signals
JP2006054900A (ja) スペクトラム拡散受信機のチップ等化器、該チップ等化器で用いられる雑音指数演算方法及びフィルタ係数決定方法
JP3418981B2 (ja) スペクトラム拡散通信同期捕捉回路
KR100958596B1 (ko) 심볼레이트와 칩레이트를 혼용하여 웨이팅하는 핑거와,그를 이용한 복조 장치 및 방법
JP3676986B2 (ja) 無線受信装置及び無線受信方法
JP3679015B2 (ja) Cdma方式の受信装置
JP3884218B2 (ja) スペクトル拡散受信装置
KR20030030590A (ko) 스마트 안테나 시스템에서 심볼 레이트로 웨이팅하는핑거와, 그를 이용한 복조 장치 및 방법
JPH08331098A (ja) Pdi受信機
JP2002043978A (ja) Cdma受信機
JPH10107765A (ja) Cdma用agc回路
EP1649650A1 (en) System, method and computer program product for demodulating quadrature amplitude modulated signals based upon a speed of a receiver
JP2001168780A (ja) ダイバーシチー受信装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050511

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080520

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees