JP3672099B2 - バイオセンサ - Google Patents

バイオセンサ Download PDF

Info

Publication number
JP3672099B2
JP3672099B2 JP2003505609A JP2003505609A JP3672099B2 JP 3672099 B2 JP3672099 B2 JP 3672099B2 JP 2003505609 A JP2003505609 A JP 2003505609A JP 2003505609 A JP2003505609 A JP 2003505609A JP 3672099 B2 JP3672099 B2 JP 3672099B2
Authority
JP
Japan
Prior art keywords
group
electrode
working electrode
organic compound
biosensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003505609A
Other languages
English (en)
Other versions
JPWO2002103343A1 (ja
Inventor
貴裕 中南
信 池田
俊彦 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Publication of JPWO2002103343A1 publication Critical patent/JPWO2002103343A1/ja
Application granted granted Critical
Publication of JP3672099B2 publication Critical patent/JP3672099B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/002Electrode membranes
    • C12Q1/003Functionalisation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/004Enzyme electrodes mediator-assisted

Description

【0001】
(技術分野)
本発明は、試料中に含まれる基質の測定を行うためのバイオセンサに関する。
【0002】
(背景技術)
試料中に存在する特定の基質を簡易に定量するためのセンサが数多く開発されている。中でも、近年、酵素が有する基質選択的触媒作用を利用することにより、基質選択性の優れた種々の形態のセンサが作成されている。酵素を用いたこれらのセンサはバイオセンサと呼ばれ注目を集めており、一部のものは体液中の特定成分の定量を行うツールとして一般の人々によって用いられている。
【0003】
試料中の成分を定量する方法の一例として、グルコースの定量法について述べる。β−D−グルコースオキシダーゼ(以下、GOxと略称する)はグルコースの酸化を選択的に触媒する酵素である。GOxとグルコースを含む反応液中に酸素分子が存在すると、グルコースの酸化にともない、酸素が還元され、過酸化水素が生成する。酸素あるいは過酸化水素を、それぞれ酸素電極あるいは過酸化水素電極を用いて還元あるいは酸化して、流れる電流を測定する。酸素の減少量、および過酸化水素の増加量はグルコースの含有量に比例し、得られる電流は酸素の減少量、および過酸化水素の増加量に比例するので、以上のような測定によってグルコースの定量が実現される。(例えば、A.P.F.Turner et al, Biosensors, Fundamentals and Applications, Oxford University Press, 1987参照)。酸素および過酸化水素は、反応によって生じた電子を酵素から電極へと伝達するため、電子伝達体と呼ばれる。
【0004】
しかしながら、酸素および過酸化水素を電子伝達体として用いた場合、試料中に含まれる酸素の濃度が用いる試料ごとに異なるため、測定誤差を生じやすい。
【0005】
この問題を解決するために、人工の酸化還元化合物を電子伝達体として用いた測定法が開発されている。一定量の電子伝達体を試料中に溶解させることで、誤差の小さい安定した測定を行うことができる。さらに、この場合、電子伝達体をGOxとともに電極上に担持し、乾燥状態に近い状態で電極系と一体化させ、センサ素子を作成することが可能である。このような技術に基づいた使い捨て型のグルコースセンサの開発は近年多くの注目を集めている。その代表的な例が、特許第2517153号公報に示されるバイオセンサである。使い捨て型のグルコースセンサにおいては、測定器に着脱可能に接続されたセンサ素子に試料液を導入するだけで容易にグルコース濃度を測定することができる。
【0006】
センサにおける測定誤差は、測定対象となる基質以外の、試料中に含まれる物質の影響によっても引き起こされる。例えば、血液を試料として用いるバイオセンサの場合、血液中に含まれる血球や蛋白などのペプチドが電極表面に吸着することにより電極反応に関与する実効的な電極面積が減少するため、グルコースに対する電流が低下し、測定に誤差が生じる。電流の低下の度合いは、前記ペプチドの吸着の度合いによって変化する。さらに、その吸着の度合いは試料中の前記ペプチドの濃度により変化するため、電流の低下の度合いを予測し、生じる誤差を補正することは困難である。
【0007】
以上のような誤差を生む物質は阻害物質と呼ばれ、阻害物質の影響を除去するために様々な方策が試みられている。例えば、米国特許第6033866においては、血球分離ろ紙が電極上に設けられ、これにより血球などを物理的に効率よく除去する方法が開示されている。しかしながら、センサの構造が複雑となり、かつ血球を分離するために時間がかかるため迅速な定量を行うことができない。
【0008】
また、前記の特許第2517153号公報に示されるセンサの場合、電極表面をカルボキシメチルセルロースなどの親水性高分子で被覆することにより、血球や蛋白などの阻害物質の吸着が抑制されている。迅速な測定が可能であるが、この方法においては、被覆に用いた親水性高分子は試料液に触れると溶解するので、試料中の阻害物質は電極表面へと接近することが可能である。よって、阻害物質の電極への吸着を完全に遮断することは困難である。
【0009】
一方、分子中に硫黄原子を含む化合物は種々の遷移金属表面に強固に吸着し、非常に薄い膜(超薄膜)を形成することが知られている。(例えば、M.J.Weaver et al, J.Am.Chem.Soc.106(1984)6107−6108)。中でも、特にチオールおよびジスルフィド化合物は、貴金属表面に化学的に吸着し、貴金属原子と非常に強固な結合を形成する。R.G.NuzzoおよびD.L.Allaraらは、J.Am.Chem.Soc.105(1983)4481−4483および109(1987)3559−3568において、これらの化合物が自己集合組織化し、密に充填した単分子からなるチオレート化合物の超薄膜を形成することを明らかにしている。これらのような超薄膜で被覆した貴金属は電極として用いることが可能である。被覆膜は各種溶媒に触れても溶解したり、剥離したりすることがない。また、電極界面の電位のIR降下は、密に充填した膜であっても、その厚みが十分小さい場合にはほとんど観測されず、電気化学活性な化合物の電極反応は良好に進行する。
【0010】
従来例として、I.Willnerらは、電極に酵素を共有結合により固定化するためのアンカーとして、チオールおよびジスルフィド化合物の単分子膜の利用を開示する(I.Willnerら、J.Am.Chem.Soc.114(1992)10965参照)。図3の(B)に、I.Willnerらの開示する単分子膜の構造の概略を示す。図3の(B)において、Eは酵素、S−Nは単分子膜を構成するチオールまたはジスルフィド化合物の分子骨格(Sはイオウ、Nは窒素をそれぞれ表す)、EとNとの間の折線は共有結合をそれぞれ示す。チオールおよびジスルフィド化合物の単分子膜が、阻害物質の吸着防止効果を有することを開示する先行技術はない。
【0011】
(発明の開示)
本発明は、上記従来の問題点に鑑み、ペプチドを含む液体を試料とするバイオセンサにおいて、該ペプチドが電極表面に吸着することにより発生する測定誤差を排除し、迅速かつ高精度に試料液中の基質を測定することができる簡易な構造のバイオセンサを提供することを目的とする。
【0012】
上記課題を解決するために、本発明のバイオセンサは、1つまたは複数の絶縁性の基板、前記基板上に配置された一対の電極(作用極および対極)を含む電極系、ならびに酸化還元酵素および電子伝達体を含む測定用試薬を備えた、試料液中に含まれる基質を測定するためのバイオセンサであって、前記試料液がペプチドを含み、かつ前記作用極が金属を含有し、前記作用極の表面の少なくとも一部が硫黄原子を含む有機化合物の膜で被覆されていることを特徴とする。
【0013】
本発明は、絶縁性の基板、前記基板上に配置された作用極および対極、ならびに酸化還元酵素および電子伝達体を含む測定用試薬を備え、前記測定用試薬が試料液に溶解するように設けられており、前記試料液中に含まれる基質を測定するためのバイオセンサに関し、前記試料液はペプチドを含み、かつ前記作用極は金属を含有し、前記作用極の表面の少なくとも一部は硫黄原子を含む有機化合物の膜により、前記硫黄原子が前記作用極の表面を向き、前記有機化合物の末端基が前記作用極の表面と反対側を向くように、直接被覆されており、前記末端基がアミノ基、カルボキシル基、ヒドロキシル基、メチル基、アミノベンジル基、カルボキシベンジル基、またはフェニル基である
【0014】
前記バイオセンサは、参照極をさらに含み得る。
【0015】
前記対極の表面の少なくとも一部は、硫黄原子を含む有機化合物の膜で被覆され得る。
【0016】
前記硫黄原子を含む有機化合物は、チオール化合物、ジスルフィド化合物またはチオレート化合物であり得る。
【0017】
前記硫黄原子を含む有機化合物は、以下の一般式(化1)、(化2)または(化3)で表される化合物であり得る:
HS−(CH−X (化1)
X−(CH−S−S−(CH−X (化2)
−S−(CH−X (化3)
ここで、nは1〜10の整数、Xはアミノ基、カルボキシル基、ヒドロキシル基、メチル基、アミノベンジル基、カルボキシベンジル基、またはフェニル基を表す。
【0018】
好ましくは、前記硫黄原子を含む有機化合物は、作用極の表面に実質的に単分子膜を形成している。
【0019】
前記作用極の1/30から1/3の面積は、前記硫黄原子を含む有機化合物の膜で被覆され得る。
【0020】
前記金属は、金、パラジウム、または白金を含有し得る。
【0021】
前記酸化還元酵素は、グルコースオキシダーゼ、ピロロキノリンキノン依存型グルコースデヒドロゲナーゼ、ニコチンアミドアデニンジヌクレオチド依存型グルコースデヒドロゲナーゼ、ニコチンアミドアデニンジヌクレオチドリン酸依存型グルコースデヒドロゲナーゼおよびコレステロールオキシダーゼからなる群から選択され得る。
【0022】
前記電子伝達体は、フェリシアン化物イオンであり得る。
【0023】
前記測定用試薬は、pH緩衝剤をさらに含み得る。
【0024】
本発明はまた、絶縁性の基板、前記基板上に配置される一対の電極、ならびに酸化還元酵素および電子伝達体を含む測定用試薬を備え、前記測定用試薬が試料液に溶解するように設けられているバイオセンサに関し、前記一対の電極の少なくとも1つは金属を含有し、そしてその表面の少なくとも一部が、硫黄原子を含む有機化合物の膜により、前記硫黄原子が前記電極の表面を向き、前記有機化合物の末端基が前記電極の表面と反対側を向くように、直接被覆されており、前記末端基がアミノ基、カルボキシル基、ヒドロキシル基、メチル基、アミノベンジル基、カルボキシベンジル基、またはフェニル基であり、ペプチドを含む試料液と前記酸化還元酵素との間の反応を、前記電子伝達体の存在下で定量し得る。
【0026】
本発明はまた、ペプチドを含む試料液に含まれる基質を測定するためのバイオセンサに関し、このバイオセンサは、一対の電極、および前記一対の電極の各々に接続されるリードを有する絶縁性の基板であって、前記一対の電極の少なくとも1つの電極は、その表面の少なくとも一部が、硫黄原子を含む有機化合物の膜により、前記硫黄原子が前記電極の表面を向き、前記有機化合物の末端基が前記電極の表面と反対側を向くように、直接被覆されており、前記末端基がアミノ基、カルボキシル基、ヒドロキシル基、メチル基、アミノベンジル基、カルボキシベンジル基、またはフェニル基である絶縁性基板、前記絶縁性基板の上に配置される、スリットを有するスペーサー、および前記スリットの上に配置される、空気孔を備えたカバーを備え、ここで、前記スリットが試料液供給路を形成し、そして前記スリットの開放端部が試料供給口を構成しておりさらに、前記試料液に溶解するように前記試料液供給路内に設けられた、酸化還元酵素および電子伝達体を含む測定用試薬を備え得る。
【0029】
(発明を実施するための最良の形態)
本発明の一実施の形態におけるバイオセンサは、1つまたは複数の絶縁性の基板、前記基板上に配置された一対の電極(作用極および対極)を含む電極系、ならびに酸化還元酵素および電子伝達体を含む測定用試薬(試薬系)を備えた、試料液中に含まれる基質を測定するためのバイオセンサであって、前記試料液がペプチドを含み、かつ前記作用極が金属を含有し、前記作用極の表面の少なくとも一部が硫黄原子を含む有機化合物の膜で被覆されていることを特徴とする。このようにすると、ペプチドと金属との親和性に比べて、ペプチドと硫黄原子を含む有機化合物との親和性の方が低いため、作用極表面にペプチドが非特異的に吸着することによる測定誤差が低減されるので、高精度な測定を行うことが可能となる。ここで、作用極の表面の全部が硫黄原子を含む有機化合物の膜で被覆されていることが好ましい。
【0030】
本明細書で用いる用語「ペプチド」は、主にアミノ酸によって構成される分子あるいは粒子の総称であって、例としてタンパク質、酵素、血球などが挙げられる。
【0031】
前記硫黄原子を含む有機化合物の膜による被覆は、作用極表面を前記有機化合物の溶液に浸漬する方法あるいは作用極表面にその溶液を滴下する方法によって達成される。あるいは、前記有機化合物の蒸気に表面をさらすことによっても同様の被覆を行うことができる。
【0032】
ここで、試料中に含まれる基質の測定における指標は、電気化学反応の進行に伴って変化する出力であればよく、例えば、電流や通電電荷量を用いることができる。
【0033】
本発明のバイオセンサにおいて、電極系がさらに参照極を含むことが好ましい。
【0034】
また、本発明のバイオセンサにおいて、さらに対極の表面の少なくとも一部が硫黄原子を含む有機化合物の膜で被覆されていることが好ましい。ここで、対極の表面を被覆する膜を構成する有機化合物が、作用極を被覆している膜を構成する有機化合物と同じであることが好ましい。これにより、製造上の利便性が向上する。
【0035】
前記硫黄原子を含む有機化合物は、作用極の表面を被覆する膜でのIR降下を低くするという観点から、分子量が1000以下であることが好ましく、さらには、より鎖長の短い分子を構成するよう200以下であることが好ましい。また、硫黄原子を含む有機化合物がチオール化合物、ジスルフィド化合物またはチオレート化合物であることが好ましい。中でも、硫黄原子を含む有機化合物が、一般式(化1)、(化2)または(化3)で表される化合物であることがさらに好ましい。
【0036】
HS−(CH−X (化1)
X−(CH−S−S−(CH−X (化2)
−S−(CH−X (化3)
ここで、nは1〜10の整数、Xはアミノ基、カルボキシル基、ヒドロキシル基、メチル基、アミノベンジル基、カルボキシベンジル基、またはフェニル基を表す。
【0037】
また、硫黄原子を含んだ有機化合物が、作用極の表面に実質的に単分子膜を形成していることが好ましい。前記チオール化合物、ジスルフィド化合物およびチオレート化合物は金属表面に非可逆的に強く吸着・結合し、実質的に単分子膜を形成する傾向が強い。単分子膜からなる薄膜は、電極上に存在しても、電子伝達体の電極反応速度を大きく変化させないため、作用極の表面を被覆する膜でのIR降下を低くすることができる。作用極の1/30から1/3の面積が、硫黄原子を含む有機化合物の膜で被覆されていることが好ましい。このような比較的疎な膜は、硫黄原子を含む有機化合物の低濃度溶液を用いて、短時間で形成させることができるので、センサの製造における低コスト化を図ることができる。
【0038】
これら硫黄原子を含む有機化合物の吸着・結合が強固であるという観点から、作用極が金、パラジウム、白金等の貴金属や、銀、銅、カドミウムなどの他の遷移金属を含有することが好ましく、中でも金、パラジウム、または白金を含有することが好ましい。また、作用極はこれらの金属の合金であってもよい。
【0039】
本発明において使用される酸化還元酵素は、試料に溶存する測定対象となる基質の種類に応じて適切なものが選択される。測定対象となる基質がグルコースの場合には、酸化還元酵素として、グルコースオキシダーゼ、ピロロキノリンキノン(以下、PQQと略称する)依存型グルコースデヒドロゲナーゼ、ニコチンアミドアデニンジヌクレオチド(以下、NADと略称する)依存型グルコースデヒドロゲナーゼおよびニコチンアミドアデニンジヌクレオチドリン酸(以下、NADPと略称する)依存型グルコースデヒドロゲナーゼが挙げられ、基質がコレステロールの場合には、コレステロールオキシダーゼが挙げられる。これらの基質の測定においては、全血や血漿、あるいは尿など、ペプチドを含む液体を試料とすることが多い。また、上記酸化還元酵素以外にも、測定対象となる基質の種類に応じて、例えば、アルコールデヒドロゲナーゼ、乳酸オキシダーゼ、キサンチンオキシダーゼ、アミノ酸オキシダーゼ、アスコルビン酸オキシダーゼ、アシル−CoAオキシダーゼ、ウリカーゼ、グルタミン酸デヒドロゲナーゼ、フルクトースデヒドロゲナーゼなどを用いることができる。
【0040】
本発明において使用される電子伝達体としては、フェリシアン化物イオン、オスミウム−トリス(ビピリジニウム)やフェロセン誘導体などの金属錯体、p−ベンゾキノンなどのキノン誘導体、フェナジンメトサルフェートなどのフェナジニウム誘導体、メチレンブルーなどのフェノチアジニウム誘導体、ニコチンアミドアデニンジヌクレオチド、ニコチンアミドアデニンジヌクレオチドリン酸などを挙げることができ、この中でも、安定性が高く、電子移動反応速度が速いという観点から、フェリシアン化物イオンが好ましい。これらの電子伝達体は、ポリマーバックボーンに結合した形態、またはそれ自身の一部もしくは全部がポリマー鎖を形成するような形態であってもよい。また、酸素を電子伝達体として用いることも可能である。電子伝達体は、これらの一種または二種以上が使用される。
【0041】
本発明のバイオセンサは、測定用試薬にさらにpH緩衝剤を含むことが好ましい。このようにすると、測定用試薬と混合した試料液のpHを酵素活性に適した値に調整することにより、センサ内で酵素を効率よく機能させることができる。基質がグルコースまたはコレステロールの場合、pH緩衝剤によって発現される、測定用試薬と混合した試料液のpHが4〜9であることが特に好ましい。pH緩衝剤としては、例えば、リン酸塩、酢酸塩、ホウ酸塩、クエン酸塩、フタル酸塩、またはグリシンのうち、一種または複数を含む緩衝剤を用いることができる。また、上記塩の水素塩の一種あるいは複数を用いてもよい。また、いわゆるグッドの緩衝液に用いられる試薬を用いてもよい。これらのpH緩衝剤がセンサ系内に含まれる形態は、センサの構造によって変化し得るものであり、例えば固体であっても溶液であってもよい。
【0042】
以下、図1および図2を参照して本発明のバイオセンサの構造を説明するが、本発明はこれらのみに限定されるものではない。
【0043】
図1は、本発明によるバイオセンサの測定用試薬を取り除いた分解斜視図である。ガラス製の電気絶縁性の基板1上に、樹脂製の電極パターンマスクを設置し、金をスパッタリングすることによって作用極2および対極3を形成した。なお、接着層として金とガラスとの間にクロムの層を形成し、両者の間の密着性を高めている。これら作用極2および対極3は、それぞれリード4および5によって、バイオセンサ外部の測定用端子と電気的に接続される。
【0044】
上記の作用極2上に、後述するように分子内に硫黄原子を含む有機化合物の膜、次いで酸化還元酵素および電子伝達体を含む測定用試薬の層を形成させた後、上記の基板1に、スリット6を有するスペーサー7、および空気孔8を備えたカバー9を図1の一点鎖線で示すような位置関係をもって接着することにより、バイオセンサが作製される。スペーサー7のスリット6の部分に試料液供給路が形成される。センサの端部におけるスリット6の開放端部は、試料液供給路への試料供給口となる。
【0045】
図2は、本発明によるバイオセンサの縦断面図である。基板1上に形成された作用極2上に、分子内に硫黄原子を含む有機化合物の膜10、さらにその上に酸化還元酵素および電子伝達体を含む測定用試薬の層11が形成されている。図示の例では、測定用試薬の11は、一対の電極(作用極2および対極3)を覆うように形成されている。これにより、電極での電気化学反応に供される電子伝達体の量を実質的により多くし、より大きな応答を得ることができる。
【0046】
図2に示す構造のセンサの試料液供給路となるスリット6の開放端に試料液を接触させると、試料液は、試料液供給路内へ毛細管現象により導入され、測定用試薬の層11に含まれる酵素、電子伝達体などの成分を溶解して酵素反応が進行する。このように、電極系を設けた基板1に、スペーサー7およびカバー9からなるカバー部材を組み合わせて試料液供給路を形成すると、測定対象となる基質を含む試料液のセンサへの供給量を一定にすることができるので、測定の精度を向上させることができる。
【0047】
試料液供給路を設けたセンサにおいては、試薬系は供給される試料液に溶解するように、電極系上に限らず試料液供給路内に露出する部分に設ければよい。例えば、カバー9における試料液供給路内に露出する部分、基板1上における電極系とは接しないが試料液供給路内に露出する部分に設けてもよい。また、試薬系は、複数に分割して、一つは基板上に、他の一つはカバー部材側に設けてもよい。その際、各分割された層は、必ずしも全ての試薬を含む必要はない。例えば、酸化還元酵素と電子伝達体あるいはpH緩衝剤を別々の層に含ませてもよい。
【0048】
また、対極3または作用極2のうちどちらか一方を、それに対応するリード5または4とともに形成した絶縁性の第2の基板を、カバー9のかわりに用いてもよい。この場合も、基板1、スペーサー7および第2の基板により試料液供給路が形成されるので、試料液のセンサへの供給量を一定にすることができ、測定の精度を向上させることができる。
【0049】
上記のように、試料液供給路を形成せず、基板1のみでセンサを構成することもできる。この場合、試薬系は電極系上またはその近傍に設ける。
【0050】
図3は、本発明のバイオセンサの原理の概略を、従来技術と比較して示す図である。図3の(A)は、本発明のバイオセンサを、そして図3の(B)は、I.Willnerら(前述)の開示する酵素固定化電極を示す。図3の(A)に示されるように、作用極2は、チオール化合物、ジスルフィド化合物またはチオレート化合物から構成される単分子膜10で被覆されているので、試料中の阻害物質101は作用極2に接することはなく、しかも単分子膜10に吸着することもない。その一方、単分子膜10は超薄膜であるためIR降下が低いので、電子伝達体103には十分な電位が印加される。さらには、形成される単分子膜の密度が比較的疎である場合においては、比較的大きな分子であるペプチドは、単分子膜内部に侵入することができないが、通常低分子である電子伝達体103は容易に侵入し、作用極との間で電子の授受を行うことができる。このように、この単分子膜10は、作用極2近傍で起こる電気化学反応の進行に伴って変化する電流や通電電荷量を測定する妨げとなることはない。これに対し、図3の(B)に示されるように、I.Willnerら(前述)の開示する酵素固定化電極では、チオールまたはジスルフィド化合物から構成される単分子膜は、電極に酵素を固定化するためのアンカーとして作用するに過ぎない。
【0051】
【実施例】
以下、本発明の具体例について図面を参照しながら説明する。
【0052】
以下実施例を用いて本発明を説明するが、本発明はこれらのみに限定されるものではない。
【0053】
(実施例1)
基板1の作用極2の表面に、2,2’−ジチオビス(アミノエタン)(以下、シスタミンと表記する)のエタノール溶液(濃度5mM)を滴下し、シスタミンの作用極表面への吸着を進行させた。これにより、分子内に硫黄原子を含む有機化合物の膜10、すなわちシスタミンの膜(実質上はシスタミン、2−アミノエタンチオール、あるいは2−アミノエチルチオレートのうちのいずれかの構造を有する化合物の膜であるが、以下、単にシスタミンの膜と表記する)を形成し、1時間後、超純水を用いて作用極2をリンスした。その上にGOx、および電子伝達体であるフェリシアン化カリウムを溶解した水溶液を滴下し、乾燥させることにより、測定用試薬の層11を形成した。上記の基板1にスペーサー7およびカバー9を組み合わせて図2のようなセンサを作製した。シスタミン溶液の滴下を行わない点以外は同様の手順にて作製したセンサを比較例として用いた。
【0054】
一定量のD−グルコース(400mg/dL)を含む血液を試料としてセンサの試料液供給路の開口部、すなわちスペーサー7のスリット6の開放端部に供給した。なお、血液中の赤血球容積比(ヘマトクリット、以下Hctと略記する)が25、40、60%と異なる試料を用いた。一定時間(反応時間25秒)経過後に対極3に対して500mVの電圧を作用極2に印加し、その5秒後に流れた電流値を測定した。比較例のセンサの場合には、Hctの増加に伴い、電流が低下する傾向が見られた。これは、電極表面に吸着する赤血球の量がHctの増加に伴い増大する傾向があり、その傾向に対応して電極反応が阻害されていることを示唆している。その結果、グルコース濃度が同一であっても、電流値はHctによって変化し、測定誤差を生じさせたものと考えられる。一方、本実施例のセンサは、Hctに関わらずほぼ同一の電流値が得られた。よって、赤血球の電極表面への吸着は、作用極2表面に存在するシスタミンの膜によって抑制されたものと考えられる。有機化合物であるシスタミンの膜で被覆された電極表面の物性は、未被覆の金の表面から大きく変化している。あるいは、電極の界面は被覆膜の末端基によって帯電している。これらの変化の両方、あるいはどちらか一方の効果により、血球の吸着が抑制されるようになったものと考えることができる。また、シスタミンにより形成された膜は超薄膜であり、フェリシアン化物イオンの電気化学酸化反応に及ぼす影響はほとんどないことがわかった。このように、シスタミンの膜で被覆することにより、阻害物質の吸着による測定誤差を排除することが可能であった。
【0055】
(実施例2)
本実施例では、実施例1と同様の手順により作製したセンサに試料を供給した直後に、塩化カリウムと寒天からなる塩橋を介して、銀/塩化銀電極を試料供給口付近の試料液と接触させた。銀/塩化銀電極はその電位が安定しており、参照極として用いることが可能である。一定量のD−グルコース(400mg/dL)を含む、種々のHctの血液を試料としてセンサの試料液供給路の開口部、すなわちスペーサー7のスリット6の開放端部に供給した。25秒経過後に銀/塩化銀電極に対して500mVの電圧を作用極2に印加し、5秒後に流れた電流値を測定した。その結果、Hctに関わらずほぼ同一の電流値が得られた。同一条件下における電流値のばらつきは、実施例1で得られた結果と比較してより小さいものであった。よってセンサ系への参照極の導入により、測定値の安定性がより向上したことがわかった。上記実施例においては、塩橋を介して参照極をセンサ系に導入したが、スクリーン印刷などによって形成した参照極を、絶縁性基板上の試料液供給路と接する側に配置させてもよい。
【0056】
(実施例3)
本実施例では2−アミノエタンチオールをシスタミンの代わりに用いて、実施例1に示した方法でセンサを作成した。血液中のグルコースに対する応答は、実施例1に述べた方法と同様にして測定した。その結果、本実施例においても、実施例1と同様に、Hctに関わらずほぼ同一の電流値が得られた。2−アミノエタンチオールはシスタミンのS−S結合が開裂することにより得られる化合物である。このような対応関係にあるチオールとジスルフィドはほぼ同様の膜を形成することが知られている。
【0057】
(実施例4)
本実施例では、基板1の作用極2の表面に、濃度0.05mMのシスタミンのエタノール溶液を滴下し、シスタミンの作用極表面への吸着を進行させ、シスタミンの膜を形成した。10分後、超純水を用いて作用極2をリンスした。その上にGOx、および電子伝達体であるフェリシアン化カリウムを溶解した水溶液を滴下し、乾燥させることにより、試薬系11を形成した。上記の基板1にスペーサー7およびカバー9を組み合わせて図2のようなセンサを作製した。
【0058】
血液中のグルコースに対する応答は、実施例1に述べた方法と同様にして測定した。その結果、本実施例においても、実施例1と同様に、Hctに関わらずほぼ同一の電流値が得られた。実施例1において得られたシスタミンの膜は作用極の1/3程度の面積を被覆していることが見出されたが、本実施例のセンサにおけるシスタミンの膜は非常に疎であり、作用極の1/30程度の面積を被覆していることがわかった。血球やタンパク質などのペプチドは比較的大きな粒子・分子であるため、金属が硫黄原子を含む有機化合物により疎に覆われている場合でも、金属表面に接近することができないものと考えられる。このように、硫黄原子を含む有機化合物による金属の被覆率が比較的低い場合にも、ペプチドに対する吸着抑制効果があることがわかった。
【0059】
また、シスタミンの代わりにn−デカンチオールを用いた場合の実施例について以下に記す。
【0060】
濃度0.05mMのn−デカンチオールのエタノール溶液を基板1の作用極2の表面に滴下し、10分後、エタノール、超純水を順に用いて作用極2をリンスした。その上にGOx、および電子伝達体であるフェリシアン化カリウムを溶解した水溶液を滴下し、乾燥させることにより、試薬系11を形成した。上記の基板1にスペーサー7およびカバー9を組み合わせて図2のようなセンサを作製した。このセンサにおけるn−デカンチオールの膜は非常に疎であり、作用極の1/20程度の面積を被覆していることがわかった。血液中のグルコースに対する応答を、実施例1に述べた方法と同様にして測定したところ、本実施例においても、実施例1と同様に、Hctに関わらずほぼ同一の電流値が得られた。形成されたn−デカンチオールの膜は超薄膜であり、フェリシアン化物イオンの電気化学酸化反応にあまり大きな影響を及ぼさず、かつ阻害物質の吸着による測定誤差を排除する効果を有することがわかった。
【0061】
以上のように、硫黄原子を含む有機化合物の、比較的低濃度の溶液を用いて、比較的短時間で形成させた膜によっても、ペプチドに対する吸着抑制効果を発現させることができる。この点は、センサ製造コストの低減における大きなメリットである。
【0062】
(実施例5)
本実施例ではカバー9上の基板1と対向する位置に対極3を形成した。作用極2の表面は実施例1に述べたようにシスタミンで修飾した。血液中のグルコースに対する応答の測定を、実施例1に述べた方法と同様にして行った。その結果、本実施例においても、実施例1と同様に、Hctに関わらずほぼ同一の電流値が得られた。よって複数の基板上に電極を形成させた場合も、同様の効果が得られることが分かった。
【0063】
(実施例6)
本実施例においては、作用極2だけでなく、同一基板上に形成した対極3の表面も、硫黄原子を含む有機化合物の膜10で被覆した。5mMシスタミンのエタノール溶液を作用極2および対極3の表面に滴下した。血液中のグルコースに対する応答の測定を、実施例1に述べた方法と同様にして行った。その結果、実施例1と同様に、Hctに関わらずほぼ同一の電流値が得られた。電極表面に形成される膜は非常に薄いため、作用極2に加え、対極3上に形成させてもバイオセンサの特性に大きな影響を与えないことが分かった。このようにシスタミン溶液による被覆は、必ずしも作用極のみに限定する必要がない。よって、センサ基板先端をシスタミン溶液に浸漬するといった簡単な操作で超薄膜の形成を行うことができ、製造上のメリットが大きい。
【0064】
(実施例7)
本実施例では、パラジウムあるいは白金を用いて、作用極2および対極3を作製した。ガラス製の電気絶縁性の基板1上にクロムの層を形成し、樹脂製の電極パターンマスクを設置してスパッタリングすることによって各電極を形成した。さらに、作用極2表面をシスタミンの膜で被覆した。血液中のグルコースに対する応答の測定を、実施例1に述べた方法と同様にして行った。その結果、白金を用いた場合、電流値はHctに対して若干の依存性を示した。しかしながら、比較例として未被覆の白金を電極として用いたところ、より大きなHct依存性が見られた。このことから、白金を作用極の材料として用いた場合にも、超薄膜で被覆することによるペプチド吸着防止効果が得られることがわかった。また、パラジウムを作用極の材料として用いた場合には、金で得られた結果と比較して同程度のHct非依存性が観測され、パラジウムもまた、本発明における好適な電極材料であることがわかった。
【0065】
(実施例8)
本実施例においては、GOxの代わりにPQQ依存型のグルコースデヒドロゲナーゼを使用した。以上の実施例と同様、電子伝達体としてフェリシアン化カリウムを用いた。なお、作用極2および対極3の材料として金を用い、作用極2表面はシスタミンによって被覆した。一定量のD−グルコース(400mg/dL)を含み、Hctの異なる血液を試料としてセンサの試料液供給路の開口部、すなわちスペーサー7のスリット6の開放端部に供給した。一定時間経過後に対極3に対して500mVの電圧を作用極2に印加し、その際に流れた電流値を測定した。GOxを用いたときと同様、PQQ依存型グルコースデヒドロゲナーゼがグルコースを酸化することに伴い還元型の電子伝達体が生成するため、酸化電流が観測された。得られた電流値はGOxを用いたときよりも増大した。また、本実施例においても、電流値はHctに依存しないものであった。
【0066】
(実施例9)
本実施例では酸化還元酵素として、NADあるいはNADP依存型グルコースデヒドロゲナーゼを使用した。また、測定用試薬の層11内にジアフォラーゼを共存させた。ジアフォラーゼ・電極間の電子伝達体としてフェリシアン化カリウムを用いた。実施例1および7と同様、作用極2および対極3の材料は金とし、作用極2表面はシスタミンによって被覆した。一定量のD−グルコース(400mg/dL)を含み、Hctの異なる血液を試料としてセンサの試料液供給路の開口部、すなわちスペーサー7のスリット6の開放端部に供給した。一定時間経過後に対極3に対して500mVの電圧を作用極2に印加し、その際に流れた電流値を測定した。グルコースの酸化にともない生成する還元型のNAD、あるいは還元型のNADPがジアフォラーゼにより酸化される。さらに、それに伴い、還元型の電子伝達体が生成するため、酸化電流が観測された。得られた電流値は、GOxあるいはPQQ依存型のグルコースデヒドロゲナーゼを用いたときよりも低下したが、電流値はHctに依存しないものであった。
【0067】
(実施例10)
本実施例では、酸化還元酵素としてコレステロールオキシダーゼを用いた。コレステロールオキシダーゼ・電極間の電子伝達体としてフェリシアン化カリウムを用いた。また、測定用試薬の層11内にコレステロールエステラーゼ、カバー9側に界面活性剤としてTriton X−100を担持した。実施例1、7および8と同様、作用極2および対極3の材料は金とし、作用極2表面はシスタミンによって被覆した。一定量のコレステロール(198mg/dL)を含み、Hctの異なる血液を試料としてセンサの試料液供給路の開口部、すなわちスペーサー7のスリット6の開放端部に供給した。55秒経過後に対極3に対して500mVの電圧を作用極2に印加し、5秒後に流れた電流値を測定した。コレステロールエステルはコレステロールエステラーゼの作用によってコレステロールに加水分解される。コレステロールオキシダーゼの作用によりコレステロールは酸化され、それに伴い還元型の電子伝達体が生成するため、酸化電流が観測された。得られた電流値はHctに依存しないものであった。このように、測定対象をコレステロールあるいはそのエステル化物とした場合にも、本発明が有効であることがわかった。
【0068】
(実施例11)
pH緩衝剤をセンサ系内にさらに包含させた場合のセンサ特性を評価した。本実施例において調製したセンサは、pH緩衝剤としてリン酸水素二カリウムとリン酸二水素カリウムの混合物を測定用試薬の層11内に担持した以外、実施例1で用いたものと同様である。一定量のD−グルコース(400mg/dL)を含み、Hctの異なる血液を試料としてセンサの開口部、すなわちスペーサー7のスリット6の開放端部に供給した。一定時間経過後に対極3に対して500mVの電圧を作用極2に印加し、その際に流れた電流値を測定した。その結果、得られた電流値はHctに依存しないものであった。実施例1で得られた結果と比較すると、電流値のHct依存性はさらに軽減された。すなわち、よりHctに依存しない一定の電流値が同一グルコース濃度に対して得られた。このような結果が得られた理由は以下のようにして考えることができる。pH緩衝剤をセンサ系内に包含させることにより、センサ内の試料液のpHは安定する。そのため、電極上に存在する単分子膜の末端基の荷電状態が安定化し、血液中の血球や蛋白などのペプチドの吸着防止効果が試料ごとに一定となったものと考えられる。さらに、そのようなpHの安定により、酵素活性も安定し、一定時間後に生成する電子伝達体の還元体の量もまた試料ごとに一定となったものと考えられる。pH安定化によるこれら二つの両方あるいは一方の安定化効果により、電流値のHctに対する依存性が軽減されたものと考えられる。
【0069】
なお、上記実施例では電流値の測定を行ったが、電流値に代えて電荷量を測定した場合についても、上述の電流値と同様の傾向が見られた。
【0070】
また、上記実施例では、電極系への印加電圧を500mVとしたが、印加電圧はこの値に限定されることはない。電子伝達体が作用極において酸化される電圧であればよい。
【0071】
上記実施例においては反応時間を25あるいは55秒としたが、これに限定されず、観測可能な大きさの電流を得ることのできる時間であればよい。
【0072】
上記測定用試薬または測定用試薬に含まれる試薬のうち一つあるいは複数を作用極に固定化することによって、酵素、電子伝達体を不溶化または非溶出化させてもよい。固定化する場合は、共有結合法、架橋固定法または配位結合や特異的結合性の相互作用を用いた固定化法を用いることができる。特に本発明を実施するにおいては、電極上の硫黄原子を含む有機化合物の膜に前記試薬を共有結合により固定する方法を用いることができる。あるいは、酵素、電子伝達体を高分子物質によって包摂し、擬似的な固定化状態を与える方法もまた、容易な測定用試薬の層の形成法として有効である。用いられる高分子は、疎水的であっても親水的であってもよいが、後者がより好ましい。例えば、親水性の高分子の例として、水溶性セルロース誘導体であるカルボキシメチルセルロース、ヒドロキシエチルセルロース、エチルセルロースなど、あるいはポリビニルアルコール、ゼラチン、ポリアクリル酸、デンプンとその誘導体、無水マレイン酸重合体、メタクリレート誘導体などが挙げられる。
【0073】
上記実施例においては、電極およびそれらのパターンの作製方法としてマスクを通したスパッタリング法を用いたが、それに限定されず、例えば、スパッタリング法、イオンプレーティング法、蒸着法、化学蒸着法のいずれかで作製した金属膜をフォトリソグラフィーおよびエッチングと組み合わせてパターン作製をしてもよい。パターン形成はレーザーによる金属のトリミングによっても行うことができる。金属ペーストを用いて基板にスクリーン印刷を施し、電極パターンを形成してもよい。さらには、パターン化した金属箔をそのまま絶縁性の基板上に接着させてもよい。
【0074】
これら電極系の形状、配置、個数等は上記実施例に示したものに限定されるものではない。例えば、作用極と対極をそれぞれ異なる絶縁性の基板上に形成させてもよいし、作用極と対極をそれぞれ複数個形成させてもよい。また、リードおよび端子の形状、配置、個数等も上記実施例に示したものに限定されるものではない。
【0075】
測定精度を向上させる目的においては、測定対象となる基質を含む溶液の量を容易に一定量に規定することができるため、スペーサーが上記バイオセンサの構成要素として含まれていることが好ましい。しかし、一定体積の試料を採取することのできる器具と合わせて本発明のセンサを用いる場合には、スペーサーおよびカバーからなるカバー部材は必ずしも必要ではない。
【0076】
(産業上の利用可能性)
以上のように本発明によれば、試料中に含まれるペプチドの影響を受けず、迅速かつ高精度に試料液中の基質を測定することができる簡易な構造のバイオセンサを得ることができる。
【図面の簡単な説明】
【図1】図1は、本発明の一実施の形態におけるバイオセンサの試薬系を除いた分解斜視図である。
【図2】図2は、同バイオセンサの要部の縦断面図である。
【図3】図3は、本発明のバイオセンサの原理の概略を、従来技術と比較して示す縦断面図である。図3の(A)は、本発明のバイオセンサを、そして図3の(B)は、I.Willnerら(前述)の開示する酵素固定化電極を示す。図3の(A)において、2は作用極、101は阻害物質、103は電子伝達体(Medredはその還元型、そしてMedoxはその酸化型)、S−NHはチオール化合物、ジスルフィド化合物またはチオレート化合物の分子骨格、および10は単分子膜をそれぞれ示す。図中の作用極2に向かう矢印は、電子伝達体から供給される電子(e)の流れを示す。
【符号の説明】
1 基板
2 作用極
3 対極
4、5 リード
6 スリット
7 スペーサー
8 空気孔
9 カバー
10 硫黄原子を含む有機化合物の膜
11 試薬系

Claims (13)

  1. 絶縁性の基板、前記基板上に配置された作用極および対極、ならびに酸化還元酵素および電子伝達体を含む測定用試薬を備え、前記測定用試薬が試料液に溶解するように設けられており、前記試料液中に含まれる基質を測定するためのバイオセンサであって、前記試料液がペプチドを含み、かつ前記作用極が金属を含有し、前記作用極の表面の少なくとも一部が硫黄原子を含む有機化合物の膜により、前記硫黄原子が前記作用極の表面を向き、前記有機化合物の末端基が前記作用極の表面と反対側を向くように、直接被覆されており、前記末端基がアミノ基、カルボキシル基、ヒドロキシル基、メチル基、アミノベンジル基、カルボキシベンジル基、またはフェニル基であるバイオセンサ。
  2. 参照極をさらに含む、請求項1に記載のバイオセンサ。
  3. 前記対極の表面の少なくとも一部が、硫黄原子を含む有機化合物の膜で被覆されている、請求項1に記載のバイオセンサ。
  4. 前記硫黄原子を含む有機化合物が、チオール化合物、ジスルフィド化合物またはチオレート化合物である、請求項1に記載のバイオセンサ。
  5. 前記硫黄原子を含む有機化合物が、一般式(化1)、(化2)または(化3)で表される化合物である、請求項1に記載のバイオセンサ:
    HS−(CH−X (化1)
    X−(CH−S−S−(CH−X (化2)
    −S−(CH−X (化3)
    ここで、nは1〜10の整数、Xはアミノ基、カルボキシル基、ヒドロキシル基、メチル基、アミノベンジル基、カルボキシベンジル基、またはフェニル基を表す。
  6. 前記硫黄原子を含む有機化合物が、作用極の表面に実質的に単分子膜を形成している、請求項1に記載のバイオセンサ。
  7. 前記作用極の1/30から1/3の面積が、前記硫黄原子を含む有機化合物の膜で被覆されている、請求項1に記載のバイオセンサ。
  8. 前記金属が、金、パラジウム、または白金を含有する、請求項1に記載のバイオセンサ。
  9. 前記酸化還元酵素が、グルコースオキシダーゼ、ピロロキノリンキノン依存型グルコースデヒドロゲナーゼ、ニコチンアミドアデニンジヌクレオチド依存型グルコースデヒドロゲナーゼ、ニコチンアミドアデニンジヌクレオチドリン酸依存型グルコースデヒドロゲナーゼおよびコレステロールオキシダーゼからなる群から選択される、請求項1に記載のバイオセンサ。
  10. 前記電子伝達体が、フェリシアン化物イオンである、請求項1に記載のバイオセンサ。
  11. 前記測定用試薬が、pH緩衝剤をさらに含む、請求項1に記載のバイオセンサ。
  12. 絶縁性の基板、前記基板上に配置される一対の電極、ならびに酸化還元酵素および電子伝達体を含む測定用試薬を備え、前記測定用試薬が試料液に溶解するように設けられているバイオセンサであって、
    前記一対の電極の少なくとも1つが金属を含有し、そしてその表面の少なくとも一部が硫黄原子を含む有機化合物の膜により、前記硫黄原子が前記電極の表面を向き、前記有機化合物の末端基が前記電極の表面と反対側を向くように、直接被覆されており、前記末端基がアミノ基、カルボキシル基、ヒドロキシル基、メチル基、アミノベンジル基、カルボキシベンジル基、またはフェニル基であり、ペプチドを含む試料液と前記酸化還元酵素との間の反応を、前記電子伝達体の存在下で定量する、バイオセンサ。
  13. ペプチドを含む試料液に含まれる基質を測定するためのバイオセンサであって、
    一対の電極、および前記一対の電極の各々に接続されるリードを有する絶縁性の基板であって、前記一対の電極の少なくとも1つの電極が、その表面の少なくとも一部が、硫黄原子を含む有機化合物の膜により、前記硫黄原子が前記電極の表面を向き、前記有機化合 物の末端基が前記電極の表面と反対側を向くように、直接被覆されており、前記末端基がアミノ基、カルボキシル基、ヒドロキシル基、メチル基、アミノベンジル基、カルボキシベンジル基、またはフェニル基である、絶縁性基板、
    前記絶縁性基板の上に配置される、スリットを有するスペーサー、および
    前記スリットの上に配置される、空気孔を備えたカバーを備え、
    ここで、前記スリットが試料液供給路を形成し、そして前記スリットの開放端部が試料供給口を構成しており
    さらに、前記試料液に溶解するように前記試料液供給路内に設けられた、酸化還元酵素および電子伝達体を含む測定用試薬を備えたバイオセンサ。
JP2003505609A 2001-06-14 2002-06-14 バイオセンサ Expired - Fee Related JP3672099B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001179711 2001-06-14
JP2001179711 2001-06-14
PCT/JP2002/005987 WO2002103343A1 (fr) 2001-06-14 2002-06-14 Biocapteur

Publications (2)

Publication Number Publication Date
JPWO2002103343A1 JPWO2002103343A1 (ja) 2004-10-07
JP3672099B2 true JP3672099B2 (ja) 2005-07-13

Family

ID=19020239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003505609A Expired - Fee Related JP3672099B2 (ja) 2001-06-14 2002-06-14 バイオセンサ

Country Status (5)

Country Link
US (1) US20060030028A1 (ja)
EP (1) EP1398626A4 (ja)
JP (1) JP3672099B2 (ja)
CN (1) CN1227525C (ja)
WO (1) WO2002103343A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016505153A (ja) * 2013-01-31 2016-02-18 ライフスキャン・スコットランド・リミテッド 可溶性酸性材料コーティングを備える電気化学式分析試験用ストリップ

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6036924A (en) 1997-12-04 2000-03-14 Hewlett-Packard Company Cassette of lancet cartridges for sampling blood
US6391005B1 (en) 1998-03-30 2002-05-21 Agilent Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US20050103624A1 (en) 1999-10-04 2005-05-19 Bhullar Raghbir S. Biosensor and method of making
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US8337419B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
ES2336081T3 (es) 2001-06-12 2010-04-08 Pelikan Technologies Inc. Dispositivo de puncion de auto-optimizacion con medios de adaptacion a variaciones temporales en las propiedades cutaneas.
DE60238119D1 (de) 2001-06-12 2010-12-09 Pelikan Technologies Inc Elektrisches betätigungselement für eine lanzette
US7025774B2 (en) 2001-06-12 2006-04-11 Pelikan Technologies, Inc. Tissue penetration device
WO2002100254A2 (en) 2001-06-12 2002-12-19 Pelikan Technologies, Inc. Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
JP4272051B2 (ja) 2001-06-12 2009-06-03 ペリカン テクノロジーズ インコーポレイテッド 血液試料採取装置及び方法
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
EP1404234B1 (en) 2001-06-12 2011-02-09 Pelikan Technologies Inc. Apparatus for improving success rate of blood yield from a fingerstick
US7491178B2 (en) * 2002-04-19 2009-02-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7909778B2 (en) * 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7371247B2 (en) * 2002-04-19 2008-05-13 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US7291117B2 (en) 2002-04-19 2007-11-06 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7708701B2 (en) 2002-04-19 2010-05-04 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US7175642B2 (en) 2002-04-19 2007-02-13 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US7674232B2 (en) * 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7976476B2 (en) * 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US7717863B2 (en) 2002-04-19 2010-05-18 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US9795334B2 (en) 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7229458B2 (en) 2002-04-19 2007-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7141058B2 (en) * 2002-04-19 2006-11-28 Pelikan Technologies, Inc. Method and apparatus for a body fluid sampling device using illumination
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7648468B2 (en) 2002-04-19 2010-01-19 Pelikon Technologies, Inc. Method and apparatus for penetrating tissue
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US7547287B2 (en) 2002-04-19 2009-06-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7297122B2 (en) 2002-04-19 2007-11-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7331931B2 (en) 2002-04-19 2008-02-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7232451B2 (en) 2002-04-19 2007-06-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
US20060195128A1 (en) * 2002-12-31 2006-08-31 Don Alden Method and apparatus for loading penetrating members
DK1633235T3 (da) 2003-06-06 2014-08-18 Sanofi Aventis Deutschland Apparat til udtagelse af legemsvæskeprøver og detektering af analyt
WO2006001797A1 (en) 2004-06-14 2006-01-05 Pelikan Technologies, Inc. Low pain penetrating
US8148164B2 (en) 2003-06-20 2012-04-03 Roche Diagnostics Operations, Inc. System and method for determining the concentration of an analyte in a sample fluid
US8071030B2 (en) 2003-06-20 2011-12-06 Roche Diagnostics Operations, Inc. Test strip with flared sample receiving chamber
US7452457B2 (en) 2003-06-20 2008-11-18 Roche Diagnostics Operations, Inc. System and method for analyte measurement using dose sufficiency electrodes
US7645421B2 (en) 2003-06-20 2010-01-12 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US8058077B2 (en) 2003-06-20 2011-11-15 Roche Diagnostics Operations, Inc. Method for coding information on a biosensor test strip
CA2529657C (en) 2003-06-20 2011-04-12 F. Hoffmann-La Roche Ag Test strip with slot vent opening
US7718439B2 (en) 2003-06-20 2010-05-18 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US8206565B2 (en) 2003-06-20 2012-06-26 Roche Diagnostics Operation, Inc. System and method for coding information on a biosensor test strip
US7645373B2 (en) 2003-06-20 2010-01-12 Roche Diagnostic Operations, Inc. System and method for coding information on a biosensor test strip
EP1671096A4 (en) 2003-09-29 2009-09-16 Pelikan Technologies Inc METHOD AND APPARATUS FOR PROVIDING IMPROVED SAMPLE CAPTURING DEVICE
EP1680014A4 (en) 2003-10-14 2009-01-21 Pelikan Technologies Inc METHOD AND APPARATUS PROVIDING A VARIABLE USER INTERFACE
CA2543957C (en) * 2003-10-31 2013-01-22 Lifescan Scotland Limited Method of reducing the effect of direct interference current in an electrochemical test strip
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
EP1706026B1 (en) 2003-12-31 2017-03-01 Sanofi-Aventis Deutschland GmbH Method and apparatus for improving fluidic flow and sample capture
US8828203B2 (en) 2004-05-20 2014-09-09 Sanofi-Aventis Deutschland Gmbh Printable hydrogels for biosensors
WO2005120365A1 (en) 2004-06-03 2005-12-22 Pelikan Technologies, Inc. Method and apparatus for a fluid sampling device
US7569126B2 (en) 2004-06-18 2009-08-04 Roche Diagnostics Operations, Inc. System and method for quality assurance of a biosensor test strip
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
US20060243591A1 (en) * 2005-04-28 2006-11-02 Plotkin Elliot V Electrochemical-based analytical test strip with hydrophilicity enhanced metal electrodes
JP4561994B2 (ja) * 2005-09-07 2010-10-13 ペルメレック電極株式会社 過酸化水素還元電極、これを用いるセンサー及び過酸化水素濃度測定方法
US8160670B2 (en) 2005-12-28 2012-04-17 Abbott Diabetes Care Inc. Analyte monitoring: stabilizer for subcutaneous glucose sensor with incorporated antiglycolytic agent
US8515518B2 (en) * 2005-12-28 2013-08-20 Abbott Diabetes Care Inc. Analyte monitoring
EP1989537B1 (en) * 2006-02-27 2017-02-22 Edwards Lifesciences Corporation Method and apparatus for using flex circuit technology to create a reference electrode channel
KR100729147B1 (ko) 2006-06-22 2007-06-19 고려대학교 산학협력단 고감도 바이오센서 및 이를 포함하는 복합 바이오센서
EP2584044B1 (en) 2007-07-26 2015-04-22 Agamatrix, Inc. Electrochemical analyte detections apparatus and method
WO2009126900A1 (en) 2008-04-11 2009-10-15 Pelikan Technologies, Inc. Method and apparatus for analyte detecting device
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
JP5930810B2 (ja) * 2011-04-26 2016-06-08 アークレイ株式会社 分析用具
JP2016042032A (ja) * 2014-08-14 2016-03-31 ニプロ株式会社 グルコースセンサ
GB201507506D0 (en) 2015-04-30 2015-06-17 Inside Biometrics Ltd Electrochemical test device
CN105181771B (zh) * 2015-10-15 2018-09-04 河北北方学院 一种高灵敏度葡萄糖传感器

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4964972A (en) * 1989-03-30 1990-10-23 Yeda Research And Development Company Limited Ionic recognition and selective response in self assembling monolayer membranes on electrodes
EP0429076B1 (en) * 1989-11-24 1996-01-31 Matsushita Electric Industrial Co., Ltd. Preparation of biosensor
DE4127821A1 (de) * 1991-08-23 1993-02-25 Basf Ag Disulfide, verfahren zu deren herstellung und deren verwendung
IL102930A (en) * 1992-08-25 1997-03-18 Yissum Res Dev Co Electrobiochemical analytical method and electrodes
US5658443A (en) * 1993-07-23 1997-08-19 Matsushita Electric Industrial Co., Ltd. Biosensor and method for producing the same
DE4430023A1 (de) * 1994-08-24 1996-02-29 Boehringer Mannheim Gmbh Elektrochemischer Sensor
DE4442253A1 (de) * 1994-11-28 1996-05-30 Bayer Corp N D Ges D Staates I Elektrochemischer Enzymbiosensor
US5879878A (en) * 1995-06-20 1999-03-09 Australian Membrane And Biotechnology Research Institute Method of producing a first layer electrode membrane for a biosensor
IL118432A (en) * 1996-05-27 1999-12-31 Yissum Res Dev Co Electrochemical and photochemical electrodes and their use
JP3487396B2 (ja) * 1997-01-31 2004-01-19 松下電器産業株式会社 バイオセンサとその製造方法
JPH10311817A (ja) * 1997-05-09 1998-11-24 Nok Corp バイオセンサ
US6033866A (en) * 1997-12-08 2000-03-07 Biomedix, Inc. Highly sensitive amperometric bi-mediator-based glucose biosensor
US6241863B1 (en) * 1998-04-27 2001-06-05 Harold G. Monbouquette Amperometric biosensors based on redox enzymes
EP0969282B1 (en) * 1998-07-02 2011-09-21 NEC Corporation An enzyme electrode and a biosensor and a measuring apparatus therewith
ES2267583T3 (es) * 1999-11-16 2007-03-16 Matsushita Electric Industrial Co., Ltd. Biosensor.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016505153A (ja) * 2013-01-31 2016-02-18 ライフスキャン・スコットランド・リミテッド 可溶性酸性材料コーティングを備える電気化学式分析試験用ストリップ

Also Published As

Publication number Publication date
US20060030028A1 (en) 2006-02-09
JPWO2002103343A1 (ja) 2004-10-07
CN1227525C (zh) 2005-11-16
EP1398626A1 (en) 2004-03-17
WO2002103343A1 (fr) 2002-12-27
CN1463362A (zh) 2003-12-24
EP1398626A4 (en) 2004-09-22

Similar Documents

Publication Publication Date Title
JP3672099B2 (ja) バイオセンサ
JP3297630B2 (ja) バイオセンサ
JP3375040B2 (ja) 基質の定量法
JP6450426B2 (ja) センサ及びセンサシステム
JP3621084B2 (ja) バイオセンサ
JP4373604B2 (ja) 補因子の再生用バイオセンサー電極メディエーター
US20050175509A1 (en) Biosensor
JP4177662B2 (ja) バイオセンサ
JP3267936B2 (ja) バイオセンサ
JP3690683B2 (ja) バイオセンサ
JP4385219B2 (ja) 濃度測定方法
WO2000063685A1 (fr) Biocapteur
JP2001183330A (ja) バイオセンサ
EP1496354A1 (en) Substrate determining method
JP3024394B2 (ja) バイオセンサおよびそれを用いた測定方法
JP3437016B2 (ja) バイオセンサおよびそれを用いた基質の定量方法
JP4913355B2 (ja) バイオセンサ
JP3529081B2 (ja) コレステロールセンサおよびその製造方法
JP3770757B2 (ja) バイオセンサ
JPH09297121A (ja) コレステロールセンサ
JP2004212393A (ja) バイオセンサ
JP3297623B2 (ja) バイオセンサ
JP2002340838A (ja) アルコール測定方法、並びにそれに用いる試薬系キット及びバイオセンサ
JP3487064B2 (ja) 基質の定量法
JPH07294481A (ja) バイオセンサ

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050413

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees