JP3647218B2 - Air zinc battery - Google Patents

Air zinc battery Download PDF

Info

Publication number
JP3647218B2
JP3647218B2 JP23390997A JP23390997A JP3647218B2 JP 3647218 B2 JP3647218 B2 JP 3647218B2 JP 23390997 A JP23390997 A JP 23390997A JP 23390997 A JP23390997 A JP 23390997A JP 3647218 B2 JP3647218 B2 JP 3647218B2
Authority
JP
Japan
Prior art keywords
zinc
negative electrode
air
gelled
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23390997A
Other languages
Japanese (ja)
Other versions
JPH1173949A (en
Inventor
浩史 渡部
真智 大橋
秀之 小方
正夫 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP23390997A priority Critical patent/JP3647218B2/en
Publication of JPH1173949A publication Critical patent/JPH1173949A/en
Application granted granted Critical
Publication of JP3647218B2 publication Critical patent/JP3647218B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02E60/128

Description

【0001】
【発明の属する技術分野】
本発明は空気亜鉛電池の高容量化に関する。
【0002】
【従来の技術】
亜鉛を負極作用物質とし、空気中の酸素を正極作用物質とする空気亜鉛電池は、通常の電池に比べ、正極作用物質を電池内に詰め込む必要がないために、負極作用物質である亜鉛をより多く詰め込むことが可能で、アルカリマンガン電池や酸化銀電池に比較して大容量が得られるという特徴があり、需要が拡大してきている。
【0003】
また、空気亜鉛電池は、環境問題が提起された水銀電池と互換性があるので、その代替とされており、その主用途である補聴器に使用されている。そして電池交換の頻度をより少なくすることが望まれており、近年一層高容量化の要望が高まっている。
【0004】
【発明が解決しようとする課題】
ところで、空気亜鉛電池を高容量化するためには、ゲル状亜鉛負極の放電利用率を向上させるか、あるいは作用物質としての亜鉛をより多く充填して理論的な容量を増やす必要がある。
【0005】
しかしながら、正極作用物質を充填しなくともよいとはいえ、内容積には限界があるので、亜鉛の増量には限界がある。また、亜鉛は放電反応後に反応生成物となって体積が膨張するために、内容積一杯までにゲル状亜鉛負極を充填すると、過放電状態になったときに、膨張した負極生成物によってアルカリ電解液が押し出され、空気孔から漏液するという問題がある。
【0006】
充填するゲル状亜鉛負極の体積を増やさずに亜鉛量を増やすためには、アルカリ電解液を減らし、亜鉛を増やしたゲル状亜鉛負極の配合組成にすればよいが、アルカリ電解液量が減少すると、亜鉛の放電利用率が悪化する傾向にあり、亜鉛を増加した分だけ高容量化を実現するのは困難である。
【0007】
逆に、亜鉛の放電利用率の向上のためには、アルカリ電解液比率のより高いゲル状亜鉛負極を使用することが考えられるが、もともと空気亜鉛電池の亜鉛の放電利用率は90%以上もあり、放電利用率の向上による大幅な高容量化は望めない。さらにアルカリ電解液を増やした分、一定容積に充填される亜鉛量は減少するので、結果的に高容量化は達成できない。
本発明は、このような問題を解決するためになされたもので、その目的は、過放電後の漏液を生ずることなく空気亜鉛電池をより高容量化することにある。
【0008】
【課題を解決するための手段】
この目的を達成するため、本研究者らが鋭意研究の結果、ゲル状亜鉛負極の配合組成、負極容積に対するゲル状亜鉛負極体積の充填率を適正化することにより、過放電後の漏液が生ずることなく、より高容量化を達成することができることがわかった。
【0009】
すなわち、本発明は、空気中の酸素を正極作用物質とし、負極集電体を兼ねた負極容器に亜鉛合金粉,アルカリ電解液,及びゲル化剤で構成されたゲル状亜鉛負極を有する空気亜鉛電池において、前記ゲル状亜鉛負極の配合組成が亜鉛合金粉100重量部に対してアルカリ電解液が20〜25重量部であり、且つ負極容積に対する前記ゲル状亜鉛負極の充填率が85〜90%であることを特徴とする。
【0010】
従来の空気亜鉛電池では、ゲル状亜鉛負極の配合組成は亜鉛合金粉100重量部に対してアルカリ電解液が25〜30重量部程度が普通であるが、これ以上亜鉛合金粉の配合比率を増やしアルカリ電解液を減らすと、亜鉛の放電利用率が低下してしまう。これに対し本発明の空気亜鉛電池では、ゲル状亜鉛負極の配合組成が亜鉛合金粉100重量部に対してアルカリ電解液が20〜25重量部であるが、ゲル状亜鉛負極体積の充填率を85〜90%とすることで、放電利用率の低下が最小に防げることがわかった。
【0011】
すなわち、このようなゲル状亜鉛負極の充填率であれば、ゲル状亜鉛負極と負極集電体やセパレータとの接触が最適になり、放電利用率を良好に保てる。ゲル状亜鉛負極の充填率が85%未満であると前述の接触が悪化し、放電利用率も低下してしまう。90%以上になると放電中に正極触媒を圧迫して放電に悪影響を及ぼす。
【0012】
また、過放電後の漏液の発生は、ゲル状亜鉛負極の配合組成及び充填率と密接に関係しており、アルカリ電解液の比率が高いゲル状亜鉛負極ほど同じ充填率でも漏液が発生し易くなる。そして放電生成物の体積が負極内容積に占める比率M(占拠率、%)は次式(1)で求められ、これを110%程度以下にするのがよい。本発明のゲル状亜鉛負極の配合組成及び充填率の範囲であれば、占拠率Mは112%以下となり、漏液は発生しない。この点からもゲル状亜鉛負極の配合組成及び充填率は、本発明の範囲が妥当である。
【0013】
【数1】

Figure 0003647218
【0014】
なお、Gaは次の式から求めた。
Ga=[放電に利用された亜鉛の体積]×0.587
0.587は、放電利用率が一番良い電流密度(mA/mm2 )で放電し、放電生成物が酸化亜鉛になると仮定したときの、放電後亜鉛の体積増加率で、
亜鉛:比重7.14,原子量65.3
酸化亜鉛:比重5.6,分子量81.3
を用いて次式のように計算した。
0.587=[(81.3/5.6)/(65.3/7.14)]−1=1.587−1
【0015】
【発明の実施の形態】
(ゲル状亜鉛負極の調製)
ゲル状亜鉛負極は、亜鉛合金粉,アルカリ電解液及びゲル化剤としてのポリアクリル酸で構成される。亜鉛合金粉とアルカリ電解液の配合組成は、表1に示すように、亜鉛合金粉100重量部に対して、30wt%水酸化カリウム水溶液を32.5,30.0,27.5,25.0,22.5,20.0及び17.5重量部の7種類とした。ゲル状亜鉛負極は、まず亜鉛合金粉とポリアクリル酸(30wt%水酸化カリウム水溶液100重量部に対して1.6重量部)をドライ撹拌し、その後水酸化カリウム水溶液と共にウェット撹拌して調製した。
また、7種類のゲル状亜鉛負極の比重を、亜鉛合金粉の比重7.14と、30wt%水酸化カリウム水溶液の比重1.29とを用いて算出し、表1に示した。
【0016】
【表1】
Figure 0003647218
【0017】
(実施例1〜6)
配合組成として、亜鉛合金粉100重量部に対して、30wt%水酸化カリウム水溶液を25.0,22.5及び20.0重量部の3種類のゲル状亜鉛負極を使用し、ゲル状亜鉛負極の充填率を85及び90%として、図1に示すようなPR44型空気亜鉛電池を作製した。
【0018】
図1において、1は負極集電体、2はゲル状亜鉛負極、3はセパレータ、4はパッキング、5は正極触媒、6は正極缶、7はテフロン膜、8は空気拡散紙、9は空気孔、10は絶縁シートである。
【0019】
ゲル状亜鉛負極の充填率は、次のようにしてゲル状亜鉛負極の重量で調整した。まず電池の形状寸法より負極内容積307μlを算出し、各々の充填率85及び90%に対応する体積を求め、次にそれらの体積を各々3種類のゲル状亜鉛負極の比重を用いて重量に換算した。
【0020】
このとき正極触媒は、マンガン酸化物,活性炭及びテフロン粉末を混合撹拌して得られた正極合剤をシート状に圧延し、片面にニッケルメッキしたステンレスネットを、他面にテフロン膜をそれぞれ圧着して得られた。また、パッキングはナイロン製パッキングを使用した。
【0021】
負極ケースを兼ねた負極集電体はニッケル−ステンレス−銅の3層クラッド材を成形加工して使用した。
正極ケースは、鉄材を成形加工した後にニッケルメッキを施して使用した。
【0022】
(比較例1〜22)
実施例と同様にして、配合組成が、亜鉛合金粉100重量部に対して、30wt%水酸化カリウム水溶液を32.5,30.0,27.5,25.0,22.5,20.0及び17.5重量部の7種類のゲル状亜鉛負極を使用し、ゲル状亜鉛負極の充填率を80,85,90及び95%として、図1に示すようなPR44型空気亜鉛電池を作製した。また、ゲル状亜鉛負極の充填率は、実施例と同様にゲル状亜鉛負極の重量で調整した。
【0023】
(評価)
上記実施例及び比較例の電池の各20個について、620Ω及び250Ωの連続放電試験を行った。620Ω連続放電は、PR44型空気亜鉛電池では、正負極の対向面積に対して0.025mA/mm2 程度の放電になり放電利用率が比較的良い条件である。250Ω連続放電は、0.05mA/mm2 程度の比較的重負荷の放電である。表1に結果を示す。各数値は、20個の電池の平均値である。
【0024】
次に、実施例及び比較例の電池各20個を25℃−85%RHの環境下において、620Ωで500時間放電し、過放電後の空気孔からの漏液を目視調査した。PR44型空気亜鉛電池の620Ω連続放電は、200〜350時間程度で放電が終わるので、1.5〜2.5倍程度の過放電である。空気亜鉛電池では、過放電により負極内容物が膨張したときに空気孔からアルカリ電解液が押し出されて漏液することがあり、25℃−85%RHのように高湿の環境下では特に漏液しやすくなる。
結果を表1に示す。各数値は、電池20個中の漏液した電池の個数である。
【0025】
この表から明らかなように、ゲル状亜鉛負極の配合組成に関わらず、充填率が85%から80%に減少すると放電利用率が大きく低下し高容量化できない。充填率が85%から90%に増加すると、本発明の場合は過放電後の漏液特性は悪くならないが、比較例の場合は漏液特性が悪化する。配合組成が亜鉛合金粉100重量部に対してアルカリ電解液が32.5,30.0,27.5及び17.5重量部のゲル状亜鉛負極の場合は、充填率を85及び90%にしても高容量化と過放電後の漏液特性の両方を満足させるものはない。
【0026】
以上のように、ゲル状亜鉛負極の配合組成が、亜鉛合金粉100重量部に対してアルカリ電解液20〜25重量部であり、電池の負極容積に対してゲル状亜鉛負極体積の充填率が85〜90%である本発明品は、従来の空気亜鉛電池に比較して、高容量化することができ、且つ過放電後の漏液の危険性もない。
【0027】
なお、本発明は上記実施例により限定されるものではなく、本発明に直接影響を及ぼさない、亜鉛合金粉,ゲル化剤,電解液濃度,正極触媒等の要素については本発明の範囲を逸脱しない限り、変更して差支えない。
【0028】
【発明の効果】
以上説明したように、本発明によれば、従来の空気亜鉛電池に比較して、高容量化され、且つ過放電漏液の危険性もない電池を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施例であるPR44型空気亜鉛電池の断面図。
【符号の説明】
1…負極集電体、2…ゲル状亜鉛負極、3…セパレータ、4…パッキング、5…正極触媒、6…正極缶、7…テフロン膜、8…空気拡散紙、9…空気孔、10…絶縁シート。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to increasing the capacity of a zinc-air battery.
[0002]
[Prior art]
The zinc-air battery, which uses zinc as the negative electrode active substance and oxygen in the air as the positive electrode active substance, does not require the positive electrode active substance to be packed in the battery as compared with a normal battery. It can be packed in large quantities, and has a feature that a large capacity can be obtained as compared with alkaline manganese batteries and silver oxide batteries, and the demand is increasing.
[0003]
In addition, since the zinc-air battery is compatible with the mercury battery in which environmental problems have been raised, it is used as a substitute for it, and is used in hearing aids, which are its main application. Further, it is desired to reduce the frequency of battery replacement, and in recent years there has been an increasing demand for higher capacity.
[0004]
[Problems to be solved by the invention]
By the way, in order to increase the capacity of the air zinc battery, it is necessary to improve the discharge utilization of the gelled zinc negative electrode or to increase the theoretical capacity by filling more zinc as an active substance.
[0005]
However, although there is no need to fill the positive electrode active substance, there is a limit to the amount of zinc because there is a limit to the internal volume. In addition, since zinc becomes a reaction product after the discharge reaction and the volume expands, when the gelled zinc negative electrode is filled up to the full inner volume, it becomes alkaline electrolysis by the expanded negative electrode product when overdischarge occurs. There is a problem that the liquid is pushed out and leaks from the air hole.
[0006]
In order to increase the amount of zinc without increasing the volume of the gelled zinc negative electrode to be filled, the alkaline electrolyte is reduced and the composition of the gelled zinc negative electrode with increased zinc may be used. The zinc discharge utilization rate tends to deteriorate, and it is difficult to increase the capacity by the amount of zinc.
[0007]
On the other hand, in order to improve the discharge utilization rate of zinc, it is conceivable to use a gelled zinc negative electrode having a higher alkaline electrolyte ratio, but the zinc discharge utilization rate of the zinc-air battery is originally over 90%. There is no significant increase in capacity due to improved discharge utilization. Furthermore, since the amount of zinc filled in a certain volume decreases as the alkaline electrolyte is increased, the increase in capacity cannot be achieved as a result.
The present invention has been made to solve such a problem, and an object thereof is to increase the capacity of the air zinc battery without causing leakage after overdischarge.
[0008]
[Means for Solving the Problems]
In order to achieve this purpose, as a result of diligent research conducted by the present researchers, by adjusting the composition ratio of the gelled zinc negative electrode and the filling rate of the gelled zinc negative electrode volume with respect to the negative electrode volume, the leakage after overdischarge is reduced. It has been found that higher capacity can be achieved without the occurrence.
[0009]
That is, the present invention relates to an air zinc having a gelled zinc negative electrode composed of a zinc alloy powder, an alkaline electrolyte, and a gelling agent in a negative electrode container having oxygen in the air as a positive electrode active substance and also serving as a negative electrode current collector. In the battery, the composition ratio of the gelled zinc negative electrode is 20 to 25 parts by weight of the alkaline electrolyte with respect to 100 parts by weight of the zinc alloy powder, and the filling rate of the gelled zinc negative electrode with respect to the negative electrode volume is 85 to 90%. It is characterized by being.
[0010]
In a conventional air zinc battery, the composition ratio of the gelled zinc negative electrode is usually about 25 to 30 parts by weight of the alkaline electrolyte with respect to 100 parts by weight of the zinc alloy powder, but the blending ratio of the zinc alloy powder is further increased. If the alkaline electrolyte is reduced, the discharge efficiency of zinc will decrease. On the other hand, in the air zinc battery of the present invention, the composition ratio of the gel-like zinc negative electrode is 20 to 25 parts by weight of the alkaline electrolyte with respect to 100 parts by weight of the zinc alloy powder. It turned out that the fall of a discharge utilization factor can be prevented to the minimum by setting it as 85 to 90%.
[0011]
That is, with such a filling rate of the gelled zinc negative electrode, the contact between the gelled zinc negative electrode and the negative electrode current collector or the separator becomes optimal, and the discharge utilization rate can be kept good. If the filling rate of the gelled zinc negative electrode is less than 85%, the aforementioned contact deteriorates and the discharge utilization rate also decreases. If it is 90% or more, the positive electrode catalyst is pressed during discharge, which adversely affects the discharge.
[0012]
In addition, the occurrence of liquid leakage after overdischarge is closely related to the composition and filling rate of the gelled zinc negative electrode. It becomes easy to do. The ratio M (occupancy rate,%) of the volume of the discharge product to the negative electrode internal volume is obtained by the following equation (1), and it is preferable to set this to about 110% or less. If it is the range of the compounding composition and filling rate of the gelatinous zinc negative electrode of this invention, the occupation rate M will be 112% or less, and a liquid leak will not generate | occur | produce. Also from this point, the range of the present invention is appropriate for the composition and filling rate of the gelled zinc negative electrode.
[0013]
[Expression 1]
Figure 0003647218
[0014]
Ga was obtained from the following equation.
Ga = [volume of zinc used for discharge] × 0.587
0.587 is the volume increase rate of zinc after discharge when it is assumed that discharge is performed at a current density with the best discharge utilization rate (mA / mm 2 ) and the discharge product is zinc oxide.
Zinc: specific gravity 7.14, atomic weight 65.3
Zinc oxide: specific gravity 5.6, molecular weight 81.3
Was calculated as follows.
0.587 = [(81.3 / 5.6) / (65.3 / 7.14)]-1 = 1.587-1
[0015]
DETAILED DESCRIPTION OF THE INVENTION
(Preparation of gelled zinc negative electrode)
The gelled zinc negative electrode is composed of zinc alloy powder, an alkaline electrolyte, and polyacrylic acid as a gelling agent. As shown in Table 1, the blending composition of the zinc alloy powder and the alkaline electrolyte is 32.5, 30.0, 27.5, 25, 30 wt% potassium hydroxide aqueous solution with respect to 100 parts by weight of the zinc alloy powder. Seven types of 0, 22.5, 20.0, and 17.5 parts by weight were used. The gelled zinc negative electrode was prepared by first dry-stirring zinc alloy powder and polyacrylic acid (1.6 parts by weight with respect to 100 parts by weight of 30 wt% potassium hydroxide aqueous solution) and then wet-stirring with the potassium hydroxide aqueous solution. .
The specific gravity of the seven kinds of gelled zinc negative electrodes was calculated using the specific gravity of 7.14 of the zinc alloy powder and the specific gravity of 1.29 of the 30 wt% potassium hydroxide aqueous solution.
[0016]
[Table 1]
Figure 0003647218
[0017]
(Examples 1-6)
As a blending composition, 3 types of gelled zinc negative electrodes of 25.0, 22.5 and 20.0 parts by weight of 30 wt% potassium hydroxide aqueous solution are used with respect to 100 parts by weight of zinc alloy powder. The PR44 type zinc-air battery as shown in FIG.
[0018]
In FIG. 1, 1 is a negative electrode current collector, 2 is a gel-like zinc negative electrode, 3 is a separator, 4 is packing, 5 is a positive electrode catalyst, 6 is a positive electrode can, 7 is a Teflon film, 8 is air diffusion paper, and 9 is air. The holes 10 are insulating sheets.
[0019]
The filling rate of the gelled zinc negative electrode was adjusted by the weight of the gelled zinc negative electrode as follows. First, the negative electrode internal volume of 307 μl is calculated from the battery geometry, and the volume corresponding to each filling rate of 85 and 90% is obtained, and then these volumes are converted into weights using the specific gravity of each of the three types of gelled zinc negative electrodes. Converted.
[0020]
At this time, the positive electrode catalyst was prepared by rolling and mixing a positive electrode mixture obtained by mixing and stirring manganese oxide, activated carbon and Teflon powder into a sheet, and bonding a stainless steel net plated with nickel on one side and a Teflon film on the other side. Obtained. The packing used was a nylon packing.
[0021]
A negative electrode current collector also serving as a negative electrode case was formed by forming a nickel-stainless-copper three-layer clad material.
The positive electrode case was used after being nickel-plated after an iron material was molded.
[0022]
(Comparative Examples 1 to 22)
In the same manner as in the examples, the blending composition was 32.5, 30.0, 27.5, 25.0, 22.5, 20. Using 7 types of gelled zinc negative electrodes of 0 and 17.5 parts by weight, and filling the gelled zinc negative electrode with 80, 85, 90 and 95%, a PR44 type air zinc battery as shown in FIG. 1 was produced. did. The filling rate of the gelled zinc negative electrode was adjusted by the weight of the gelled zinc negative electrode in the same manner as in the example.
[0023]
(Evaluation)
A continuous discharge test of 620Ω and 250Ω was performed on each of the 20 batteries of the examples and comparative examples. The 620Ω continuous discharge is a condition in which the discharge efficiency is relatively good in the PR44 type zinc-air battery because the discharge is about 0.025 mA / mm 2 with respect to the facing area of the positive and negative electrodes. The 250Ω continuous discharge is a relatively heavy load discharge of about 0.05 mA / mm 2 . Table 1 shows the results. Each numerical value is an average value of 20 batteries.
[0024]
Next, 20 batteries of each of Examples and Comparative Examples were discharged at 620Ω for 500 hours in an environment of 25 ° C. to 85% RH, and the leakage from the air holes after overdischarge was visually inspected. The 620Ω continuous discharge of the PR44 type zinc-air battery is overdischarge of about 1.5 to 2.5 times since the discharge is completed in about 200 to 350 hours. In a zinc-air battery, when the negative electrode contents expand due to overdischarge, the alkaline electrolyte may be pushed out from the air holes and leak, and this is particularly noticeable in high humidity environments such as 25 ° C.-85% RH. Easy to liquid.
The results are shown in Table 1. Each numerical value is the number of leaked batteries in 20 batteries.
[0025]
As is apparent from this table, regardless of the composition of the gelled zinc negative electrode, when the filling rate is reduced from 85% to 80%, the discharge utilization rate is greatly reduced and the capacity cannot be increased. When the filling rate is increased from 85% to 90%, the leakage characteristics after overdischarge are not deteriorated in the case of the present invention, but the leakage characteristics are deteriorated in the case of the comparative example. In the case of a gelled zinc negative electrode having a blending composition of 32.5, 30.0, 27.5 and 17.5 parts by weight with respect to 100 parts by weight of zinc alloy powder, the filling rate should be 85 and 90%. However, there is nothing that satisfies both high capacity and leakage characteristics after overdischarge.
[0026]
As described above, the composition ratio of the gelled zinc negative electrode is 20 to 25 parts by weight of the alkaline electrolyte with respect to 100 parts by weight of the zinc alloy powder, and the filling rate of the gelled zinc negative electrode volume with respect to the negative electrode volume of the battery is The product of the present invention, which is 85 to 90%, can have a higher capacity than the conventional air zinc battery, and there is no risk of leakage after overdischarge.
[0027]
It should be noted that the present invention is not limited to the above-described embodiments, and elements such as zinc alloy powder, gelling agent, electrolyte concentration, and positive electrode catalyst that do not directly affect the present invention depart from the scope of the present invention. It can be changed as long as it is not.
[0028]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a battery having a higher capacity and no risk of overdischarge leakage as compared with a conventional air zinc battery.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a PR44 type zinc-air battery that is one embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Negative electrode collector, 2 ... Gel-like zinc negative electrode, 3 ... Separator, 4 ... Packing, 5 ... Positive electrode catalyst, 6 ... Positive electrode can, 7 ... Teflon membrane, 8 ... Air diffusion paper, 9 ... Air hole, 10 ... Insulating sheet.

Claims (1)

空気中の酸素を正極作用物質とし、負極集電体を兼ねた負極容器に亜鉛合金粉,アルカリ電解液,及びゲル化剤で構成されたゲル状亜鉛負極を有する空気亜鉛電池において、前記ゲル状亜鉛負極の配合組成が亜鉛合金粉100重量部に対してアルカリ電解液が20〜25重量部であり、且つ負極容積に対する前記ゲル状亜鉛負極の充填率が85〜90%であることを特徴とする空気亜鉛電池。In the air zinc battery having a gelled zinc negative electrode composed of a zinc alloy powder, an alkaline electrolyte, and a gelling agent in a negative electrode container having oxygen in the air as a positive electrode active substance and also serving as a negative electrode current collector, The composition of the zinc negative electrode is 20 to 25 parts by weight of the alkaline electrolyte with respect to 100 parts by weight of the zinc alloy powder, and the filling rate of the gelled zinc negative electrode with respect to the negative electrode volume is 85 to 90%. Air zinc battery.
JP23390997A 1997-08-29 1997-08-29 Air zinc battery Expired - Fee Related JP3647218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23390997A JP3647218B2 (en) 1997-08-29 1997-08-29 Air zinc battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23390997A JP3647218B2 (en) 1997-08-29 1997-08-29 Air zinc battery

Publications (2)

Publication Number Publication Date
JPH1173949A JPH1173949A (en) 1999-03-16
JP3647218B2 true JP3647218B2 (en) 2005-05-11

Family

ID=16962495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23390997A Expired - Fee Related JP3647218B2 (en) 1997-08-29 1997-08-29 Air zinc battery

Country Status (1)

Country Link
JP (1) JP3647218B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007107911A1 (en) 2006-03-22 2007-09-27 The Gillette Company Zinc/air cell
EP2157658A1 (en) 2006-03-22 2010-02-24 The Gillette Company Zinc/air cell
WO2023285795A1 (en) * 2021-07-15 2023-01-19 Lina Energy Ltd. Electrochemical cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6300011B1 (en) * 2000-01-25 2001-10-09 The Gillete Company Zinc/air cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007107911A1 (en) 2006-03-22 2007-09-27 The Gillette Company Zinc/air cell
EP2157658A1 (en) 2006-03-22 2010-02-24 The Gillette Company Zinc/air cell
WO2023285795A1 (en) * 2021-07-15 2023-01-19 Lina Energy Ltd. Electrochemical cell

Also Published As

Publication number Publication date
JPH1173949A (en) 1999-03-16

Similar Documents

Publication Publication Date Title
WO2001018897A1 (en) Rechargeable nickel-zinc cells
JP3647218B2 (en) Air zinc battery
JP3138120B2 (en) Metal hydride storage battery
US6503659B1 (en) Layered metal hydride electrode providing reduced cell pressure
JPH0831425A (en) Battery
JP2001068121A (en) Cylindrical alkaline battery
JP3263603B2 (en) Alkaline storage battery
JP2566912B2 (en) Nickel oxide / hydrogen battery
JP2517936B2 (en) Air zinc battery
JPH08279355A (en) Button type alkaline battery
JP3474721B2 (en) Non-melonized air battery
JP4122418B2 (en) Air zinc battery
JP2983135B2 (en) Alkaline secondary battery
JP3594752B2 (en) Air zinc button type battery
JP3069767B2 (en) Hydrogen storage alloy electrode
JPH10154526A (en) Rectangular alkaline storage battery
JP2000311722A (en) Button type air zinc battery
JP3316687B2 (en) Nickel-metal hydride storage battery
JPH103940A (en) Nickel-metal hydride storage battery and its manufacture
JPH11149920A (en) Nickel electrode for alkali secondary battery and alkali secondary battery
JP2004164863A (en) Sealed type nickel zinc primary cell
JPH0517659B2 (en)
JPH0620681A (en) Metal-hydrogen alkaline battery
JPS59114767A (en) Manufacture of hydrogen electrode
JP2006185848A (en) Alkaline dry cell

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050208

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050208

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20110218

LAPS Cancellation because of no payment of annual fees