JPH1173949A - Air zinc battery - Google Patents

Air zinc battery

Info

Publication number
JPH1173949A
JPH1173949A JP23390997A JP23390997A JPH1173949A JP H1173949 A JPH1173949 A JP H1173949A JP 23390997 A JP23390997 A JP 23390997A JP 23390997 A JP23390997 A JP 23390997A JP H1173949 A JPH1173949 A JP H1173949A
Authority
JP
Japan
Prior art keywords
negative electrode
zinc
discharge
gelled
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23390997A
Other languages
Japanese (ja)
Other versions
JP3647218B2 (en
Inventor
Hiroshi Watabe
浩史 渡部
Masatomo Oohashi
真智 大橋
Hideyuki Ogata
秀之 小方
Masao Kawaguchi
正夫 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP23390997A priority Critical patent/JP3647218B2/en
Publication of JPH1173949A publication Critical patent/JPH1173949A/en
Application granted granted Critical
Publication of JP3647218B2 publication Critical patent/JP3647218B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • Y02E60/128

Landscapes

  • Hybrid Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the capacity of a battery without causing leakage after over-discharge by specifying the blend composition and filling ratio of a gel-like zinc negative electrode. SOLUTION: In this battery, the blend composition of a get-like zinc negative electrode is set to 20-25 pts.wt. of alkaline electrolyte to 100 pts.wt. of zinc alloy powder, and the filling ratio of the gel-like zinc negative electrode to the negative electrode capacity is set to 85-90%. The contact of the gel-like zinc negative electrode with a negative electrode collector or separator is optimized when the filling ratio is set within this range, and the discharge utilization factor can be kept satisfactorily. When the filling ratio is than 85%, the contact is deteriorated, reducing the discharge utilization factor, and when it exceeds 90%, a positive electrode catalyst is compressed in discharge to affect the discharge. Although the occurrence of leakage after over-discharge is more serious as the ratio of the alkaline electrolyte is higher with the same filling ratio, the possibility of leakage can be eliminated when the blend composition is set in the above range.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は空気亜鉛電池の高容
量化に関する。
[0001] The present invention relates to increasing the capacity of zinc-air batteries.

【0002】[0002]

【従来の技術】亜鉛を負極作用物質とし、空気中の酸素
を正極作用物質とする空気亜鉛電池は、通常の電池に比
べ、正極作用物質を電池内に詰め込む必要がないため
に、負極作用物質である亜鉛をより多く詰め込むことが
可能で、アルカリマンガン電池や酸化銀電池に比較して
大容量が得られるという特徴があり、需要が拡大してき
ている。
2. Description of the Related Art An air zinc battery using zinc as a negative electrode active material and oxygen in the air as a positive electrode active material does not require the positive electrode active material to be packed in a battery as compared with a normal battery. It is characterized by the fact that it is possible to pack a larger amount of zinc, and it is possible to obtain a larger capacity as compared with alkaline manganese batteries and silver oxide batteries, and the demand is expanding.

【0003】また、空気亜鉛電池は、環境問題が提起さ
れた水銀電池と互換性があるので、その代替とされてお
り、その主用途である補聴器に使用されている。そして
電池交換の頻度をより少なくすることが望まれており、
近年一層高容量化の要望が高まっている。
[0003] Zinc air batteries are interchangeable with mercury batteries that have raised environmental concerns, and are therefore being used as alternatives, and are being used in hearing aids, which are their primary use. And it is desired to reduce the frequency of battery replacement,
In recent years, demands for higher capacity have been increasing.

【0004】[0004]

【発明が解決しようとする課題】ところで、空気亜鉛電
池を高容量化するためには、ゲル状亜鉛負極の放電利用
率を向上させるか、あるいは作用物質としての亜鉛をよ
り多く充填して理論的な容量を増やす必要がある。
By the way, in order to increase the capacity of the zinc-air battery, the discharge utilization rate of the gelled zinc negative electrode is improved, or the zinc as an active substance is filled more to theoretically increase the capacity. It is necessary to increase the capacity.

【0005】しかしながら、正極作用物質を充填しなく
ともよいとはいえ、内容積には限界があるので、亜鉛の
増量には限界がある。また、亜鉛は放電反応後に反応生
成物となって体積が膨張するために、内容積一杯までに
ゲル状亜鉛負極を充填すると、過放電状態になったとき
に、膨張した負極生成物によってアルカリ電解液が押し
出され、空気孔から漏液するという問題がある。
[0005] However, although it is not necessary to fill the positive electrode active substance, there is a limit in the internal volume, so there is a limit in increasing the amount of zinc. In addition, since zinc becomes a reaction product after the discharge reaction and expands in volume, when the gelled zinc negative electrode is filled to the full internal volume, when overdischarged, the expanded negative electrode product causes alkaline electrolysis. There is a problem that the liquid is pushed out and leaks from the air hole.

【0006】充填するゲル状亜鉛負極の体積を増やさず
に亜鉛量を増やすためには、アルカリ電解液を減らし、
亜鉛を増やしたゲル状亜鉛負極の配合組成にすればよい
が、アルカリ電解液量が減少すると、亜鉛の放電利用率
が悪化する傾向にあり、亜鉛を増加した分だけ高容量化
を実現するのは困難である。
In order to increase the amount of zinc without increasing the volume of the gelled zinc negative electrode to be filled, the amount of alkaline electrolyte must be reduced,
The composition of the gelled zinc negative electrode with increased zinc may be used.However, when the amount of the alkaline electrolyte decreases, the discharge utilization rate of zinc tends to deteriorate, and a higher capacity is achieved by increasing the amount of zinc. It is difficult.

【0007】逆に、亜鉛の放電利用率の向上のために
は、アルカリ電解液比率のより高いゲル状亜鉛負極を使
用することが考えられるが、もともと空気亜鉛電池の亜
鉛の放電利用率は90%以上もあり、放電利用率の向上
による大幅な高容量化は望めない。さらにアルカリ電解
液を増やした分、一定容積に充填される亜鉛量は減少す
るので、結果的に高容量化は達成できない。本発明は、
このような問題を解決するためになされたもので、その
目的は、過放電後の漏液を生ずることなく空気亜鉛電池
をより高容量化することにある。
On the other hand, in order to improve the discharge utilization rate of zinc, it is conceivable to use a gelled zinc negative electrode having a higher alkaline electrolyte ratio. %, It is not possible to expect a large increase in capacity due to an improvement in discharge utilization. Further, as the amount of the alkaline electrolyte is increased, the amount of zinc filled in a certain volume is reduced, so that a high capacity cannot be achieved as a result. The present invention
The purpose of the present invention is to solve such a problem, and an object thereof is to increase the capacity of an air zinc battery without causing leakage after overdischarge.

【0008】[0008]

【課題を解決するための手段】この目的を達成するた
め、本研究者らが鋭意研究の結果、ゲル状亜鉛負極の配
合組成、負極容積に対するゲル状亜鉛負極体積の充填率
を適正化することにより、過放電後の漏液が生ずること
なく、より高容量化を達成することができることがわか
った。
Means for Solving the Problems To achieve this object, the present inventors have assiduously studied to optimize the composition of the gelled zinc negative electrode and the filling ratio of the gelled zinc negative electrode volume to the negative electrode volume. As a result, it was found that a higher capacity could be achieved without liquid leakage after overdischarge.

【0009】すなわち、本発明は、空気中の酸素を正極
作用物質とし、負極集電体を兼ねた負極容器に亜鉛合金
粉,アルカリ電解液,及びゲル化剤で構成されたゲル状
亜鉛負極を有する空気亜鉛電池において、前記ゲル状亜
鉛負極の配合組成が亜鉛合金粉100重量部に対してア
ルカリ電解液が20〜25重量部であり、且つ負極容積
に対する前記ゲル状亜鉛負極の充填率が85〜90%で
あることを特徴とする。
That is, the present invention provides a gelled zinc negative electrode composed of zinc alloy powder, an alkaline electrolyte, and a gelling agent in a negative electrode container which also uses oxygen in the air as a positive electrode active material and also functions as a negative electrode current collector. In the air-zinc battery, the composition of the gelled zinc negative electrode is 20 to 25 parts by weight of the alkaline electrolyte with respect to 100 parts by weight of the zinc alloy powder, and the filling ratio of the gelled zinc negative electrode to the negative electrode volume is 85%. 9090%.

【0010】従来の空気亜鉛電池では、ゲル状亜鉛負極
の配合組成は亜鉛合金粉100重量部に対してアルカリ
電解液が25〜30重量部程度が普通であるが、これ以
上亜鉛合金粉の配合比率を増やしアルカリ電解液を減ら
すと、亜鉛の放電利用率が低下してしまう。これに対し
本発明の空気亜鉛電池では、ゲル状亜鉛負極の配合組成
が亜鉛合金粉100重量部に対してアルカリ電解液が2
0〜25重量部であるが、ゲル状亜鉛負極体積の充填率
を85〜90%とすることで、放電利用率の低下が最小
に防げることがわかった。
In a conventional zinc-air battery, the composition of the gelled zinc negative electrode is usually about 25 to 30 parts by weight of the alkaline electrolyte with respect to 100 parts by weight of the zinc alloy powder. When the ratio is increased and the alkaline electrolyte is reduced, the discharge utilization rate of zinc decreases. On the other hand, in the air zinc battery of the present invention, the composition of the gelled zinc negative electrode was such that the alkaline electrolyte was 2 parts per 100 parts by weight of zinc alloy powder.
Although it is 0 to 25 parts by weight, it has been found that by setting the filling rate of the gelled zinc negative electrode volume to 85 to 90%, a decrease in the discharge utilization rate can be prevented to a minimum.

【0011】すなわち、このようなゲル状亜鉛負極の充
填率であれば、ゲル状亜鉛負極と負極集電体やセパレー
タとの接触が最適になり、放電利用率を良好に保てる。
ゲル状亜鉛負極の充填率が85%未満であると前述の接
触が悪化し、放電利用率も低下してしまう。90%以上
になると放電中に正極触媒を圧迫して放電に悪影響を及
ぼす。
That is, with such a filling rate of the gelled zinc negative electrode, the contact between the gelled zinc negative electrode and the negative electrode current collector or the separator is optimized, and the discharge utilization can be kept good.
When the filling rate of the gelled zinc negative electrode is less than 85%, the above-mentioned contact is deteriorated, and the discharge utilization rate is also reduced. If it is 90% or more, the positive electrode catalyst is pressed during the discharge, which adversely affects the discharge.

【0012】また、過放電後の漏液の発生は、ゲル状亜
鉛負極の配合組成及び充填率と密接に関係しており、ア
ルカリ電解液の比率が高いゲル状亜鉛負極ほど同じ充填
率でも漏液が発生し易くなる。そして放電生成物の体積
が負極内容積に占める比率M(占拠率、%)は次式
(1)で求められ、これを110%程度以下にするのが
よい。本発明のゲル状亜鉛負極の配合組成及び充填率の
範囲であれば、占拠率Mは112%以下となり、漏液は
発生しない。この点からもゲル状亜鉛負極の配合組成及
び充填率は、本発明の範囲が妥当である。
Further, the occurrence of liquid leakage after overdischarge is closely related to the composition and filling rate of the gelled zinc negative electrode. A liquid is easily generated. Then, the ratio M (occupation ratio,%) of the volume of the discharge product to the internal volume of the negative electrode is obtained by the following equation (1), and it is preferable to set this to about 110% or less. Within the range of the composition and the filling rate of the gelled zinc negative electrode of the present invention, the occupation ratio M is 112% or less, and no liquid leakage occurs. From this point of view, the composition of the gelled zinc negative electrode and the filling rate are within the scope of the present invention.

【0013】[0013]

【数1】 (Equation 1)

【0014】なお、Gaは次の式から求めた。 Ga=[放電に利用された亜鉛の体積]×0.587 0.587は、放電利用率が一番良い電流密度(mA/
mm2 )で放電し、放電生成物が酸化亜鉛になると仮定
したときの、放電後亜鉛の体積増加率で、 亜鉛:比重7.14,原子量65.3 酸化亜鉛:比重5.6,分子量81.3 を用いて次式のように計算した。 0.587=[(81.3/5.6)/(65.3/
7.14)]−1=1.587−1
Incidentally, Ga was obtained from the following equation. Ga = [volume of zinc used for discharge] × 0.587 0.587 is the current density (mA /
mm 2 ) and the volume increase rate of zinc after discharge, assuming that the discharge product is zinc oxide, zinc: specific gravity 7.14, atomic weight 65.3 zinc oxide: specific gravity 5.6, molecular weight 81 , And was calculated as follows. 0.587 = [(81.3 / 5.6) / (65.3 /
7.14)]-1 = 1.587-1

【0015】[0015]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(ゲル状亜鉛負極の調製)ゲル状亜鉛負極は、亜鉛合金
粉,アルカリ電解液及びゲル化剤としてのポリアクリル
酸で構成される。亜鉛合金粉とアルカリ電解液の配合組
成は、表1に示すように、亜鉛合金粉100重量部に対
して、30wt%水酸化カリウム水溶液を32.5,3
0.0,27.5,25.0,22.5,20.0及び
17.5重量部の7種類とした。ゲル状亜鉛負極は、ま
ず亜鉛合金粉とポリアクリル酸(30wt%水酸化カリ
ウム水溶液100重量部に対して1.6重量部)をドラ
イ撹拌し、その後水酸化カリウム水溶液と共にウェット
撹拌して調製した。また、7種類のゲル状亜鉛負極の比
重を、亜鉛合金粉の比重7.14と、30wt%水酸化
カリウム水溶液の比重1.29とを用いて算出し、表1
に示した。
(Preparation of Gelled Zinc Negative Electrode) The gelled zinc negative electrode is composed of zinc alloy powder, an alkaline electrolyte and polyacrylic acid as a gelling agent. As shown in Table 1, the composition of the zinc alloy powder and the alkaline electrolyte was as follows.
There were seven types, 0.0, 27.5, 25.0, 22.5, 20.0 and 17.5 parts by weight. The gelled zinc negative electrode was prepared by first dry-stirring zinc alloy powder and polyacrylic acid (1.6 parts by weight with respect to 100 parts by weight of a 30 wt% aqueous solution of potassium hydroxide), and then wet-stirring with an aqueous solution of potassium hydroxide. . The specific gravities of the seven types of gelled zinc negative electrodes were calculated using the specific gravity of the zinc alloy powder, 7.14, and the specific gravity of the 30 wt% aqueous potassium hydroxide solution, 1.29.
It was shown to.

【0016】[0016]

【表1】 [Table 1]

【0017】(実施例1〜6)配合組成として、亜鉛合
金粉100重量部に対して、30wt%水酸化カリウム
水溶液を25.0,22.5及び20.0重量部の3種
類のゲル状亜鉛負極を使用し、ゲル状亜鉛負極の充填率
を85及び90%として、図1に示すようなPR44型
空気亜鉛電池を作製した。
(Examples 1 to 6) As a composition, three types of gels of 25.0, 22.5 and 20.0 parts by weight of a 30 wt% aqueous potassium hydroxide solution with respect to 100 parts by weight of zinc alloy powder were used. Using a zinc negative electrode, the filling rate of the gelled zinc negative electrode was set to 85 and 90% to produce a PR44 type air zinc battery as shown in FIG.

【0018】図1において、1は負極集電体、2はゲル
状亜鉛負極、3はセパレータ、4はパッキング、5は正
極触媒、6は正極缶、7はテフロン膜、8は空気拡散
紙、9は空気孔、10は絶縁シートである。
In FIG. 1, 1 is a negative electrode current collector, 2 is a gelled zinc negative electrode, 3 is a separator, 4 is a packing, 5 is a positive electrode catalyst, 6 is a positive electrode can, 7 is a Teflon film, 8 is air diffusion paper, 9 is an air hole, 10 is an insulating sheet.

【0019】ゲル状亜鉛負極の充填率は、次のようにし
てゲル状亜鉛負極の重量で調整した。まず電池の形状寸
法より負極内容積307μlを算出し、各々の充填率8
5及び90%に対応する体積を求め、次にそれらの体積
を各々3種類のゲル状亜鉛負極の比重を用いて重量に換
算した。
The filling rate of the gelled zinc negative electrode was adjusted by the weight of the gelled zinc negative electrode as follows. First, a negative electrode internal volume of 307 μl was calculated from the shape and dimensions of the battery.
Volumes corresponding to 5 and 90% were determined, and then these volumes were converted to weights using the specific gravities of the three gelled zinc negative electrodes, respectively.

【0020】このとき正極触媒は、マンガン酸化物,活
性炭及びテフロン粉末を混合撹拌して得られた正極合剤
をシート状に圧延し、片面にニッケルメッキしたステン
レスネットを、他面にテフロン膜をそれぞれ圧着して得
られた。また、パッキングはナイロン製パッキングを使
用した。
At this time, as the positive electrode catalyst, a positive electrode mixture obtained by mixing and stirring manganese oxide, activated carbon and Teflon powder is rolled into a sheet, and a stainless steel net plated with nickel on one side and a Teflon film on the other side. Each was obtained by crimping. The packing used was nylon packing.

【0021】負極ケースを兼ねた負極集電体はニッケル
−ステンレス−銅の3層クラッド材を成形加工して使用
した。正極ケースは、鉄材を成形加工した後にニッケル
メッキを施して使用した。
The negative electrode current collector also serving as the negative electrode case was formed by processing a three-layered clad material of nickel-stainless-copper. The positive electrode case was used by forming an iron material and then performing nickel plating.

【0022】(比較例1〜22)実施例と同様にして、
配合組成が、亜鉛合金粉100重量部に対して、30w
t%水酸化カリウム水溶液を32.5,30.0,2
7.5,25.0,22.5,20.0及び17.5重
量部の7種類のゲル状亜鉛負極を使用し、ゲル状亜鉛負
極の充填率を80,85,90及び95%として、図1
に示すようなPR44型空気亜鉛電池を作製した。ま
た、ゲル状亜鉛負極の充填率は、実施例と同様にゲル状
亜鉛負極の重量で調整した。
(Comparative Examples 1 to 22)
The composition is 30 w / 100 parts by weight of zinc alloy powder.
32.5, 30.0, 2
Using 7.5, 25.0, 22.5, 20.0 and 17.5 parts by weight of seven kinds of gelled zinc negative electrodes, and filling rates of the gelled zinc negative electrodes are 80, 85, 90 and 95%. , FIG.
The PR44 type zinc-air battery shown in FIG. The filling rate of the gelled zinc negative electrode was adjusted by the weight of the gelled zinc negative electrode in the same manner as in the example.

【0023】(評価)上記実施例及び比較例の電池の各
20個について、620Ω及び250Ωの連続放電試験
を行った。620Ω連続放電は、PR44型空気亜鉛電
池では、正負極の対向面積に対して0.025mA/m
2 程度の放電になり放電利用率が比較的良い条件であ
る。250Ω連続放電は、0.05mA/mm2 程度の
比較的重負荷の放電である。表1に結果を示す。各数値
は、20個の電池の平均値である。
(Evaluation) Continuous discharge tests of 620 Ω and 250 Ω were performed on each of the 20 batteries of the above Examples and Comparative Examples. In the PR44 type zinc-air battery, the 620Ω continuous discharge is 0.025 mA / m
This is a condition where the discharge is about m 2 and the discharge utilization rate is relatively good. The 250Ω continuous discharge is a discharge with a relatively heavy load of about 0.05 mA / mm 2 . Table 1 shows the results. Each numerical value is an average value of 20 batteries.

【0024】次に、実施例及び比較例の電池各20個を
25℃−85%RHの環境下において、620Ωで50
0時間放電し、過放電後の空気孔からの漏液を目視調査
した。PR44型空気亜鉛電池の620Ω連続放電は、
200〜350時間程度で放電が終わるので、1.5〜
2.5倍程度の過放電である。空気亜鉛電池では、過放
電により負極内容物が膨張したときに空気孔からアルカ
リ電解液が押し出されて漏液することがあり、25℃−
85%RHのように高湿の環境下では特に漏液しやすく
なる。結果を表1に示す。各数値は、電池20個中の漏
液した電池の個数である。
Next, in the environment of 25 ° C. and 85% RH, 50 batteries at 620 Ω
Discharge was performed for 0 hour, and liquid leakage from the air hole after overdischarge was visually inspected. 620Ω continuous discharge of PR44 type zinc-air battery is
Since the discharge is completed in about 200 to 350 hours, 1.5 to
The overdischarge is about 2.5 times. In the case of a zinc-air battery, when the content of the negative electrode expands due to overdischarge, the alkaline electrolyte may be extruded from the air holes and leak, and the temperature may be reduced to 25 ° C.
In a highly humid environment such as 85% RH, liquid leakage is particularly likely. Table 1 shows the results. Each numerical value is the number of leaked batteries among the 20 batteries.

【0025】この表から明らかなように、ゲル状亜鉛負
極の配合組成に関わらず、充填率が85%から80%に
減少すると放電利用率が大きく低下し高容量化できな
い。充填率が85%から90%に増加すると、本発明の
場合は過放電後の漏液特性は悪くならないが、比較例の
場合は漏液特性が悪化する。配合組成が亜鉛合金粉10
0重量部に対してアルカリ電解液が32.5,30.
0,27.5及び17.5重量部のゲル状亜鉛負極の場
合は、充填率を85及び90%にしても高容量化と過放
電後の漏液特性の両方を満足させるものはない。
As is clear from this table, regardless of the composition of the gelled zinc negative electrode, when the filling rate is reduced from 85% to 80%, the discharge utilization rate is greatly reduced and the capacity cannot be increased. When the filling rate increases from 85% to 90%, in the case of the present invention, the liquid leakage characteristics after overdischarge do not deteriorate, but in the case of the comparative example, the liquid leakage characteristics deteriorate. The composition is zinc alloy powder 10
0 parts by weight of the alkaline electrolyte was 32.5, 30.
In the case of 0, 27.5 and 17.5 parts by weight of the gelled zinc negative electrode, none of them satisfy both the high capacity and the liquid leakage characteristics after overdischarge even if the filling rate is 85 and 90%.

【0026】以上のように、ゲル状亜鉛負極の配合組成
が、亜鉛合金粉100重量部に対してアルカリ電解液2
0〜25重量部であり、電池の負極容積に対してゲル状
亜鉛負極体積の充填率が85〜90%である本発明品
は、従来の空気亜鉛電池に比較して、高容量化すること
ができ、且つ過放電後の漏液の危険性もない。
As described above, the composition of the gelled zinc negative electrode is such that the alkaline electrolyte 2
The product of the present invention, which has a filling rate of 85 to 90% of the volume of the gelled zinc negative electrode with respect to the negative electrode volume of the battery, has a higher capacity than a conventional air zinc battery. And there is no danger of liquid leakage after overdischarge.

【0027】なお、本発明は上記実施例により限定され
るものではなく、本発明に直接影響を及ぼさない、亜鉛
合金粉,ゲル化剤,電解液濃度,正極触媒等の要素につ
いては本発明の範囲を逸脱しない限り、変更して差支え
ない。
It should be noted that the present invention is not limited to the above-described embodiment, and elements that do not directly affect the present invention, such as zinc alloy powder, gelling agent, electrolyte concentration, and positive electrode catalyst, are described in the present invention. Changes can be made without departing from the scope.

【0028】[0028]

【発明の効果】以上説明したように、本発明によれば、
従来の空気亜鉛電池に比較して、高容量化され、且つ過
放電漏液の危険性もない電池を提供することができる。
As described above, according to the present invention,
It is possible to provide a battery which has a higher capacity than the conventional zinc-air battery and has no risk of over-discharge leakage.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例であるPR44型空気亜鉛電
池の断面図。
FIG. 1 is a sectional view of a PR44 type zinc-air battery according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…負極集電体、2…ゲル状亜鉛負極、3…セパレー
タ、4…パッキング、5…正極触媒、6…正極缶、7…
テフロン膜、8…空気拡散紙、9…空気孔、10…絶縁
シート。
DESCRIPTION OF SYMBOLS 1 ... Negative electrode current collector, 2 ... Gel zinc negative electrode, 3 ... Separator, 4 ... Packing, 5 ... Positive catalyst, 6 ... Positive electrode can, 7 ...
Teflon film, 8: air diffusion paper, 9: air hole, 10: insulating sheet.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川口 正夫 東京都品川区南品川三丁目4番10号 東芝 電池株式会社内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Masao Kawaguchi 3-4-10 Minamishinagawa, Shinagawa-ku, Tokyo Toshiba Battery Corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 空気中の酸素を正極作用物質とし、負極
集電体を兼ねた負極容器に亜鉛合金粉,アルカリ電解
液,及びゲル化剤で構成されたゲル状亜鉛負極を有する
空気亜鉛電池において、前記ゲル状亜鉛負極の配合組成
が亜鉛合金粉100重量部に対してアルカリ電解液が2
0〜25重量部であり、且つ負極容積に対する前記ゲル
状亜鉛負極の充填率が85〜90%であることを特徴と
する空気亜鉛電池。
1. An air-zinc battery having a gelled zinc negative electrode composed of zinc alloy powder, an alkaline electrolyte, and a gelling agent in a negative electrode container also serving as a negative electrode current collector using oxygen in the air as a positive electrode active material. In the above, the composition of the gelled zinc negative electrode is such that the alkaline electrolyte is 2 parts by weight per 100 parts by weight of the zinc alloy powder.
0 to 25 parts by weight, and the filling rate of the gelled zinc negative electrode with respect to the negative electrode volume is 85 to 90%.
JP23390997A 1997-08-29 1997-08-29 Air zinc battery Expired - Fee Related JP3647218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23390997A JP3647218B2 (en) 1997-08-29 1997-08-29 Air zinc battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23390997A JP3647218B2 (en) 1997-08-29 1997-08-29 Air zinc battery

Publications (2)

Publication Number Publication Date
JPH1173949A true JPH1173949A (en) 1999-03-16
JP3647218B2 JP3647218B2 (en) 2005-05-11

Family

ID=16962495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23390997A Expired - Fee Related JP3647218B2 (en) 1997-08-29 1997-08-29 Air zinc battery

Country Status (1)

Country Link
JP (1) JP3647218B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003521100A (en) * 2000-01-25 2003-07-08 ザ ジレット カンパニー Zinc / air battery

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070224495A1 (en) 2006-03-22 2007-09-27 Gibbons Daniel W Zinc/air cell
US20070224500A1 (en) 2006-03-22 2007-09-27 White Leo J Zinc/air cell
GB202110221D0 (en) * 2021-07-15 2021-09-01 Lina Energy Ltd Electrochemical cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003521100A (en) * 2000-01-25 2003-07-08 ザ ジレット カンパニー Zinc / air battery

Also Published As

Publication number Publication date
JP3647218B2 (en) 2005-05-11

Similar Documents

Publication Publication Date Title
EP1958278B1 (en) Rechargeable alkaline manganese cell having reduced capacity fade and improved cycle life
US11936073B2 (en) Electrochemical cell with improved high-rate discharge performance
KR20020053807A (en) Rechargeable nickel-zinc cells
JPH1173949A (en) Air zinc battery
JP2001332250A (en) Alkaline dry cell
JPH11297352A (en) Alkaline storage battery
JP3263603B2 (en) Alkaline storage battery
JP2004502279A (en) Electrochemical cell with anode containing sulfur
JP2001332249A (en) Alkaline dry battery
JPH08279355A (en) Button type alkaline battery
JP2003317796A (en) Storage battery
JPH0763004B2 (en) Sealed alkaline storage battery
JP3101622B2 (en) Nickel-hydrogen alkaline storage battery
JP3474721B2 (en) Non-melonized air battery
JPS6014761A (en) Silver oxide cell
JPH10154526A (en) Rectangular alkaline storage battery
JPH028419B2 (en)
JP2001035526A (en) Nickel hydrogen storage battery
JPH0620681A (en) Metal-hydrogen alkaline battery
JPH11149920A (en) Nickel electrode for alkali secondary battery and alkali secondary battery
JPH11233094A (en) Air-zinc battery
JP2003317798A (en) Nickel - hydrogen battery and its manufacturing method
JPH08227721A (en) Alkaline dry battery
JPH11354151A (en) Nickel-hydrogen battery
JPS58117637A (en) Button-type alkaline battery

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050208

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050208

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20110218

LAPS Cancellation because of no payment of annual fees