JP3474721B2 - Non-melonized air battery - Google Patents

Non-melonized air battery

Info

Publication number
JP3474721B2
JP3474721B2 JP32129396A JP32129396A JP3474721B2 JP 3474721 B2 JP3474721 B2 JP 3474721B2 JP 32129396 A JP32129396 A JP 32129396A JP 32129396 A JP32129396 A JP 32129396A JP 3474721 B2 JP3474721 B2 JP 3474721B2
Authority
JP
Japan
Prior art keywords
negative electrode
bulk density
active material
zinc powder
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32129396A
Other languages
Japanese (ja)
Other versions
JPH10162869A (en
Inventor
秀之 小方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP32129396A priority Critical patent/JP3474721B2/en
Publication of JPH10162869A publication Critical patent/JPH10162869A/en
Application granted granted Critical
Publication of JP3474721B2 publication Critical patent/JP3474721B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • Y02E60/128

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は無汞化空気電池に係
り、さらに詳しくは無汞化亜鉛粉末の嵩密度と電解液比
率を規制することで負極活物質の流れ性、放電利用率及
び耐漏液特性を改善した無汞化空気電池に関する。 【0002】 【従来の技術】従来の空気電池の亜鉛粉末には水銀が含
まれていた。しかしながら、近年、低公害化が求められ
てきたため、水銀の含有率を低減させた空気電池の研究
開発がなされるようになった。その結果、インヒビタ
ー、亜鉛合金等の開発により水素ガス発生、放電劣化等
の諸問題については有水銀の空気電池と比較してもほぼ
同程度の水銀の含有率を低減させた空気電池を提供でき
るようになった。 【0003】しかしながら、負極活物質を充填する際
に、うまく充填されないと言ったような負極活物質の流
れ性に関する問題や、放電利用率及び耐漏液特性に関す
る問題が新たに持ち上がってきた。 【0004】図1は、空気電池の要部構成を断面的に示
したもので、1は底壁面に空気孔2を有する一端が開口
型の正極ケース、この正極ケース1内には、その内底壁
面上に拡散紙3、撥水膜4、触媒層5及びセパレータ6
が順次積層配置されて正極組立体7を形成している。触
媒層5は一般的に活性炭、マンガン酸化物(助触媒)及
びカーボンブラックなど(導電材)の混合体であり、シ
ート状に形成されている。 【0005】また、8は正極組立体7のセパレータ6上
に積層配置された無汞化亜鉛粉末及び電解液を含有した
ゲル状の負極活物質層である。このゲル状の負極活物質
層は、たとえば40重量%の水酸化カリウム水溶液(酸
化亜鉛2重量%含有)に、2重量%(対電解液)のポリ
アクリル酸ナトリウムと重量比(対電解液)で約5倍程
度の無汞化亜鉛粉末もしくは無汞化亜鉛合金粉末を配合
した混練体である。 【0006】さらに、9は負極活物質層8に内壁面部が
電気的に接して正極ケース1の開口部を封止する負極ケ
ース、10は正極ケース9及び正極ケース1の被封止部
間に介挿配置された絶縁ガスケット、11は正極ケース
1の底壁面に設けた空気孔2を封止するため正極ケース
外壁面に貼着されたシールテープである。 【0007】 【発明が解決しようとする課題】ところが、近年、生活
環境への関心の高まりの中で少量とはいえ有害な水銀が
電池中に含有されていることは問題であり、無水銀化し
た電池のさらなる開発が望まれてきた。 【0008】しかし、無汞化亜鉛を利用した負極活物質
に関しては流れ性の悪化の問題、あるいは無水銀化した
電池では放電利用率の悪化や漏液の発生等の問題が発生
してきた。 【0009】本発明の請求項1は上記状況に鑑みてなさ
れたもので、無水銀化に伴う負極活物質の流れ性、放電
利用率の向上及び耐漏液特性の劣化を抑制して優れた電
池特性を持つ無汞化空気電池を提供することを目的とす
るものである。 【0010】 【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1は、底壁面に空気孔を有し,一端
が開口型の正極ケースと、前記正極ケースの内壁面上に
拡散紙,撥水膜,触媒層及びセパレータを積層してなる
正極組立体と、前記セパレータに対接配置された電解液
及び無汞化亜鉛粉末を含有したゲル状の負極活物質層
と、前記負極ケース及び前記正極ケースの被封止部間に
介挿配置された絶縁ガスケットとを有する無汞化空気電
池であって、前記負極活物質の無汞化亜鉛粉末の嵩密度
が2.6〜3.1g/mlで電解液比率を20〜100
%にしたもの、もしくは嵩密度が3.1〜3.5g/m
lで電解液比率を60〜100%にしたもの、もしくは
嵩密度が3.5〜3.8g/mlで電解液比率を80〜
100%にしたものであることを特徴とするものであ
る。 【0011】 【発明の実施の形態】以下、本発明の実施の形態を図を
参照して説明する。図1は本発明の一実施例のボタン型
空気電池(JIS規格PR44型)の要部断面図であ
る。 【0012】同図において、1は底壁面に空気孔2を有
する一端が開口型の正極ケースで、ニッケルメッキを施
した鉄製である。この正極ケース1内には、その内底壁
面上に拡散紙3,撥水膜4,触媒層5及びセパレータ6
が順次積層配置されて正極組立体7を形成している。こ
こで、拡散紙3は厚さ50μmのクラフト紙、撥水膜4
は厚さ100μmのポリテトラフロロエチレン(PTF
E)フィルム、触媒層5は活性炭にポリテトラフロロエ
チレン粉末を混合し、厚さ300μmのシート状に形成
したもの、セパレータ6は厚さ150μmのポリプロピ
レン微多孔膜である。 【0013】8は正極組立体7のセパレータ6上に積層
配置された無汞化亜鉛粉末及び電解液を含有したゲル状
の負極活物質層である。このゲル状の負極活物質層は、
10〜120重量%(対亜鉛)の水酸化カリウム水溶液
(酸化亜鉛2重量%程度含有)に1〜3重量%のポリア
クリル酸ナトリウムと嵩密度2.6〜3.8g/mlの
無汞化亜鉛粉末を500g程度添加配合して調整したゲ
ル状の混合体である。なお、電解液は水酸化カリウムの
水溶液のほか、たとえば水酸化ナトリウムなどのアルカ
リ金属の水溶液であってもよい。 【0014】さらに、9は負極活物質層8に内壁面が電
気的に接する一方、正極ケース1の開口部を封止する負
極ケース、10は負極ケース9及び正極ケース1の被封
止部間に介挿配置された絶縁ガスケット、11は正極ケ
ース1の空気孔2を封止するための正極ケース1外壁面
に貼着されたシールテープである。ここで、負極ケース
9は、たとえばニッケル、ステンレス鋼及び銅の三層ク
ラッド製であり、また絶縁ガスケット10はナイロン系
のものである。 【0015】上記のように、負極活物質層8として嵩密
度が2.6〜3.1g/mlで電解液比率を20〜10
0%(亜鉛粉末100に対する電解液の質量%比)にし
たもの、嵩密度が3.1〜3.5g/mlで電解液比率
を60〜100%にしたもの、嵩密度が3.5〜3.8
g/mlで電解液比率を80〜100%にしたもので1
5種(実施例1〜実施例15)の無汞化空気電池を、そ
れぞれ50個ずつ組み立て作成した。 【0016】また、比較例として嵩密度が2.6〜3.
8g/mlの無汞化亜鉛粉末、電解液比率20〜100
%の負極活物質を用いた無汞化空気電池6種(比較例1
〜比較例5)、嵩密度で2.6g/ml以上3.8g/
ml以下で電解液比率10〜120%の負極活物質を用
いた無汞化空気電池22種(比較例6〜比較例27)を
それぞれ50個ずつ組み立て作成した。なお、嵩密度の
測定法は「JIS Z2504」に基づいて行った。 【0017】上記構成の実施例及び比較例の各空気電池
について、次のような評価、すなわち、250Ω連続放
電での亜鉛の利用率と、高温貯蔵耐漏液試験(45℃−
93%RH・60day)と、過放電耐漏液試験(20
℃−60%RH・620Ω/360hrs.)を行い、
その結果を表1及び表2に纏めた。 【0018】 【表1】 【0019】 【表2】【0020】上記表1及び表2から明らかなように、本
発明に係る空気電池(実施例1〜実施例15)は、過放
電漏液及び高温貯蔵漏液は共に発生しておらず、また負
極活物質の流れ性及び利用率も良好であった。 【0021】これに対して、比較例1〜比較例5は亜鉛
利用率が低いために過放電漏液が発生している。また比
較例6〜比較例9は、電解液比率が低いため負極活物質
の流れ性が悪くなっているほか、利用率が悪く過放電漏
液が発生しているもの(比較例7〜9)もあった。 【0022】さらに比較例10〜比較例13は、電解液
比率が120%と亜鉛量に対して過剰であるために高温
貯蔵で漏液が発生している。比較例14〜比較例19
は、嵩密度が低いために負極活物質の流れ性が悪くなっ
ている。比較例20は、電解液比率が120%と亜鉛量
に対して過剰であるために、高温貯蔵で漏液が発生して
いる。比較例21〜比較例27は、嵩密度が高すぎるた
めに利用率が悪くなっているほか、電解液比率が低く流
れ性の悪いもの(比較例21)もあった。 【0023】なお、本発明は上記実施例に限定されるも
のでなく、発明の趣旨を逸脱しない範囲でいろいろな変
形を採ることができる。たとえば空気電池の形式はJI
S規格PR44以外であってもよい。上記実施例及び比
較例を簡単にまとめると下記表3に示す通りとなる。 【0024】 【表3】【0025】上記表3から分かるように、本実施例の無
汞化空気電池によると、負極活物質の無汞化亜鉛粉末の
嵩密度が2.6〜3.8g/mlで電解液比率を20〜
100%(亜鉛粉末100に対する電解液の質量%比)
にしたもの、嵩密度が3.1〜3.5g/mlで電解液
比率を60〜100%にしたもの、嵩密度が3.5〜
3.8g/mlで電解液比率を80〜100%にしたも
のは、いずれを使用しても負極活物質を充填する際の流
れ性、放電利用率、耐漏液特性の悪化を抑制することが
できる。 【0026】以上説明したところから、本発明は無汞化
亜鉛粉末の嵩密度と電解液比率を制御することで、無汞
化亜鉛粉末の嵩密度が小さすぎる時に発生する負極活物
質の流れ性の悪化や、電解液比率が大きすぎる時に発生
する高温貯蔵時の漏液、さらに無汞化亜鉛粉末の嵩密度
と電解液比率の組み合わせが悪く放電利用率が低下する
といった問題を改善することが可能となる。 【0027】この場合の作用機構については、次の通り
と考える。まず、亜鉛粉の嵩密度が小さくなると、粒形
状は重量当たりの表面積が大きい針状に、それとは逆に
嵩密度が大きくなると、重量当たりの表面積が小さい球
状になる。 【0028】本発明では、無汞化亜鉛粉を使用するの
で、従来の汞化亜鉛に比べ表面が粗くなっているため、
負極活物質を充填する際流動性に欠けてしまう。そこ
で、従来並の流動性を得るために、球状の亜鉛粉すなわ
ち嵩密度の大きい無汞化亜鉛粉を用いる必要がある。 【0029】ところが、球形状の亜鉛粉は表面積が小さ
いため、放電の際そのまわりの反応生成物の拡散性が乏
しくなり、放電利用率の低下を招いてしまう。また、放
電利用率の低下は、放電後に未反応亜鉛と放電生成物
(酸化亜鉛、水酸化亜鉛等)との間でのガスの発生に伴
い、内圧上昇を招き、電池のふくれや空気孔を通しての
電解液漏出に至ってしまう。 【0030】しかしながら、本発明では電解液量を増や
すことで相対的に反応生成物の拡散性を向上することが
できるので、放電利用率の低下を改善することができ、
同時にガス発生による漏液を改善することができる。 【0031】なお、電解液を増やす量は上記の理由によ
り、配合する亜鉛粉の形状、すなわち嵩密度により最適
値があり、本発明では実験によりその範囲を求めたもの
である。 【0032】 【発明の効果】以上説明したように、本発明の請求項1
によると、負極活物質を充填する際の流れ性、放電利用
率、耐漏液特性の劣化を抑制し、優れた電池特性を備え
た無汞化空気電池を提供することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-calorinized air battery, and more particularly, to a negative electrode active battery by regulating the bulk density and non-aqueous electrolyte ratio of non-melted zinc powder. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-caloric air cell having improved material flowability, discharge utilization rate, and liquid leakage resistance. [0002] Mercury is contained in zinc powder of a conventional air battery. However, in recent years, low-pollution has been demanded, and therefore, research and development of an air battery with a reduced mercury content have been started. As a result, the development of inhibitors, zinc alloys, and the like can provide an air battery with a reduced mercury content that is approximately the same as that of a mercury-containing air battery in terms of hydrogen gas generation, discharge deterioration, and other problems. It became so. [0003] However, when the negative electrode active material is filled, problems concerning the flowability of the negative electrode active material, such as failure to fill the negative electrode active material, and problems relating to the discharge utilization rate and the leakage resistance characteristics have been newly raised. FIG. 1 is a cross-sectional view showing the structure of a main part of an air battery. Reference numeral 1 denotes a positive electrode case having an air hole 2 on a bottom wall and having an open end at one end. Diffusion paper 3, water-repellent film 4, catalyst layer 5, and separator 6 on bottom wall
Are sequentially laminated to form the positive electrode assembly 7. The catalyst layer 5 is generally a mixture of activated carbon, manganese oxide (co-catalyst), carbon black and the like (conductive material), and is formed in a sheet shape. Reference numeral 8 denotes a gelled negative electrode active material layer containing a non-melting zinc powder and an electrolytic solution, which are laminated on the separator 6 of the positive electrode assembly 7. This gelled negative electrode active material layer is prepared, for example, by adding 40% by weight of an aqueous solution of potassium hydroxide (containing 2% by weight of zinc oxide) and 2% by weight (to the electrolyte) of sodium polyacrylate in a weight ratio (to the electrolyte). This is a kneaded body containing about 5 times the amount of non-melted zinc powder or non-melted zinc alloy powder. Further, reference numeral 9 denotes a negative electrode case whose inner wall surface electrically contacts the negative electrode active material layer 8 to seal the opening of the positive electrode case 1, and 10 denotes a space between the positive electrode case 9 and the sealed portion of the positive electrode case 1. The insulating gasket 11 interposed therebetween is a seal tape attached to the outer wall surface of the positive electrode case to seal the air hole 2 provided in the bottom wall surface of the positive electrode case 1. However, in recent years, with the growing interest in living environments, it has been a problem that harmful mercury is contained in batteries even though it is in a small amount. Further development of such batteries has been desired. However, there has been a problem that the flowability of the negative electrode active material using non-melonized zinc is deteriorated, or that the mercury-free battery has a problem such as deterioration of the discharge utilization rate and generation of liquid leakage. A first aspect of the present invention has been made in view of the above circumstances, and is an excellent battery which suppresses deterioration of the flowability of the negative electrode active material, the discharge utilization rate, and the deterioration of the liquid leakage resistance due to the mercury-free treatment. It is an object of the present invention to provide a non-melonized air battery having characteristics. [0010] In order to achieve the above object, a first aspect of the present invention is to provide a positive electrode case having an air hole in a bottom wall surface and having an open end at one end; A positive electrode assembly comprising a diffusion paper, a water-repellent film, a catalyst layer and a separator laminated on an inner wall surface, and a gelled negative electrode active material containing an electrolytic solution and a non-melonized zinc powder disposed in contact with the separator. Layer, and an insulating gasket interposed between the sealed portions of the negative electrode case and the positive electrode case, wherein the non-calorinized zinc powder of the negative electrode active material has a bulk density of non-calorinized zinc powder. 2.6 to 3.1 g / ml and an electrolyte solution ratio of 20 to 100
% Or a bulk density of 3.1 to 3.5 g / m
l, and the electrolyte ratio is 60 to 100%, or the bulk density is 3.5 to 3.8 g / ml and the electrolyte ratio is 80 to 100%.
It is characterized by being 100%. An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a main part of a button type air battery (JIS standard PR44 type) according to an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a positive electrode case having an air hole 2 on a bottom wall and having an open end at one end, which is made of nickel-plated iron. Inside the positive electrode case 1, diffusion paper 3, water repellent film 4, catalyst layer 5, and separator 6
Are sequentially laminated to form the positive electrode assembly 7. Here, the diffusion paper 3 is kraft paper having a thickness of 50 μm,
Is a 100 μm thick polytetrafluoroethylene (PTF
E) The film and catalyst layer 5 are formed by mixing activated carbon with polytetrafluoroethylene powder to form a sheet having a thickness of 300 μm, and the separator 6 is a microporous polypropylene membrane having a thickness of 150 μm. Reference numeral 8 denotes a gelled negative electrode active material layer containing a non-melting zinc powder and an electrolytic solution, which are laminated on the separator 6 of the positive electrode assembly 7. This gelled negative electrode active material layer
10 to 120% by weight (based on zinc) of potassium hydroxide aqueous solution (containing about 2% by weight of zinc oxide), 1 to 3% by weight of sodium polyacrylate and non-melting of bulk density of 2.6 to 3.8 g / ml It is a gel-like mixture prepared by adding and blending about 500 g of zinc powder. The electrolytic solution may be an aqueous solution of an alkali metal such as sodium hydroxide in addition to the aqueous solution of potassium hydroxide. Further, reference numeral 9 denotes a negative electrode case in which the inner wall surface electrically contacts the negative electrode active material layer 8 while sealing the opening of the positive electrode case 1, and 10 denotes a space between the negative electrode case 9 and the sealed portion of the positive electrode case 1. An insulating gasket 11 is interposed between the sealing gasket 11 and a sealing tape attached to the outer wall surface of the positive electrode case 1 for sealing the air hole 2 of the positive electrode case 1. Here, the negative electrode case 9 is made of, for example, a three-layer clad of nickel, stainless steel and copper, and the insulating gasket 10 is made of nylon. As described above, the negative electrode active material layer 8 has a bulk density of 2.6 to 3.1 g / ml and an electrolytic solution ratio of 20 to 10 g / ml.
0% (mass% ratio of electrolyte to zinc powder 100), bulk density of 3.1 to 3.5 g / ml and electrolyte ratio of 60 to 100%, bulk density of 3.5 to 3.5 3.8
g / ml with an electrolyte ratio of 80 to 100%.
Fifty (5) Examples (Examples 1 to 15) of 50 non-molten air cells were assembled and produced. Further, as a comparative example, the bulk density is 2.6 to 3.
8 g / ml of non-melonized zinc powder, electrolyte ratio 20 to 100
% Of non-calorinized air batteries using 5% anode active material (Comparative Example 1)
-Comparative Example 5), with a bulk density of 2.6 g / ml or more and 3.8 g / ml
Twenty-two 50 non-melonized air batteries (Comparative Examples 6 to 27) each using a negative electrode active material having an electrolyte solution ratio of 10 to 120% in a volume of not more than 50 ml were prepared. In addition, the measuring method of the bulk density was performed based on "JIS Z2504". With respect to each of the air batteries of the embodiment and the comparative example having the above-described configurations, the following evaluations were made, that is, the utilization rate of zinc in 250Ω continuous discharge and the high-temperature storage leakage test (45 ° C.
93% RH, 60 days) and overdischarge resistance test (20
° C-60% RH · 620Ω / 360hrs. ),
The results are summarized in Tables 1 and 2. [Table 1] [Table 2] As is clear from Tables 1 and 2, in the air batteries according to the present invention (Examples 1 to 15), neither over-discharge leakage nor high-temperature storage leakage occurred. The flowability and utilization of the negative electrode active material were also good. On the other hand, in Comparative Examples 1 to 5, since the zinc utilization was low, over-discharge leakage occurred. In Comparative Examples 6 to 9, the flow rate of the negative electrode active material was poor due to the low ratio of the electrolytic solution, and the utilization rate was poor and over-discharge leakage occurred (Comparative Examples 7 to 9). There was also. Further, in Comparative Examples 10 to 13, since the electrolytic solution ratio was 120%, which was excessive with respect to the amount of zinc, liquid leakage occurred during high-temperature storage. Comparative Examples 14 to 19
However, since the bulk density is low, the flowability of the negative electrode active material is poor. In Comparative Example 20, since the electrolytic solution ratio was 120%, which was excessive with respect to the amount of zinc, liquid leakage occurred during high-temperature storage. In Comparative Examples 21 to 27, the utilization rate was poor because the bulk density was too high, and there were also those in which the electrolyte ratio was low and the flowability was poor (Comparative Example 21). The present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the invention. For example, the type of air battery is JI
It may be other than the S standard PR44. The above Examples and Comparative Examples are briefly shown in Table 3 below. [Table 3] As can be seen from Table 3, according to the non-calorinized air battery of the present embodiment, the bulk density of the non-calorinized zinc powder as the negative electrode active material is 2.6 to 3.8 g / ml, and the electrolytic solution ratio is 20 ~
100% (mass% ratio of electrolyte to zinc powder 100)
, A bulk density of 3.1 to 3.5 g / ml and an electrolyte ratio of 60 to 100%, a bulk density of 3.5 to
Whatever 3.8 g / ml and 80% to 100% of the electrolytic solution ratio can be used, it is possible to suppress the deterioration of the flowability, discharge utilization factor, and leakage resistance when filling the negative electrode active material. it can. As described above, the present invention controls the flow rate of the negative electrode active material generated when the bulk density of the non-melonized zinc powder is too small by controlling the bulk density of the non-melted zinc powder and the electrolyte ratio. It is possible to improve the problems such as the deterioration of the electrolyte, the leakage during high temperature storage that occurs when the electrolyte ratio is too large, and the poor combination of the bulk density of the non-melonized zinc powder and the electrolyte ratio and the decrease in the discharge utilization rate. It becomes possible. The action mechanism in this case is considered as follows. First, when the bulk density of the zinc powder decreases, the particle shape becomes a needle shape having a large surface area per weight, and conversely, when the bulk density increases, the particle shape becomes a spherical shape having a small surface area per weight. In the present invention, since non-melted zinc powder is used, the surface is rougher than the conventional zinc-melted powder.
When filling the negative electrode active material, fluidity is lacking. Therefore, in order to obtain the same level of fluidity as before, it is necessary to use spherical zinc powder, that is, non-melted zinc powder having a large bulk density. However, since the spherical zinc powder has a small surface area, the diffusion of reaction products around the zinc powder during discharge becomes poor, which causes a decrease in discharge utilization. In addition, the decrease in the discharge utilization rate is caused by the generation of gas between the unreacted zinc and the discharge products (zinc oxide, zinc hydroxide, etc.) after the discharge, causing an increase in the internal pressure, and through the blisters and air holes of the battery. Electrolyte leakage. However, in the present invention, the diffusion of the reaction product can be relatively improved by increasing the amount of the electrolytic solution.
At the same time, leakage due to gas generation can be improved. The amount of the electrolytic solution to be increased has an optimum value depending on the shape of the zinc powder to be mixed, that is, the bulk density, for the above-mentioned reason. In the present invention, the range is determined by experiments. As described above, according to the first aspect of the present invention,
According to the method, it is possible to provide a non-aqueous air battery having excellent battery characteristics by suppressing deterioration in flowability, discharge utilization rate, and liquid leakage resistance when filling the negative electrode active material.

【図面の簡単な説明】 【図1】本発明の一実施例である空気電池の要部断面
図。 【符号の説明】 1…正極ケース、2…空気孔、3…拡散紙、4…撥水
膜、5…触媒層、6…セパレータ、7…正極組立体、8
…負極活物質層、9…負極ケース、10…絶縁ガスケッ
ト、11…シールテープ。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view of an essential part of an air battery according to an embodiment of the present invention. [Description of Signs] 1 ... Positive electrode case, 2 ... Air holes, 3 ... Diffusion paper, 4 ... Water repellent film, 5 ... Catalyst layer, 6 ... Separator, 7 ... Positive electrode assembly, 8
... negative electrode active material layer, 9 ... negative electrode case, 10 ... insulating gasket, 11 ... seal tape.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 12/06 H01M 4/42 H01M 4/06 ──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int.Cl. 7 , DB name) H01M 12/06 H01M 4/42 H01M 4/06

Claims (1)

(57)【特許請求の範囲】 【請求項1】 底壁面に空気孔を有し,一端が開口型の
正極ケースと、前記正極ケースの内壁面上に拡散紙,撥
水膜,触媒層及びセパレータを積層してなる正極組立体
と、前記セパレータに対接配置された電解液及び無汞化
亜鉛粉末を含有したゲル状の負極活物質層と、前記負極
ケース及び前記正極ケースの被封止部間に介挿配置され
た絶縁ガスケットとを有する無汞化空気電池であって、
前記負極活物質の無汞化亜鉛粉末の嵩密度が2.6〜
3.1g/mlで電解液比率(亜鉛粉末100に対する
電解液の質量%比)を20〜100%にしたもの、もし
くは嵩密度が3.1〜3.5g/mlで電解液比率を6
0〜100%にしたもの、もしくは嵩密度が3.5〜
3.8g/mlで電解液比率を80〜100%にしたも
のであることを特徴とする無汞化空気電池。
(57) [Claim 1] A positive electrode case having an air hole on the bottom wall surface and one end open, and a diffusion paper, a water-repellent film, a catalyst layer and A positive electrode assembly formed by stacking separators, a gelled negative electrode active material layer containing an electrolytic solution and a non-melonized zinc powder disposed opposite to the separator, and sealing the negative electrode case and the positive electrode case. A non-melting air cell having an insulating gasket interposed between the parts,
The bulk density of the non-melonized zinc powder of the negative electrode active material is 2.6 to
An electrolyte solution ratio (mass% ratio of electrolyte solution to zinc powder 100) of 3.1 g / ml to 20 to 100%, or a bulk density of 3.1 to 3.5 g / ml and electrolyte solution ratio of 6
0 to 100%, or a bulk density of 3.5 to
A non-melting air battery characterized in that the electrolyte solution ratio is 3.8 to 100% at 3.8 g / ml.
JP32129396A 1996-12-02 1996-12-02 Non-melonized air battery Expired - Fee Related JP3474721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32129396A JP3474721B2 (en) 1996-12-02 1996-12-02 Non-melonized air battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32129396A JP3474721B2 (en) 1996-12-02 1996-12-02 Non-melonized air battery

Publications (2)

Publication Number Publication Date
JPH10162869A JPH10162869A (en) 1998-06-19
JP3474721B2 true JP3474721B2 (en) 2003-12-08

Family

ID=18130961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32129396A Expired - Fee Related JP3474721B2 (en) 1996-12-02 1996-12-02 Non-melonized air battery

Country Status (1)

Country Link
JP (1) JP3474721B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6602629B1 (en) * 2000-05-24 2003-08-05 Eveready Battery Company, Inc. Zero mercury air cell

Also Published As

Publication number Publication date
JPH10162869A (en) 1998-06-19

Similar Documents

Publication Publication Date Title
JP3607612B2 (en) Galvanic battery and manufacturing method thereof
US20010000484A1 (en) High-temperature Ni-MH battery and a method for making the same
JPH08321322A (en) Metallic hydride secondary battery equipped with solid high polymer electrolyte
US5004657A (en) Battery
JP3474721B2 (en) Non-melonized air battery
JPH11339865A (en) Air electrode and air cell
EP2590245B1 (en) Copper alloy metal strip for zinc air anode cans
JPH10189006A (en) Air cell
JP4253172B2 (en) Sealed nickel zinc primary battery
JP3647218B2 (en) Air zinc battery
EP0383836A1 (en) Catalytic recombination of evolved oxygen in galvanic cells
CA2356395A1 (en) Reduced leakage metal-air electrochemical cell
WO2023002769A1 (en) Alkaline battery
JP2001068121A (en) Cylindrical alkaline battery
JP2005019145A (en) Air battery
JP3968248B2 (en) Aluminum battery
JP3769063B2 (en) Air battery
WO2021200398A1 (en) Flat battery and method for manufacturing same
JPH08279355A (en) Button type alkaline battery
JPS6261279A (en) Button type air cell
JP2000195568A (en) Air battery
JPH09115519A (en) Alkaline secondary battery
JP2004164863A (en) Sealed type nickel zinc primary cell
JP3315530B2 (en) Alkaline battery
JP2581450Y2 (en) Cylindrical alkaline battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20080919

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20100919

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees