JP2517936B2 - Air zinc battery - Google Patents

Air zinc battery

Info

Publication number
JP2517936B2
JP2517936B2 JP62006805A JP680587A JP2517936B2 JP 2517936 B2 JP2517936 B2 JP 2517936B2 JP 62006805 A JP62006805 A JP 62006805A JP 680587 A JP680587 A JP 680587A JP 2517936 B2 JP2517936 B2 JP 2517936B2
Authority
JP
Japan
Prior art keywords
electrolytic solution
active material
battery
zinc
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62006805A
Other languages
Japanese (ja)
Other versions
JPS63175357A (en
Inventor
孝行 会田
篤雄 小丸
直之 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP62006805A priority Critical patent/JP2517936B2/en
Publication of JPS63175357A publication Critical patent/JPS63175357A/en
Application granted granted Critical
Publication of JP2517936B2 publication Critical patent/JP2517936B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、補聴器等の電源として用いられるボタン型
空気亜鉛電池に関するものである。
TECHNICAL FIELD The present invention relates to a button type zinc-air battery used as a power source for hearing aids and the like.

〔発明の概要〕[Outline of Invention]

本発明は、亜鉛を主体とする負極活物質と電解液とか
らなり、空気中の酸素を正極活物質としてなる空気亜鉛
電池において、 上記電解液濃度及び電解液量を所定の範囲内に制限す
ることにより、 放電容量の増大、放電時及び長期保存時における耐漏
液特性の向上を図り、信頼性に優れた空気亜鉛電池を提
供しようとするものである。
The present invention is an air zinc battery comprising a negative electrode active material containing zinc as a main component and an electrolytic solution, and oxygen in the air as a positive electrode active material, and limiting the electrolytic solution concentration and the electrolytic solution amount within a predetermined range. In this way, it is intended to provide a highly reliable zinc-air battery by increasing the discharge capacity, improving the liquid leakage resistance during discharging and storing for a long period of time.

〔従来の技術〕[Conventional technology]

近年、高年齢化に伴う難聴対策として補聴器の需要が
急速に伸びてきており、かかる状況から補聴器用電源電
池への要求も高まっている。
In recent years, the demand for hearing aids has been rapidly increasing as a measure against hearing loss due to the aging of the population, and under such circumstances, the demand for power supply batteries for hearing aids is also increasing.

従来、上記補聴器用電源としては、水銀電池が多く用
いられている。該水銀電池は、アルカリマンガン電池に
比べ電池容量が大きく、容量当たりのコストが安価であ
ること、放電電圧が安定していること等の利点を有する
反面、補聴器用電源として使用した場合、約2週間程度
で電池交換を必要とすること、陽極活物質として用いる
水銀が公害の原因となること、水銀の比重が大きいため
例えば直径11.6mm,高さ5.4mmの大きさの電池でその重量
が約3gと比較的重量が重いこと等の問題がある。
Conventionally, a mercury battery is often used as the power supply for the hearing aid. The mercury battery has advantages such as a larger battery capacity, a lower cost per capacity, and a stable discharge voltage as compared with the alkaline manganese battery, but on the other hand, when used as a power supply for a hearing aid, it has about 2 The battery needs to be replaced in about a week, mercury used as the anode active material causes pollution, and the specific gravity of mercury is large, so for example, a battery with a diameter of 11.6 mm and a height of 5.4 mm has a weight of about There is a problem that the weight is relatively heavy, 3g.

これらの問題を解決する電池として、ボタン型空気亜
鉛電池が注目されている。
Button-type zinc-air batteries are drawing attention as batteries that solve these problems.

上記空気亜鉛電池は、正極活物質として空気中の酸素
を用いるため、電池には負極活物質と触媒層を設けるだ
けでよく、従って負極活物質内容積の増大が図れ、電池
の高容量化が可能な電池である。また、空気亜鉛電池は
放電電位が平坦で安定しており、しかも低公害性且つ軽
量化が図れる等各種の利点を有している。
Since the above air zinc battery uses oxygen in the air as the positive electrode active material, it is only necessary to provide the negative electrode active material and the catalyst layer in the battery, and therefore the internal volume of the negative electrode active material can be increased and the capacity of the battery can be increased. It is a possible battery. Further, the zinc-air battery has various advantages such as a flat and stable discharge potential, low pollution, and weight reduction.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

ところが、上記空気亜鉛電池は、正極罐側に空気取り
入れのための空気孔を設けているため、放電中や過放電
後または長期保存時の自然放電等において進行する放電
反応に伴う負極活物質の体積増加により、電解液を含有
したセパレータを空気極側に圧迫することになり、該空
気孔から上記電解液が漏出してしまうという問題が生じ
電池の信頼性を喪失させることになる。
However, since the zinc-air battery is provided with air holes for taking in air on the side of the positive electrode, the negative electrode active material accompanying the discharge reaction that progresses during spontaneous discharge during discharge, after overdischarge, or during long-term storage, etc. Due to the increase in volume, the separator containing the electrolytic solution is squeezed to the air electrode side, which causes a problem that the electrolytic solution leaks from the air holes, and the reliability of the battery is lost.

そこで、本発明は上述の問題点に鑑みて提案されたも
のであって、放電容量が大きく、放電時及び長期保存時
等における耐漏液特性に優れ、信頼性に優れた空気亜鉛
電池を提供することを目的とするものである。
Therefore, the present invention has been proposed in view of the above problems, and provides an air zinc battery having a large discharge capacity, excellent liquid leakage resistance during discharge and long-term storage, and excellent reliability. That is the purpose.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上述の目的を達成するために、亜鉛を主体
とする負極活物質と電解液とからなり、空気中の酸素を
正極活物質としてなる空気亜鉛電池において、上記電解
液として濃度32.5〜36.0重量%の水酸化カリウム水溶液
を用いるとともに、該電解液量を負極活物質1AH(アン
ペア時間)相当量に対して0.26〜0.36gとしたことを特
徴とするものである。
In order to achieve the above-mentioned object, the present invention comprises a negative electrode active material mainly composed of zinc and an electrolytic solution, and in an air zinc battery in which oxygen in the air is used as a positive electrode active material, the concentration of the electrolytic solution is 32.5 to A 36.0 wt% potassium hydroxide aqueous solution is used, and the amount of the electrolytic solution is 0.26 to 0.36 g with respect to the amount of 1 AH (ampere hours) of the negative electrode active material.

ここで、上記水酸化カリウム水溶液の濃度と負極活物
質である亜鉛に対する電解液の含有量が重要となる。す
なわち、電解液である水酸化カリウム水溶液の濃度を3
2.5〜36.0重量%、負極活物質1AH相当の電解液量を0.26
〜0.36gの範囲内とすることにより放電容量の増大、放
電時及び長期保存時等における耐漏液特性の向上が図る
ことができるのである。
Here, the concentration of the potassium hydroxide aqueous solution and the content of the electrolytic solution with respect to zinc as the negative electrode active material are important. That is, the concentration of the aqueous solution of potassium hydroxide, which is the electrolytic solution, should be 3
2.5 to 36.0% by weight, 0.26 of electrolyte solution equivalent to 1 AH of negative electrode active material
When the amount is within the range of 0.36 g, it is possible to increase the discharge capacity and to improve the liquid leakage resistance property during discharging and during long-term storage.

上記電解液濃度が32.5重量%未満では電池容量の低下
を招き、36.0重量%以上では電解液の漏液を招くことに
なる。また、電解液量については負極活物質1AH当りの
電解液量が0.26g未満の場合、亜鉛量は増加するものの
放電時に負極活物質が体積膨張して正極を圧迫し酸素供
給の不足が起こり、負極活物質である亜鉛が未放電のま
ま残存してしまい放電容量の低下を招くことになる。電
解液量が0.36g以上の場合、亜鉛量が減少し高容量化す
ることができない。
If the concentration of the electrolytic solution is less than 32.5% by weight, the battery capacity will be reduced, and if it is 36.0% by weight or more, the electrolyte will leak. Regarding the amount of the electrolytic solution, when the amount of the electrolytic solution per 1 AH of the negative electrode active material is less than 0.26 g, the amount of zinc increases, but the negative electrode active material volume expands during discharge and pressurizes the positive electrode to cause a shortage of oxygen supply, Zinc, which is the negative electrode active material, remains undischarged, resulting in a decrease in discharge capacity. When the amount of the electrolytic solution is 0.36 g or more, the amount of zinc decreases and the capacity cannot be increased.

〔作用〕[Action]

正極活物質に酸素,負極活物質に亜鉛,電解液に所定
濃度の水酸化カリウム水溶液を用い、上記負極活物質1A
H当りの上記電解液量を限定することにより、放電容量
が約10%程度増加する。
The positive electrode active material is oxygen, the negative electrode active material is zinc, and the electrolytic solution is an aqueous solution of potassium hydroxide having a predetermined concentration.
By limiting the amount of the electrolyte solution per H, the discharge capacity is increased by about 10%.

また、電解液量を最適値に規制しているため、放電反
応に伴う負極活物質の膨張が生じても若しくは長期保存
においても不要な電解液がなくなり、耐漏液特性が改善
される。
Further, since the amount of the electrolytic solution is regulated to the optimum value, even if the negative electrode active material expands due to the discharge reaction or the unnecessary electrolytic solution is eliminated even after long-term storage, the leakage resistance property is improved.

〔実施例〕〔Example〕

以下、本発明の具体的な実施例について説明するが、
本発明はこの実施例に限定されるものではない。
Hereinafter, specific examples of the present invention will be described.
The invention is not limited to this example.

本実施例は、いわゆる44タイプ(直径11.6mm,高さ5.4
mm)のボタン型空気亜鉛電池に適用したものである。
This embodiment is a so-called 44 type (diameter 11.6 mm, height 5.4
mm) button type zinc-air battery.

上記ボタン型空気亜鉛電池は、第1図に示すように、
負極活物質の放電反応による膨張を考慮した容積を有す
る負極罐(6)内に負極活物質(1)が充填され、セパ
レータ(4)を介して正極触媒層(2)と揆水層(3)
が設けられ、これらに空気取り込み用の空気孔(8)が
形成され空気が存在できる僅かな容積を有した正極罐
(5)をガスケット(7)を介して、その端部をカシメ
ることにより取り付け構成されるものである。
The button type zinc-air battery, as shown in FIG.
The negative electrode active material (1) is filled in the negative electrode canister (6) having a volume considering the expansion of the negative electrode active material due to the discharge reaction, and the positive electrode catalyst layer (2) and the water repellent layer (3) are inserted through the separator (4). )
Are provided, and air holes (8) for taking in air are formed in these, and a positive electrode can (5) having a small volume in which air can exist is caulked at its end through a gasket (7). It is attached and configured.

上記負極活物質(1)は、亜鉛を主体とするもので、
通常は汞化亜鉛と電解液と亜鉛の自己放電制御のための
酸化亜鉛及び増粘剤を混合したものを用いた。上記汞水
亜鉛は水銀含有量2重量%のものを使用した。また、酸
化亜鉛は電解液に5重量%添加して使用した。上述のよ
うな組成からなる負極活物質(1)の電池内容積に対す
る充填率は85%とした。
The negative electrode active material (1) is mainly composed of zinc,
Usually, a mixture of zinc hydride, an electrolytic solution, zinc oxide for controlling self-discharge of zinc, and a thickener was used. The water zinc used had a mercury content of 2% by weight. Further, zinc oxide was used by adding 5% by weight to the electrolytic solution. The filling rate of the negative electrode active material (1) having the above composition with respect to the internal volume of the battery was 85%.

上記正極触媒層(2)は、例えばニッケル多孔質を集
電体とし、ポリテトラフロロエチレン樹脂からなる結合
剤に炭素と二酸化マンガンを混合したものを上記集電体
に圧着して成っている。さらに、正極触媒層(2)の空
気と接触する側に設けられた揆水層(3)は、ポリテト
ラフロロエチレン製の多孔質樹脂等からなるもので、電
解液の漏出を防止する働きをしている。
The positive electrode catalyst layer (2) is formed, for example, by using nickel porous as a current collector, and pressing a mixture of carbon and manganese dioxide in a binder made of polytetrafluoroethylene resin on the current collector. Further, the water repellent layer (3) provided on the air contact side of the positive electrode catalyst layer (2) is made of polytetrafluoroethylene porous resin or the like, and has a function of preventing leakage of the electrolytic solution. are doing.

上記ガスケット(7)は、ナイロン等からなるもので
負極活物質(1)が漏出することによる正極罐(6)と
の接触による短絡を防止するものである。
The gasket (7) is made of nylon or the like and prevents a short circuit due to contact with the positive electrode canister (6) due to leakage of the negative electrode active material (1).

また、正極罐(5)には空気を取り込むための空気孔
(8)が直径0.6mmの大きさで2箇所形成されている。
Further, two air holes (8) for taking in air are formed in the positive electrode can (5) with a diameter of 0.6 mm.

実施例1 上述のような構成で示されるボタン型空気亜鉛電池に
おいて、電解液の濃度を一定にし、負極活物質の容量に
対する電解液の液量を変化させてサンプル電池(試料1
〜試料4,比較試料1)を作製した。尚、各サンプル電池
の電解液濃度,充填亜鉛量,電解液量を第1表に示す。
Example 1 In the button-type zinc-air battery having the above-described structure, the concentration of the electrolytic solution was kept constant, and the amount of the electrolytic solution was changed with respect to the capacity of the negative electrode active material.
-Sample 4 and comparative sample 1) were prepared. Table 1 shows the electrolytic solution concentration, the amount of filled zinc, and the amount of electrolytic solution of each sample battery.

作製した各サンプル電池について、電池初期特性,放
電特性,保存後の漏液性を調べた。
With respect to each of the prepared sample batteries, initial battery characteristics, discharge characteristics, and liquid leakage after storage were examined.

電池初期特性については開路電圧と内部抵抗を、放電
特性については620Ωの負荷を加えた時の放電容量,平
坦電圧,放電後の漏液性を、保存後の漏液性については
サンプル電池50個について60℃,相対湿度91%,40日間
放置後の漏液した個数をそれぞれ調べた。その結果を第
2表に示す。
The open-circuit voltage and internal resistance of the initial characteristics of the battery, the discharge capacity when a load of 620Ω was applied, the flat voltage, and the liquid leakage after discharge were used for the discharge characteristics, and 50 sample batteries were used for the liquid leakage after storage. About 60 ° C, 91% relative humidity, the number of leaked liquids after being left for 40 days was examined. Table 2 shows the results.

以上の結果に基づき電解液量に対する放電容量の特性
をプロットしたのが第2図である。尚、第2図中Aは試
料1,Bは試料2,Cは試料3,Dは試料4,Eは比較試料1にそれ
ぞれ対応している。
FIG. 2 is a plot of the characteristics of the discharge capacity with respect to the amount of electrolytic solution based on the above results. In FIG. 2, A corresponds to sample 1, B corresponds to sample 2, C corresponds to sample 3, D corresponds to sample 4, and E corresponds to comparative sample 1.

第2表及び第2図から、電解液量を0.26g/AH未満とす
ると亜鉛量は増加するが、放電容量が減少することがわ
かる。これは放電時に負極活物質が体積膨張して正極を
圧迫し、酸素供給の不足が起こり負極活物質である亜鉛
が未反応のまま残存するために容量が低下するものと考
えられるからである。また、電解液容量を0.4g/AH以上
とする亜鉛量が減少するため、高容量化することができ
なくなる。
It can be seen from Table 2 and FIG. 2 that when the amount of electrolyte is less than 0.26 g / AH, the amount of zinc increases but the discharge capacity decreases. This is because the negative electrode active material expands in volume during discharge and presses the positive electrode, and oxygen supply becomes insufficient, so that the zinc, which is the negative electrode active material, remains unreacted and the capacity decreases. Further, since the amount of zinc that makes the electrolytic solution capacity 0.4 g / AH or more decreases, it becomes impossible to increase the capacity.

実施例2 次に、負極活物質の容量に対する電解液量を一定に
し、電解液の濃度を変化させてサンプル電池(試料5〜
試料9,比較試料2〜比較試料5)を作製した。尚、各サ
ンプル電池の電解液濃度,充填亜鉛量,電解液量を第3
表に示す。
Example 2 Next, the amount of the electrolytic solution with respect to the capacity of the negative electrode active material was made constant, and the concentration of the electrolytic solution was changed to make a sample battery (Sample 5
Sample 9, comparative sample 2 to comparative sample 5) were prepared. In addition, the electrolyte concentration of each sample battery, the amount of filling zinc, the amount of electrolyte
Shown in the table.

作製した各サンプル電池について電池初期特性,放電
特性,保存後の漏液性について調べた。
The initial characteristics, discharge characteristics, and liquid leakage after storage of each manufactured sample battery were investigated.

電池初期特性については開路電圧と内部抵抗を、放電
特性については620Ωの負荷を加えた時の放電容量,平
坦電圧,放電後の漏液性を、保存後の漏液性については
サンプル電池50個について60℃,相対湿度90%,40日間
放置後の漏液した個数をそれぞれ調べた。その結果を第
4表に示す。
The open-circuit voltage and internal resistance of the initial characteristics of the battery, the discharge capacity when a load of 620Ω was applied, the flat voltage, and the liquid leakage after discharge were used for the discharge characteristics, and 50 sample batteries were used for the liquid leakage after storage. About 60 ° C, 90% relative humidity, the number of leaked liquids after 40 days of storage was examined. Table 4 shows the results.

以上の結果に基づき電解液量に対する放電容量の特性
をプロットしたのが第3図である。尚、第3図中Fは比
較試料2,Gは比較試料3,Hは試料5,Iは試料6,Jは試料7,K
は試料8,Lは試料9,Mは比較試料4の結果を,Nは比較試料
5にそれぞれ対応している。
FIG. 3 is a plot of the characteristics of the discharge capacity with respect to the amount of electrolytic solution based on the above results. In FIG. 3, F is comparative sample 2, G is comparative sample 3, H is sample 5, I is sample 6, J is sample 7, K.
Indicates the results of sample 8, L indicates the result of sample 9, M indicates the result of comparative sample 4, and N corresponds to the result of comparative sample 5.

第4表及び第3図から、電解液濃度は34重量%KOH付
近が最も大きな放電容量を示しており、32.5〜36重量%
KOHの範囲内が良好な放電容量を示す範囲と考えられ
る。電解液濃度が36.5重量%KOH以上では漏液が起こ
り、32.0重量%KOH未満では放電容量が減少してしま
う。これは亜鉛粒子の表面層の水酸化カリウム量が34重
量%付近で亜鉛イオンに配位してZn(OH)4 2-の形態を
取りやすくなり、放電状態が良く不動態化亜鉛に成りに
くいと考えられるからである。
From Table 4 and FIG. 3, the electrolyte concentration shows the largest discharge capacity near 34% by weight KOH, which is 32.5 to 36% by weight.
The range of KOH is considered to be the range showing good discharge capacity. If the electrolyte concentration is 36.5 wt% KOH or more, leakage occurs, and if it is less than 32.0 wt% KOH, the discharge capacity decreases. This is because when the amount of potassium hydroxide in the surface layer of the zinc particles is around 34% by weight, it becomes easy to take the form of Zn (OH) 4 2− by coordinating with zinc ions, the discharge state is good and it is difficult to become passivated zinc. Because it is considered.

比較例 電解液の濃度を30重量%KOH,充填亜鉛量を430mAH,電
解液量を0.40gと電解液濃度及び電解液量を本発明の範
囲外に設定したサンプル電池を作製した。
Comparative Example A sample battery was prepared in which the concentration of the electrolytic solution was 30 wt% KOH, the amount of filled zinc was 430 mAH, and the amount of the electrolytic solution was 0.40 g, and the electrolytic solution concentration and the electrolytic solution amount were outside the range of the present invention.

作製したサンプル電池について電池初期特性,放電特
性,保存後の漏液性について調べた。
The initial characteristics, discharge characteristics, and liquid leakage after storage of the fabricated sample batteries were investigated.

電池初期特性については開路電圧と内部抵抗を、放電
特性については620Ωの負荷を加えた時の放電容量,平
坦電圧,放電後の漏液性を、保存後の漏液性については
サンプル電池50個について60℃,相対湿度90%,40日間
放置後の漏液した個数をそれぞれ調べた。
The open-circuit voltage and internal resistance of the initial characteristics of the battery, the discharge capacity when a load of 620Ω was applied, the flat voltage, and the liquid leakage after discharge were used for the discharge characteristics, and 50 sample batteries were used for the liquid leakage after storage. About 60 ° C, 90% relative humidity, the number of leaked liquids after 40 days of storage was examined.

その結果、電池初期特性のうち開路電圧は1.472V,内
部抵抗は1.0Ωであった。また、放電特性のうち放電容
量は409mAH,平坦電圧は1.27V,放電時の漏液性は良好で
あった。保存後の漏液性についてはサンプル電池50個中
40個漏液が見られた。
As a result, among the initial characteristics of the battery, the open circuit voltage was 1.472V and the internal resistance was 1.0Ω. Among the discharge characteristics, the discharge capacity was 409 mAH, the flat voltage was 1.27 V, and the liquid leakage during discharge was good. Leakability after storage is out of 50 sample batteries
Forty leaks were seen.

これらの結果より、上記比較例においては、電解液濃
度及び電解液量が本発明の範囲外となっているため放電
容量が低く、さらに保存後の漏液性が著しく劣化してい
ることがわかる。
From these results, it can be seen that in the above Comparative Example, the electrolyte concentration and the electrolyte amount were out of the range of the present invention, so the discharge capacity was low, and the liquid leakage property after storage was significantly deteriorated. .

〔発明の効果〕〔The invention's effect〕

以上の説明から明らかなように、亜鉛を主体とする負
極活物質と電解液とからなり、空気中の酸素を正極活物
質としてなる空気亜鉛電池において、上記電解液として
濃度32.5〜36.0重量%の水酸化カリウム水溶液を用いる
とともに、該電解液量を負極活物質1AH相当量に対して
0.26〜0.36gの範囲に限定することにより、従来電池に
比較して放電容量が約10%程度増加させることが可能と
なる。
As is clear from the above description, the zinc-based negative electrode active material and the electrolytic solution, in the air zinc battery in which oxygen in the air is the positive electrode active material, the concentration of 32.5 to 36.0 wt% as the electrolytic solution. While using an aqueous solution of potassium hydroxide, the amount of the electrolytic solution relative to the amount of the negative electrode active material 1AH equivalent
By limiting the amount to the range of 0.26 to 0.36 g, the discharge capacity can be increased by about 10% as compared with the conventional battery.

しかも、電解液量を最適値に規制しているため、放電
反応に伴う負極活物質の膨張が生じても若しくは長期保
存性においても耐漏液特性が改善され電解液の漏出が防
止できる。
Moreover, since the amount of the electrolytic solution is regulated to the optimum value, even if the negative electrode active material expands due to the discharge reaction or the long-term storage property is improved, the leakage resistance property is improved and the leakage of the electrolytic solution can be prevented.

従って、信頼性に優れた空気亜鉛電池を提供すること
ができる。
Therefore, it is possible to provide a highly reliable air zinc battery.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明を適用した空気亜鉛電池の一構成例を示
す概略断面図である。 第2図は負極活物質の容量に対する電解液量を変化させ
た時の電解液量と放電容量との関係を示す特性図であ
る。 第3図は電解液の濃度を変化させた時の電解液濃度と放
電容量との関係を示す特性図である。 1……負極活物質 2……正極触媒層 3……揆水層 4……セパレータ 5……正極罐 6……負極罐 7……ガスケット 8……空気孔
FIG. 1 is a schematic cross-sectional view showing a constitutional example of an air zinc battery to which the present invention is applied. FIG. 2 is a characteristic diagram showing the relationship between the amount of electrolytic solution and the discharge capacity when the amount of electrolytic solution is changed with respect to the capacity of the negative electrode active material. FIG. 3 is a characteristic diagram showing the relationship between the electrolytic solution concentration and the discharge capacity when the electrolytic solution concentration is changed. 1 ... Negative electrode active material 2 ... Positive electrode catalyst layer 3 ... Water repellent layer 4 ... Separator 5 ... Positive electrode can 6 ... Negative electrode can 7 ... Gasket 8 ... Air holes

───────────────────────────────────────────────────── フロントページの続き (72)発明者 菅野 直之 郡山市日和田町高倉字下杉下1−1 株 式会社ソニー・エナジー・テック郡山工 場内 (56)参考文献 特公 昭51−18610(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Naoyuki Sugano 1-1 Shimosugishita, Takakura, Hiwata-cho, Koriyama-shi Sony Energy Tech Koriyama Factory (56) References JP-B-51-18610 (JP) , B2)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】亜鉛を主体とする負極活物質と電解液とか
らなり、空気中の酸素を正極活物質としてなる空気亜鉛
電池において、 上記電解液として濃度32.5〜36.0重量%の水酸化カリウ
ム水溶液を用いるとともに、 該電解液量を負極活物質1AH相当量に対して0.26〜0.36g
としたことを特徴とする空気亜鉛電池。
1. An air zinc battery comprising a negative electrode active material mainly containing zinc and an electrolytic solution, wherein oxygen in the air is used as a positive electrode active material, wherein the electrolytic solution is a potassium hydroxide aqueous solution having a concentration of 32.5 to 36.0% by weight. And the amount of the electrolytic solution is 0.26 to 0.36 g per 1 AH equivalent of the negative electrode active material.
The air zinc battery is characterized in that
JP62006805A 1987-01-14 1987-01-14 Air zinc battery Expired - Fee Related JP2517936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62006805A JP2517936B2 (en) 1987-01-14 1987-01-14 Air zinc battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62006805A JP2517936B2 (en) 1987-01-14 1987-01-14 Air zinc battery

Publications (2)

Publication Number Publication Date
JPS63175357A JPS63175357A (en) 1988-07-19
JP2517936B2 true JP2517936B2 (en) 1996-07-24

Family

ID=11648407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62006805A Expired - Fee Related JP2517936B2 (en) 1987-01-14 1987-01-14 Air zinc battery

Country Status (1)

Country Link
JP (1) JP2517936B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007107911A1 (en) 2006-03-22 2007-09-27 The Gillette Company Zinc/air cell
EP2157658A1 (en) 2006-03-22 2010-02-24 The Gillette Company Zinc/air cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0461763A (en) * 1990-06-28 1992-02-27 Matsushita Electric Ind Co Ltd Air cell

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029449B2 (en) * 1975-06-21 1985-07-10 敏雄 高山 How to raise rice seedlings with soil
US4041211A (en) * 1975-10-06 1977-08-09 Unican Electrochemical Products Ltd. Production of zinc-air button cell
US4262062A (en) * 1980-03-24 1981-04-14 Timex Corporation Metal-air battery with environment control for intermittent high current demand

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007107911A1 (en) 2006-03-22 2007-09-27 The Gillette Company Zinc/air cell
EP2157658A1 (en) 2006-03-22 2010-02-24 The Gillette Company Zinc/air cell

Also Published As

Publication number Publication date
JPS63175357A (en) 1988-07-19

Similar Documents

Publication Publication Date Title
EP0723305B1 (en) Nickel positive electrode for use in alkaline storage battery.
US7169508B2 (en) Method of manufacturing anode compositions for use in rechargeable electrochemical cells
US5424145A (en) High capacity rechargeable cell having manganese dioxide electrode
US5340666A (en) Rechargeable alkaline manganese cell having improved capacity and improved energy density
US4084047A (en) Stable alkaline zinc electrode
EP1958278B1 (en) Rechargeable alkaline manganese cell having reduced capacity fade and improved cycle life
US6858347B2 (en) Paste type positive electrode for alkaline storage battery, and nickel-metal hydride storage battery
WO2001018897A1 (en) Rechargeable nickel-zinc cells
CA1232634A (en) Battery cell
US3288642A (en) Rechargeable dry cell having gelled electrolyte
US4702978A (en) Electrochemical cell
JP2517936B2 (en) Air zinc battery
US6077626A (en) Alkaline storage battery and method for charging battery
JP3079303B2 (en) Activation method of alkaline secondary battery
US5131920A (en) Method of manufacturing sealed rechargeable batteries
EP2720308A1 (en) Alkaline storage cell and method for manufacturing alkaline storage cell
US4999906A (en) Method of manufacturing a sealed electrochemical cell
HU208596B (en) Rechargeable electrochemical cell
JP2926732B2 (en) Alkaline secondary battery
JP2004502279A (en) Electrochemical cell with anode containing sulfur
JP3101622B2 (en) Nickel-hydrogen alkaline storage battery
JP2566912B2 (en) Nickel oxide / hydrogen battery
JP2517936C (en)
JP2001283902A (en) Alkaline battery
JP3005962B2 (en) Cobalt air secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees