JP3634407B2 - 光磁気ディスク装置 - Google Patents

光磁気ディスク装置 Download PDF

Info

Publication number
JP3634407B2
JP3634407B2 JP17717694A JP17717694A JP3634407B2 JP 3634407 B2 JP3634407 B2 JP 3634407B2 JP 17717694 A JP17717694 A JP 17717694A JP 17717694 A JP17717694 A JP 17717694A JP 3634407 B2 JP3634407 B2 JP 3634407B2
Authority
JP
Japan
Prior art keywords
signal
sensor
beam splitter
magneto
return light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17717694A
Other languages
English (en)
Other versions
JPH07105587A (ja
Inventor
正人 野口
Original Assignee
ペンタックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ペンタックス株式会社 filed Critical ペンタックス株式会社
Priority to JP17717694A priority Critical patent/JP3634407B2/ja
Publication of JPH07105587A publication Critical patent/JPH07105587A/ja
Application granted granted Critical
Publication of JP3634407B2 publication Critical patent/JP3634407B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、光磁気ディスク装置に関する。
【0002】
【従来技術およびその問題点】
光磁気(MO)ディスク装置では光磁気ディスクに記録されたデータをレーザビームを利用して次のように読み出していた。つまり、読み出し光(レーザビーム)を光磁気ディスクの記録トラックに向けて照射し、記録トラックで反射した読み出し光(戻り光)をフォトセンサで受光し、記録トラック面の磁気に応じて回転する偏光状態の変化を検出することにより、光磁気ディスクに記録された二値信号を読み出している。
このような従来の光磁気ディスク装置における読み出し光学系においては、光磁気ディスクで反射した戻り光より得られるMO信号にトラッキング状態を示す信号が混信、つまりクロストークが発生していた。したがって、このクロストークを、簡単な構成でかつ確実に減少させる手段が望まれていた。
【0003】
【発明の目的】
本発明は、光磁気ディスク装置において、読み出し信号に混入するクロストーク信号を効果的に除去してノイズのない信号の再生を可能にすることを目的とする。
【0004】
【発明の概要】
本発明は、新たな解析に基づきなされたものであって、レーザ光源から射出されたレーザビームを光磁気ディスクの記録トラック方向に反射し、該光磁気ディスクで反射した戻り光を透過するビームスプリッタと、該ビームスプリッタを透過した戻り光の偏光方向を回転させるλ/2板と、該λ/2板を透過した戻り光のうち、P偏光成分を透過し、S偏光成分を反射する偏光ビームスプリッタと、該偏光ビームスプリッタを透過した戻り光のP偏光成分を受光する第1のセンサと、上記偏光ビームスプリッタで反射した戻り光のS偏光成分を受光する第2のセンサとを備え、上記第1、第2のセンサの、上記光磁気ディスクの直径方向とトラック方向に対応する方向に分割された領域の対角方向領域をそれぞれ所定量遮光し、上記各第1、第2のセンサの出力信号の差信号を読出し信号とすることに特徴を有する。
【0005】
【実施例】
以下図示実施例に基づいて本発明を説明する。図1は、本発明を適用した、光磁気ディスク装置の再生系の光学系の一実施例を示す光路図である。半導体レーザ等の光源11から射出された平行ビームは、第1のビームスプリッタ13で反射され、対物レンズ15により収束され、光磁気(MO)ディスク17の記録トラック18に照射されて反射し、第1のビームスプリッタ13を透過し、第2のビームスプリッタ19に入射した戻り光の一部が、その反射・透過面19aで反射してトラック信号検出光学系およびフォーカス信号検出光学系(図示せず)に導かれる
【0006】
一方、第2のビームスプリッタ19を透過した戻り光は、λ/2板21で偏光方向が回転され、偏光ビームスプリッタ(第3のビームスプリッタ)23でP偏光成分は透過され、S偏光成分は反射されて、それぞれ第1、第2MOセンサ25、27に入射する。第1、第2MOセンサ25、27に入射した戻り光は、それぞれ第1、第2MOセンサ25、27において電気信号に変換され、信号S25、S27として取り出される。そして、電気信号S25、S27の差(S25−S27)がMO信号(読出し信号)として利用される。
【0007】
本発明の説明に先立って、本発明が前提とする原理および本明細書中で使用する用語を簡単に説明する。図11に示したように、表面に反射防止コートが施された透明ガラス板に所定角度で光が入射する状況を考える。入射光の入射角度が大きくなると、S偏光成分の反射率がP偏光成分の反射率よりも大きくなる。したがって、入射光の内、反射防止コートおよびガラス板を直接透過する光は、S偏光成分よりもP偏光成分の方が多くなる。ところが、反射防止コートとガラス板、空気との境界面で多重反射してガラス板を透過する光は、反射率の差によりS偏光成分の方が多くなる。このことは、S偏光成分の方が遠回りをする成分が多い、つまり、S偏光成分の方が光路長が長くなり、位相が遅れるということであ。この現象は、まさしくP偏光成分とS偏光成分とで複屈折を生じていることを示している。本明細書では以後この現象を、「構造的複屈折」という。
【0008】
光学系において像高0の状態を考えると、光軸を通った光は垂直入射となり、複屈折は生じない。しかし、光学系の周辺を通った光は入射角がつくので、入射面の方向あるいはそれと直交方向を複屈折の軸とする複屈折を生じる。したがって、光学系は、放射状あるいは同心円状の複屈折分布が生じることになり、この構造的複屈折は避けられないことが分かる。
【0009】
また、反射防止コートを施していないときには多重反射しないので、透過したP偏光成分とS偏光成分とで光路差および位相差は生じないが、P偏光成分とS偏光成分とで透過率が異なる。本明細書では、以後この現象を「構造的2色性」という。この構造的2色性も、広い意味での構造的複屈折である。
【0010】
「本発明の解析」
次に、本発明における解析について、さらに図12に示したモデルを参照して説明する。このモデルは、図1に示した光学系の対物レンズ15と光磁気ディスク17の周辺構造を示したもので、レーザビームを対物レンズ15により光磁気ディスク17上に集光し、反射させて対物レンズ15に戻す。図12において、点P 〜P は、光軸を原点とした光軸と直交する平面に対して以下の関係を有する。
:原点Oから見て 45゜、+1次光の中心から見て 135゜
:原点Oから見て −45゜、+1次光の中心から見て −135゜
:原点Oから見て 135゜、 次光の中心から見て 45゜
:原点Oから見て −135゜、 次光の中心から見て −45゜
【0011】
そして、図示のモデルにおいて、以下の条件を設定する。
(i) 対物レンズ15の瞳15pと光磁気ディスク17の表面との間で、フーリエ解析が成立する。
(ii) 光磁気ディスク17を一次元の位相型回折格子とみなす。さらに、対称性のある形状、つまり、一方向にブレーズされていない構造とする。このことは、+n次光と−n次光の回折効率が等しいということを意味する。また、光磁気ディスク17の記録トラック18の中心に光が入射したときは、+n次光と−n次光の位相差が等しくなる。
(iii) 実際には、±2次以上の回折光は瞳15pにはほとんど戻ってこない。したがって、±1次光および0次光のみを取り扱えばよい。
(iv) 戻り光を、点P 〜P において考える。
(v) 入射光強度分布は一定とする。
なお、点P 〜P を通る戻り光は、センサ25、27のそれぞれの4等分割領域1〜4に入射する。
【0012】
回折光を、次のように分析する。
まず、パラメータを下記の通りに定義する。
a:0次光の振幅
b:±1次光の振幅
P:光磁気ディスクの溝(記録トラック)の中心に光が入射したときの±1次光の0次光に対する位相
x:光磁気ディスク上の光入射位置(中心を原点(0)として“うね”上で±πに規格化したもの)
さらに、
点P における波面収差をW 、複屈折のジョーンズマトリックスをM
点P における波面収差をW 、複屈折のジョーンズマトリックスをM
点P における波面収差をW 、複屈折のジョーンズマトリックスをM
点P における波面収差をW 、複屈折のジョーンズマトリックスをM
入射光のジョーンズベクトルをIベクトル(以下、ジョーンズベクトル「I」、「I 」はベクトルを表わす)。
とおく。
【0013】
点P に戻ってくる光をO ベクトル(以下、戻り光「O」、「O 」はベクトルを表わす)とおくと、戻り光O は、
(i) 入射時に点P [W ,M ]を通る0次光がM の複屈折を受け、
(ii)入射時に点P [W ,M ]を通る+1次光がM の複屈折を受ける。したがって戻り光O は、次の数1式のようになる。
【数1】
Figure 0003634407
【0014】
点P に戻ってくる戻り光をO とおくと、戻り光O は、
(i) 入射時に点P [W ,M ]を通る0次光がM の複屈折を受け、
(ii)入射時に点P [W ,M ]を通る+1次光がM の複屈折を受ける。したがって戻り光O は、次式のようになる。
【数2】
={aeiW3 +bei(W1+P+x) }I
【0015】
点P に戻ってくる光をO とすると、戻り光O は、
(i) 入射時に点P [W ,M ]を通る0次光がM の複屈折を受け、
(ii)入射時に点P [W ,M ]を通る−1次光がM の複屈折を受ける。したがって戻り光O は、次式のようになる。
【数3】
={aeiW2 +bei(W4+P−x) }I
【0016】
点P に戻ってくる戻り光をO とすると、戻り光O は、
(i) 入射時に点P [W ,M ]を通る0次光がM の複屈折を受け、
(ii)入射時に点P [W ,M ]を通る−1次光がM の複屈折を受ける。したがって戻り光O は、次式のようになる。
【数4】
={aeiW1 +bei(W3+P−x) }I
【0017】
構造的複屈折により対物レンズ15の瞳15p面で複屈折の分布が生じているとする。この場合、複屈折軸は放射状あるいは同心円状の並びとなり、瞳15p上の極座標位置(r,θ)でのジョーンズマトリックスMは、以下のようになる。
【数5】
Figure 0003634407
なお、数5式において、Δ(r)は複屈折位相差である。
【0018】
(r,θ)でΔ(r)=δとすると、数6式のように表わすことができる。
【数6】
Figure 0003634407
なお、数6および他の数式において、
C=cosθ
S=sinθ
=e Δ (r)
=e −i Δ (r)
である。
(r,−θ)では数7式のように表わすことができる。
【数7】
Figure 0003634407
(r,π−θ)では数8式のように表わすことができる。
【数8】
Figure 0003634407
(r,π+θ)では数9式のように表わすことができる。
【数9】
Figure 0003634407
【0019】
以上より、
【数10】
Figure 0003634407
Figure 0003634407
【0020】
【数11】
Figure 0003634407
【数12】
Figure 0003634407
【数13】
Figure 0003634407
【0021】
また、ジョーンズマトリクスM 〜M の関係は、下記式の通りである。
【数14】
=M
【数15】
=M
【数16】
=M
【数17】
=M
【0022】
【数18】
Figure 0003634407
【数19】
Figure 0003634407
【数20】
Figure 0003634407
【数21】
Figure 0003634407
【0023】
ここで、図12のようにθ=45°とおくと、
【数22】
Figure 0003634407
【数23】
Figure 0003634407
【数24】
Figure 0003634407
【数25】
Figure 0003634407
【0024】
以上の数22〜数25式と数14〜数17式の関係により、数1〜数4式は次のようになる。
【数26】
Figure 0003634407
【数27】
Figure 0003634407
【数28】
Figure 0003634407
【数29】
Figure 0003634407
【0025】
以上をまとめると、数30式のようになる。
【数30】
Figure 0003634407
【0026】
ここで、n、m、lの関係は下記のようになる。
n m l
1 4 2
2 3 1
3 2 4
4 1 3
【0027】
MO信号を得るためには、旋光子あるいはλ/2板21で偏光面を45°回転させるので、MO信号On45 は、次の数31式のようになる。なお、以下の式において、「We」の「e」は、英文字Lの小文字の筆記体とみなす。
【数31】
Figure 0003634407
【0028】
次に、第1、第2MOセンサ25、27が受光する戻りビーム(戻り光)と、戻り光を受光して第1、第2MOセンサ25、27が出力する信号との関係について説明する。数31式のx,y方向それぞれの強度は、次の数32、数33式のようになる。
【数32】
Figure 0003634407
【数33】
Figure 0003634407
【0029】
よって差動信号は、数34式のように表わすことができる。
【数34】
Figure 0003634407
【0030】
ここで、係数2ab 前のプラス/マイナスの符号は、n=1,4のときは上、n=2,3のときは下である。したがって、センサ25、27に入力する信号は、数35式のようになる。
【数35】
Figure 0003634407
【0031】
「ポジションセンサ信号」
MOセンサを直交軸で4等分割したセンサにおける信号I は、次のように解析できる。先ず、先の数30式は、数36式のように変形できる。
【数36】
Figure 0003634407
【0032】
その光強度(センサ信号)I は、数37式のように表わすことができる。
【数37】
Figure 0003634407
【0033】
したがって各分割センサのセンサ信号I 〜I は、次式のようになる。
【数38】
=a+b+2abcosδcos(W−W−P−x)
【数39】
=a+b+2abcosδcos(W−W−P−x)
【数40】
=a+b+2abcosδcos(W−W−P+x)
【数41】
=a+b+2abcosδcos(W−W−P+x)
【0034】
「トラッキング信号」
プッシュプル方式により得るトラッキング信号Tは、数42式により求まる。
【数42】
T=I +I −I −I
ここで、センサ信号I 〜I は数38〜数41式により表わされるので、これらを数42式に代入すると、トラッキング信号Tは次式で表わされる。
【数43】
Figure 0003634407
【0035】
「フォーカス信号F」(フォーカスセンサに入力される信号)
非点収差法でフォーカス信号Fを得ると、フォーカス信号Fは下記式で表わすことができる。
【数44】
F=I +I −I +I
【0036】
この数44式に数38〜数41式を代入すると、フォーカス信号Fは次式で表わすことができる。
【数45】
Figure 0003634407
【0037】
「上下アンバランス信号U」
実際には使われない信号であるが、上下アンバランス信号Uは、下記式により定義できる。
【数46】
U=I −I +I −I
この式のI 〜I に数38〜数41式を代入すると、上下アンバランス信号Uは下記式により表わすことができる。
【数47】
Figure 0003634407
【0038】
「収差による分類」
比較的低次の収差は、対称性により以下の4タイプに分類できる。ξ、η軸を図12のように設定すると、収差には以下の関係がある。
(i) ξ、η軸両方の軸に対して偶関数であり、球面収差、アス1(0゜方向非点収差)、デフォーカス等
(ii) ξ軸に対して偶関数、η軸に対して奇関数であり、コマ2(Y軸方向コマ)、Y−ティルト等
(iii) ξ軸に対して奇関数、η軸に対して偶関数であり、コマ1(X軸方向コマ)、X−ティルト等
(iv) ξ、η軸の両方に対して奇関数であり、アス2(45゜方向アス)等
【0039】
「ξ、η両軸に対して偶関数の収差」
対称性により波面収差Wは、次の関係になる。
【数48】
=W =W =W =W
したがって、トラッキング信号Tに関する数43式、フォーカス信号Fに関する数45式、上下アンバランス信号Uに関する数47式、およびMO信号Mに関する数35式により、トラッキング信号Tee、フォーカス信号Fee、上下アンバランス信号Uee、およびMO信号Meeは、次式のようになる。
【数49】
ee=−8ab cosδ sinP sinx
【数50】
ee=0
【数51】
ee=0
【数52】
ee=0
以上のように、ξ、η両軸に対して偶関数の収差がある場合には、トラッキング信号Tのみ発生し、フォーカス(ノイズ)信号F、上下アンバランス信号U、MO(ノイズ)信号Mは発生しない。
【0040】
「ξ軸に対して偶関数、η軸に対して奇関数の収差」
対称性により波面収差Wは、次式の関係を有する。
【数53】
=−W =W =−W =W
ここで、トラッキング信号Tに関する数43式、フォーカス信号Fに関する数45式、上下アンバランス信号Uに関する数47式、およびMO信号Mに関する数35式により、トラッキング信号Te0、フォーカス信号Fe0、上下アンバランス信号Ue0、およびMO信号Me0は、次式のようになる。
【数54】
e0=−8ab cosδ sinP sinx
【数55】
e0=0
【数56】
e0=0
【数57】
e0=0
以上の通り、ξ軸に対して偶関数、η軸に対して奇関数の収差がある場合は、両偶関数の場合と同様にトラッキング信号Tのみが発生する。
【0041】
「ξ軸に対して奇関数、η軸に対して偶関数の収差」
対称性により、波面収差Wは以下の関係を有する。
【数58】
=W =−W =−W =W
ここで、トラッキング信号Tに関する数43式、フォーカス信号Fに関する数45式、上下アンバランス信号Uに関する数47式、およびMO信号Mに関する数35式により、トラッキング信号T0e、フォーカス信号F0e、上下アンバランス信号U0e、およびMO信号M0eは、次式のようになる。
【数59】
0e=−8ab cosδ sinP sin(x+2W)
【数60】
0e=0
【数61】
0e=0
【数62】
0e=0
以上の通り、トラッキング信号T0eに位相のシフト2Wが生じる。しかし、フォーカス(ノイズ)信号F0e、上下アンバランス(ノイズ)信号U0e、MO(ノイズ)信号M0eは発生しない。
【0042】
「両ξ軸およびη軸に対して奇関数の場合」
対称性により、波面収差Wの関係は、次式のようになる。
【数63】
=−W =−W =W =W
トラッキング信号Tに関する数43式、フォーカス信号Fに関する数45式、上下アンバランス信号Uに関する数47式、およびMO信号Mに関する数35式により、トラッキング信号T00、フォーカス信号F00、上下アンバランス信号U00、およびMO信号M00は、下記式のようになる。
【数64】
00=−8ab cosδ sinP cos2W sinx
【数65】
00= 8ab cosδ sinP sin2W cosx
【数66】
00= 8ab cosδ cosP sin2W sinx
【数67】
00= 8ab sinδ cosP sin2W cosx
【0043】
以上の解析から、FT(フォーカス・トラッキング)クロストークが発生し、上下アンバランス信号U、MO信号Mとトラッキング信号Tのクロストークも発生することが分かる。例えば、45゜方向のアス(非点収差AS2)の存在する光学系において構造的複屈折がない場合には、磁化されていない光磁気ディスクのMO信号Mは0になる。しかし、構造的複屈折が生じる場合には、MO信号Mにオフセット信号が加わることが分かる。
【0044】
「構造的2色性」
以上は、構造的複屈折に基づく解析であったが、構造的2色性について以下同様に解析する。振幅透過率t 、t の2色性素子のジョーンズマトリックスMは、次のように表わすことができる。
【数68】
Figure 0003634407
なお、数68式において、
;瞳面上でr方向の振幅透過率
;瞳面上でθ方向の振幅透過率
【0045】
数5〜数31式と同様にして同様の式を以下求める。なお、以下の式において、C=cosθ、S=sinθ である。
【数69】
Figure 0003634407
【数70】
Figure 0003634407
【数71】

【数72】
Figure 0003634407
【数73】
Figure 0003634407
【数74】
Figure 0003634407
【数75】
Figure 0003634407
【0046】
θ=45゜のとき
【数76】
Figure 0003634407
【数77】
Figure 0003634407
【数78】
Figure 0003634407
【数79】
Figure 0003634407
【0047】
したがって、
【数80】
Figure 0003634407
【数81】
Figure 0003634407
【数82】
Figure 0003634407
【数83】
Figure 0003634407
【数84】
Figure 0003634407
【数85】
Figure 0003634407
【0048】
この数85式の交流部は、t(t +t ) を2cosδと置き換えると、数37式と一致する。したがって、
【数86】
Figure 0003634407
【数87】
Figure 0003634407
【数88】
Figure 0003634407
【0049】
一方、MO信号系では、数84式を45゜回転して、
【数89】
Figure 0003634407
【数90】
Figure 0003634407
【数91】
Figure 0003634407
【数92】
Figure 0003634407
【0050】
【数93】
Figure 0003634407
【数94】
1Y=(1/2)(t +t )+t abcos(W−W−P−x)
【数95】
2x=(1/2)(t +t )+t abcos(W−W−P−x)
【数96】
2y=(1/2)(t +t )+t abcos(W−W−P−x)
【数97】
3x=(1/2)(t +t )+t abcos(W−W−P+x)
【数98】
3y=(1/2)(t +t )+t abcos(W−W−P+x)
【数99】
4x=(1/2)(t +t )+t abcos(W−W−P+x)
【数100】
4y=(1/2)(t +t )+t abcos(W−W−P+x)
【0051】
したがって、MO信号は、数101式により定義できる。
【数101】
Figure 0003634407
【0052】
数35式において2sinδcosPをt(t −t )sinP に置き換えると、数101式に一致する。
以上の解析により、構造的2色性は、構造的複屈折と同様な効果を持つことが判明した。
【0053】
以上の結果をまとめると、次のようになる。
(1)構造的複屈折の場合
(i) トラッキング信号T
【数102】
Figure 0003634407
(ii)フォーカシング(ノイズ)信号F
【数103】
Figure 0003634407
(iii) 上下アンバランス信号U
【数104】
Figure 0003634407
(iv)MO(ノイズ)信号MO
【数105】
M= −4absinδcosP[sinx{cos(W−W)−cos(W−W)} −cosx{sin(W−W)−sin(W−W)}]
【0054】
(2)構造的二色性の場合
(i) トラッキング信号T
【数106】
Figure 0003634407
(ii)フォーカシング(ノイズ)信号F
【数107】
Figure 0003634407
(iii) 上下アンバランス信号(U)
【数108】
Figure 0003634407
(iv)MO(ノイズ)信号(MO)
【数109】
Figure 0003634407
【0055】
以上の結果に基づき、収差タイプ別の分類を、表1に一覧した。
【表1】
Figure 0003634407
a:0次光振幅回折率
b:±1次光振幅回折率
P:0次光と±1次光の位相差
W:波面収差
δ:複屈折のリターダンス(rad )
x:照射位置(rad )
,t :主方向および副方向の振幅透過率
【0056】
以上の解析に基づく本発明の具体的構成を、表1を参照して、図1〜図7に示した実施例に基づいて説明する。
図1に示した実施例において、MOセンサ25、27に入射する戻り光は、対物レンズ15により複屈折(δ、t、t )し、また波面収差Wを含む。そのため戻り光は、
OS=8absinδcosPsin2Wcosx
または、
OS=4abt(t −t )sinPsin2Wcosx
だけオフセットされる。ここで、係数a、b、Pは光磁気ディスク17の形状等で決まる定数なので、変更することはできない。したがって、このオフセット信号OSを複屈折(δ、t、t )および波面収差(W)にかかわりなく0にするには、cosx=0 、つまり、x=±π/2とすればよいことが分かる。
【0057】
そこで本発明は、記録トラック18の幅の中心(内外周の案内溝17gの中間、信号記録位置の中心)からx=±π/2(溝幅の1/4)だけ内外周にずらした位置に信号を記録する。
そこで、通常の記録では、1本の記録トラック18の中央に対して内側▲1▼または外側▲2▼のいずれか一方の位置に信号を記録する。1本の溝につき2本の信号を記録する倍トラック法では、内側▲1▼および外側▲2▼の両方に信号を記録する。
また、倍トラック法により溝幅の1/4だけ内外周にずらした位置に信号を記録した場合は、x=0、πの位置にレーザビームを照射してそれぞれの照射位置に応じた異なるオフセット信号OSをMO信号Mから引く。つまり、補正後のMO信号M′は、
M′=S25−S27−OS=M−OS
となる。
【0058】
「45゜アンバランス信号」
分割センサ、例えば、磁気ディスクの直径方向およびこれに直交するトラック方向に対応する方向に四分割された分割センサ(図5参照)を使用して前述のフォーカシング信号Fを得る場合と全く同様に信号を得るとする。信号的にはフォーカシング信号と同じであるが、フォーカシングのための信号として利用しないので、以後すべての信号をアンバランス信号(45゜アンバランス信号Q)とする。この45゜アンバランス信号Qは、
Q=8abcosδsinPsin2Wcosx
または、
Q=4abt1t2(t1 2+t2 2)sinPsin2Wcosx
式で表わされる。ここで、45゜アンバランス信号Qは、分割センサに入力するノイズ信号と同位相である。そこで、MO信号Mと45゜アンバランス信号Qとを、M′=M - kQというように合成し、係数kに適当な値(例えば、k=tanP/tanδ)を設定することによりクロストークをキャンセルできる。
【0059】
図4には、分割センサを有する本発明の別の光学系の実施例を示してある。図1に示した実施例と同様の機能を有する部材には同一の符号を付してある。光磁気ディスク17で反射され、第2のビームスプリッタ19で反射された戻り光を第4のビームスプリッタ35により分岐し、第4のビームスプリッタ35を透過した戻り光をトラック信号、フォーカス信号検出光学系に導く。一方、第4のビームスプリッタ35の反射・透過面35aで反射した戻り光は、第3のセンサ37に導かれている。第3のセンサ37は受光領域が4分割された分割センサであって、図5に示すように、受光領域が、光磁気ディスクの直径方向(図において左右方向)およびこれと直交するトラック方向(図において上下方向)に対応する直交軸により4個の分割センサ37 〜37 に分割されている。各分割センサ37 〜37 から得られる信号(出力信号)をそれぞれS37 〜S37 とする。第1のセンサ31、第2のセンサ33の出力をそれぞれS31、S33とする。
【0060】
この実施例では、式、
Q=(S37 + S37 )−(S37 + S37
により45゜アンバランス信号Qを得ることができる。この45゜アンバランスQ信号に適当な係数kを掛けてMO信号Mから引くことにより、クロストークの無いMO信号を得ることができる。補正後のMO信号をM′とすると、
M′=S31−S33−kQ
となる。係数kは、例えば本実施例ではtan δ/tan Pとなる。
【0061】
MO信号M′は、例えば図6に示した信号処理回路により得ることができる。通常のMO信号Mを得るセンサ31、33のそれぞれの出力信号S31、S33の差S31−S33(=M)を減算器51で演算する。分割センサ37の対角方向のセンサ出力の差Q=(S37 + S37 )−(S37 + S37 )を、加算器53、55および減算器57で演算し、その差Qを乗算器59でk倍する。そして、上記(S31−S33)とk{(S37 + S37 )−(S37+S37 )}の差をとることにより、正確なMO信号M′が得られる。これを式で示すと、
Figure 0003634407
になる。
【0062】
ここで、係数kを与える乗算器59は、例えばオペアンプ591を使用したアナログ回路で構成できる。図7には、その一例を示してある。この実施例では、可変抵抗R2の抵抗値を変えることにより、係数kの値を調整できる。乗算器59をディジタル回路で構成することもできる。その一例を、図8に示してある。このディジタル回路では、係数kを予めROM 595に書込んでおき、動作時に演算(掛け算)回路593が係数kをROM 595から読み出して使用する。
【0063】
最適な係数kは、光磁気ディスク装置が決まれば一義的に決まるものである。つまり、各係数kは各ディスク装置ごとに異なるので各ディスク装置ごとに設定する。その設定は、次の通りである。
先ず、光ヘッドをMO信号を記録していない記録トラック18を2本以上横断させて、その際に発生した正弦波状のMO信号の振幅、すなわちクロストーク信号が0になるようにkの値を決める。この設定は、アナログ回路では可変抵抗値の調整により行ない、ディジタル回路ではメモリする係数kの値の変更により実行する。このように係数kの値を調整することにより、クロストークを0にすることができる。
【0064】
図9は、MOセンサに5分割センサ47、49を使用して、フォーカス信号およびトラック信号をMOセンサから得る実施例である。この実施例では、磁気ディスク17で反射され、第1のビームスプリッタ13を透過した戻り光は、λ/2波長板41で偏光方向が回転し、集光レンズ43で収束され、偏光ビームスプリッタ45をP偏光成分は透過し、S偏光成分は反射して、それぞれ第1、第2の5分割センサ47、49に入射する。この5分割センサ47および49は、図10に示すようにそれぞれ、光磁気ディスク17の直径方向と直交する記録トラックの中心線方向対応する方向に延びる1個の中央分割センサ473 および493 と、その両側に位置し、トラック方向に対応する方向(図において上下に二分割された4個の周辺分割センサ471 、472 、474 、475 および491 、492 、494 、495 を備えている。これらの5分割センサ47、49によれば、トラッキング信号T、フォーカス信号F、45゜アンバランス信号QおよびMO信号Mを同時に得ることができる。なお、トラッキング信号Tはプッシュプル法で、フォーカス信号Fはスポットサイズ法で求める。分割センサ471 〜475 、および491 〜495 の出力信号をそれぞれS471、S472、S473、S474、S475、およびS491、S492、S493、S494、S495とおく。
【0065】
以上の各トラッキング信号T、フォーカス信号F、45゜アンバランス信号Q、MO信号Mは、図示実施例の場合、下記式により求まる。
Figure 0003634407
なお、Mは補正前のMO信号、M′は補正後のMO信号である。既に説明した通り、係数kに適当な値を設定することにより、クロストークを除去できる。
【0066】
以上は、分割センサを使用した場合の例であるが、本発明は、分割センサを使用しなくても同様にクロストークを除去できる。図1に示した実施例では、各センサ25、27の受光領域をスリットで遮閉して受光光量を制限することによりクロストークを除去できる。第1のMOセンサ25は、一方の対角方向角部、つまり、+45゜方向および−135゜方向の角部を遮光板26a、26bにより遮閉し、同様に第2のMOセンサ27は、+135゜方向および−45゜方向の対角角部を遮光板28a、28bで遮閉する(図3参照)。遮閉量は、係数Kの調整同様に設定し、各光磁気ディスク装置毎に調整する。
【0067】
以上の通り本発明は、センサにおける対角方向のアンバランス信号の位相が検出信号に混入するノイズ信号とが同位相を持つ、という解析結果に基づいてなされたものである。つまり、この分析に基づけば、MOセンサの構造は図示実施例に限定されず、他の構成では、45゜アンバランス信号Qに所定の係数kを掛けてMO信号Mと合成することにより、クロストークをキャンセルできるのである。
【0068】
【発明の効果】
以上の通り本発明は、光磁気ディスクの記録トラックで反射した反射光を複数に分岐し、分岐光の一つを分割センサで受光し、所定の分割センサの差信号に所定の係数を掛けたものと、他の分岐光を受光した各センサの検出信号とから記録信号を検出するので、クロストークの無い記録信号を得ることができる。
【図面の簡単な説明】
【図1】本発明を適用した光磁気ディスク装置の光学系の一実施例を示す光路図である。
【図2】同実施例における光磁気ディスクとビーム照射位置との関係を示す図である。
【図3】同実施例におけるセンサの遮光状態の一例を示す図である。
【図4】本発明の別の実施例を示す光路図である。
【図5】図4に示した実施例のセンサの構成を示す図である。
【図6】MO信号M′を得る信号処理回路の一実施例を示すブロック回路図である。
【図7】同信号処理回路におけるアナログ係数k乗算回路の一実施例を示す回路図である。
【図8】同信号処理回路におけるディジタル係数k乗算回路の一実施例を示す回路図である。
【図9】本発明のさらに別の実施例を示す光路図である。
【図10】図9に示した実施例のセンサの構成を示す図である。
【図11】偏光と反射、透過の関係を説明する図である。
【図12】光磁気ディスク装置の対物レンズと光磁気ディスクとの関係を説明する光路図である。
【符号の説明】
11 レーザ光源
13 第1のビームスプリッタ
15 対物レンズ
17 光磁気ディスク
18 記録トラック
19 第2のビームスプリッタ
21 λ/2波長板
23 偏光ビームスプリッタ
25 第1のセンサ
27 第2のセンサ
31 第1のセンサ
33 第2のセンサ
37 第3のセンサ(4分割センサ)
47 第1のセンサ(5分割センサ)
49 第2のセンサ(5分割センサ)

Claims (3)

  1. レーザ光源から射出されたレーザビームを光磁気ディスクの記録トラック方向に反射し、該光磁気ディスクで反射した戻り光を透過するビームスプリッタと、
    該ビームスプリッタを透過した戻り光の偏光方向を回転させるλ/2板と、
    該λ/2板を透過した戻り光のうち、P偏光成分を透過し、S偏光成分を反射する偏光ビームスプリッタと、
    該偏光ビームスプリッタを透過した戻り光のP偏光成分を受光する第1のセンサと、
    上記偏光ビームスプリッタで反射した戻り光のS偏光成分を受光する第2のセンサとを備え、
    上記第1、第2のセンサの、上記光磁気ディスクの直径方向とトラック方向に対応する方向に分割された領域の対角方向領域をそれぞれ所定量遮光し、上記各第1、第2のセンサの出力信号の差信号を読出し信号とすることを特徴とする光磁気ディスク装置。
  2. レーザ光源から射出されたレーザビームを光磁気ディスクの記録トラック方向に反射し、該光磁気ディスクで反射した戻り光を透過するビームスプリッタと、
    該ビームスプリッタを透過した戻り光を分岐する第2のビームスプリッタと、
    該第2のビームスプリッタを透過した戻り光の偏光方向を回転させるλ/2板と、
    該λ/2板を透過した戻り光のうち、P偏光成分を透過し、S偏光成分を反射する偏光ビームスプリッタと、
    該偏光ビームスプリッタを透過した戻り光のP偏光成分を受光する第1のセンサと、
    上記偏光ビームスプリッタで反射した戻り光のS偏光成分を受光する第2のセンサと、
    上記第2のビームスプリッタで反射した戻り光を受光する第3のセンサとを備え、
    上記第3のセンサは、上記光磁気ディスクの直径方向およびこれと直交するトラック方向に対応する方向に分割された分割センサで構成され、
    上記各第1、第2のセンサそれぞれの出力信号の差信号と、上記第3のセンサの一方の対角方向の分割センサの出力信号の和と、他方の対角方向の分割センサの出力信号の和との差信号を所定係数k倍して、上記第1、第2センサの差信号から差し引いた信号を読出し信号とすることを特徴とする光磁気ディスク装置。
  3. レーザ光源から射出されたレーザビームを光磁気ディスクの記録トラック方向に反射し、該光磁気ディスクで反射した戻り光を透過するビームスプリッタと、
    上記ビームスプリッタを透過した戻り光の偏光方向を回転させるλ/2板と、
    該λ/2板を透過した戻り光のうち、P偏光成分を透過し、S偏光成分を反射する偏光ビームスプリッタと、
    該偏光ビームスプリッタを透過した戻り光のP偏光成分を受光する第1のセンサと、
    上記偏光ビームスプリッタで反射した戻り光のS偏光成分を受光する第2のセンサとを備え、
    上記各第1、第2のセンサは、上記磁気ディスクの直径方向と直交するトラック方向に対応する中央分割センサと、該中央分割センサの両側領域をそれぞれ上記トラック方向に対応する方向に二分割された4個の周辺分割センサで構成されていて、
    上記各第1、第2のセンサそれぞれの各分割センサの出力信号の合計の差信号と、上記第1、第2のセンサそれぞれについて、一方の対角方向の周辺分割センサの出力信号の和と、他方の対角方向の周辺分割センサの出力信号の和との差信号を所定係数k倍して、上記合計の差信号から差し引いた信号を読出し信号とすることを特徴とする光磁気ディスク装置。
JP17717694A 1993-08-10 1994-07-28 光磁気ディスク装置 Expired - Fee Related JP3634407B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17717694A JP3634407B2 (ja) 1993-08-10 1994-07-28 光磁気ディスク装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP19852993 1993-08-10
JP5-198529 1993-08-10
JP17717694A JP3634407B2 (ja) 1993-08-10 1994-07-28 光磁気ディスク装置

Publications (2)

Publication Number Publication Date
JPH07105587A JPH07105587A (ja) 1995-04-21
JP3634407B2 true JP3634407B2 (ja) 2005-03-30

Family

ID=26497812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17717694A Expired - Fee Related JP3634407B2 (ja) 1993-08-10 1994-07-28 光磁気ディスク装置

Country Status (1)

Country Link
JP (1) JP3634407B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007046207A1 (ja) * 2005-10-18 2007-04-26 Matsushita Electric Industrial Co., Ltd. 光ディスク装置

Also Published As

Publication number Publication date
JPH07105587A (ja) 1995-04-21

Similar Documents

Publication Publication Date Title
KR19990072586A (ko) 광헤드
KR100670865B1 (ko) 광픽업
WO2007043663A1 (ja) 光学ヘッド
JP5686684B2 (ja) 光学装置
KR0164859B1 (ko) 광학헤드 및 광학 메모리 장치
JP3541893B2 (ja) 光磁気記録媒体再生装置
US5629911A (en) Optical information recording/reproduction apparatus including an integrated photodetector used in the detection of focusing and/or tracking error signals
JP3634407B2 (ja) 光磁気ディスク装置
US5850380A (en) Photomagnetic head apparatus
US5535179A (en) Magneto-optic disc apparatus with signal detector for detecting recorded signals based on split beams
US20020021650A1 (en) Optical pickup device
JPS63285732A (ja) 光学式ピックアップ装置
JPH0370859B2 (ja)
JPH1040567A (ja) 光学ヘッドおよびそれを用いた光学的情報再生装置
JPH0329129A (ja) 光ヘッド装置
JPH0757327A (ja) 光磁気ディスク装置
JP2576632B2 (ja) 光磁気ヘッド装置
JPH10255315A (ja) 光ピックアップ装置
JPH0534732B2 (ja)
JP2000195071A (ja) 光学的情報記録再生装置
JP2610123B2 (ja) 光情報検出装置
JPH0696448A (ja) 光学的情報記録再生装置
JPH097191A (ja) 光ピックアップ装置
JPH0675300B2 (ja) 光学式ヘッド装置
JP2795218B2 (ja) 光学式記録情報再生装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees