JP3626341B2 - 磁性金属センサ及び磁性金属検出システム - Google Patents

磁性金属センサ及び磁性金属検出システム Download PDF

Info

Publication number
JP3626341B2
JP3626341B2 JP35370497A JP35370497A JP3626341B2 JP 3626341 B2 JP3626341 B2 JP 3626341B2 JP 35370497 A JP35370497 A JP 35370497A JP 35370497 A JP35370497 A JP 35370497A JP 3626341 B2 JP3626341 B2 JP 3626341B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic metal
pair
conversion means
magnetoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35370497A
Other languages
English (en)
Other versions
JPH11183195A (ja
Inventor
康夫 根門
雅昭 久須美
Original Assignee
ソニーマニュファクチュアリングシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーマニュファクチュアリングシステムズ株式会社 filed Critical ソニーマニュファクチュアリングシステムズ株式会社
Priority to JP35370497A priority Critical patent/JP3626341B2/ja
Priority to EP98108946A priority patent/EP0880035B1/en
Priority to DE69837694T priority patent/DE69837694T2/de
Priority to KR1019980018033A priority patent/KR100532687B1/ko
Priority to US09/080,957 priority patent/US6236200B1/en
Publication of JPH11183195A publication Critical patent/JPH11183195A/ja
Application granted granted Critical
Publication of JP3626341B2 publication Critical patent/JP3626341B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、磁性金属片の有無を検出する磁性金属センサ及びこの磁性金属センサを用いた磁性金属検出システムに関し、特に、複数の磁性金属片が所定の間隔で並列に配置された被検出部から、この磁性金属片を検出する磁性金属センサ及び磁性金属検出システムに関するものである。
【0002】
【従来の技術】
従来より、磁性金属の存在の有無を検出する磁性金属センサとして、渦電流方式のセンサが知られている。
【0003】
このような磁性金属センサは、例えば、ギヤの歯数を検出してギヤの回転速度や回転角度を制御する工作機械等のシステムや、布や化学繊維等の編み機などで繊維を編み込む為に用いられる櫛状の編み棒の棒数を検出して編み棒の移動位置を制御するシステム等に用いることが求められている。
【0004】
【発明が解決しようとする課題】
ところが、渦電流方式の磁性金属センサでは、このセンサを構成するコイルよりも磁性金属片が小さくなると急激に検出出力が低下するため、微小な金属片を検出することが困難であった。
【0005】
また、上述した渦電流方式の磁性金属センサでは、応答速度が遅いため、高速に動作する磁性金属片を検出することが困難であった。
【0006】
以上の理由から従来の磁性金属センサを上述した工作機械等のシステム等に適用することが困難であった。
【0007】
本発明は、このような実情を鑑みてなされたものであり、高精度、高速かつ確実に、微小な磁性金属片を検出する磁性金属センサ及び磁性金属検出システムを提供することを目的とする。
【0008】
【課題を解決するための手段】
上述の課題を解決するために、本発明に係る磁性金属センサは、複数の磁性金属片が所定の間隔λで並列に配置された被検出部に対して、この複数の磁性金属片が並列に配置された方向に相対移動して、上記磁性金属片を検出する磁性金属センサにおいて、感磁方向の磁界変化に応答する軟磁性材料からなる感磁素子を有し、互いの感磁素子の感磁方向に垂直な方向の間隔がgとされ、当該感磁素子に生じる感磁方向の磁界変化に応じた電気信号を出力する一対の磁電変換手段と、上記一対の磁電変換手段の各感磁素子に対して、感磁方向の磁界を与える磁界発生手段とを備え、上記一対の磁電変換手段は、磁化極性が互いに同一となるように高周波信号で励磁駆動され、上記一対の磁電変換手段は、インピーダンスの変化量に基づき磁性金属片の検出信号が生成され、上記一対の磁電変換手段は、上記被検出部との相対移動方向に対して上記感磁方向が垂直となり、且つ、互いの感磁素子同士の上記相対移動方向に対する間隔g´が
g´=(n+1/2)×λ :nは0以上の整数、且つ、g´<g
となるように、配設されることを特徴とする。
【0009】
この磁性金属センサでは、上記被検出部に対して相対移動することによって、並列に配置された各磁性金属片の影響による磁界変化に、一対の磁電変換手段が順次応答していく。この際、一方の磁電変換手段が、1の磁性金属片の影響により応答したときに、他方の磁電変換手段では、いずれの磁性金属片の影響によっても応答しない。
【0010】
そのため、上記磁性金属センサでは、上記一対の磁電変換手段の互いの検出信号の差分の値が、いずれの感磁部にも磁性金属片による応答が無いときの検出信号の差分の値を中心として、正負に振れる。
【0011】
また、本発明に係る磁性金属検出システムは、複数の磁性金属片が所定の間隔λで並列に配置された被検出部と、上記複数の磁性金属片が並列に配置された方向に、上記被検出部に対して相対移動するように設けられた磁性金属センサと、上記磁性金属センサを駆動するとともに、上記磁性金属センサの検出信号に基づき上記被検出部の各磁性金属片を検出する駆動検出部とを備える磁性金属検出システムであって、上記磁性金属センサは、感磁方向の磁界変化に応答する軟磁性材料からなる感磁素子を有し、互いの感磁素子の感磁方向に垂直な方向の間隔がgとされ、当該感磁素子に生じる感磁方向の磁界変化に応じた電気信号を出力する一対の磁電変換手段と、上記一対の磁電変換手段の各感磁素子に対して感磁方向の磁界を与える磁界発生手段とを具備しており、上記駆動検出部は、磁化極性が互いに同一となるように高周波信号によって上記一対の磁電変換手段を励磁駆動するとともに、上記一対の磁電変換手段のインピーダンスの変化量に基づき磁性金属片の検出信号を生成し、上記一対の磁電変換手段は、上記被検出部との相対移動方向に対して上記感磁方向が垂直となり、且つ、互いの感磁素子同士の上記相対移動方向に対する間隔g´が
g´=(n+1/2)×λ :nは0以上の整数、且つ、g´<g
となるように、配設されることを特徴とする
【0012】
この磁性金属検出システムでは、上記磁性金属センサが、並列に配置された各磁性金属片に対して相対移動することによって、各磁性金属片の影響による磁界変化に、上記一対の磁電変換手段が順次応答していく。
【0013】
この際、一方の磁電変換手段が、1の磁性金属片の影響により応答したときに、他方の磁電変換手段では、いずれの磁性金属片の影響によっても応答しない。
【0014】
そのため、上記磁性金属センサを相対移動させた場合に、上記一対の磁電変換手段の互いの検出信号の差分の値は、いずれの感磁素子にも磁性金属片による応答が無いときの検出信号の差分の値を中心として、正負に振れる。
【0015】
従って、この磁性金属検出システムでは、上記磁性金属センサの一対の磁電変換手段の両者の検出信号を比較して、所定の間隔λで並列に配置された複数の磁性金属片を検出する。
【0016】
【発明の実施の形態】
以下、実施の形態として、本発明を適用した金属片カウンタについて、図面を参照しながら説明する。
【0017】
図1に、実施の形態の金属片カウンタの斜視図を示す。
【0018】
実施の形態の金属片カウンタは、被検出体1と、センサ固定台3上に固定された磁性金属センサ2とから構成される。
【0019】
被検出体1は、所定間隔λで並列に配置された複数の金属片11を有している。これら複数の金属片11は、鉄、コバルト等の磁性金属からなり、例えば、直方体の形状となっている。これら複数の金属片11は、それぞれの長手方向の一端部が指示部12に取り付けられており、全体として被検出体1を構成している。
【0020】
金属片11の寸法は、図2(a)の平面図、及び、この図2(a)においてA方向から見た図2(b)の側面図に示すように、例えば、長手方向の長さl,幅w,高さhが、それぞれ5.0mm,0.5mm,2.0mmとなっている。また、金属片11の並列配置の間隔λは、1.0mmとなっている。なお、この金属片11の図2(a)に示すA方向から見た側面、すなわち、金属片11の長手方向の指示部12が取り付けられていない他端部の側面を、以下検出面11aと呼ぶ。
【0021】
また、被検出体1の指示部12の側面には、駆動軸13が取り付けられている。この駆動軸13は、図示しない駆動機構に接続されている。この駆動機構は、例えば、制御回路等の制御に基づき、金属片11が並列に配置された方向であるa方向及びa方向に、被検出体1を平行移動させる。
【0022】
図3に、磁性金属センサ2の構造を示す。
【0023】
磁性金属センサ2は、略U字状の開磁路型のコア22にコイル23及びコイル24が巻かれた感磁部21と、この感磁部21に磁界を与える磁石25とを備えている。
【0024】
感磁部21のコア22は、図4(a)に示すように、略直方体の垂直部22a、22bが、所定のギャップ幅gをもって長手方向が平行となるよう配置されている。この垂直部22a,22bは、その長手方向の一端部が接続部22cに接続され、全体として略U字状のコア22が一体成形されている。このコア22は、例えば、NiFe組成のパーマロイ等やFe,Co,Si,B等で構成されたアモルファス材料等の軟磁性を示す材料からなる。
【0025】
このコア22の各部位の寸法は、例えば、垂直部22a,22bの長手方向の長さl,幅w,高さhが、それぞれ3.5mm,0.5mm,0.05mmとなっている。また、この垂直部22a,22bとの間のギャップ幅gが1.0mmとなっており、コア22全体の寸法は、長手方向の長さl,幅w,厚さhが、それぞれ5.0mm,2.0mm,0.05mmとなっている。
【0026】
このような形状のコア22には、図4(b)に示すように、それぞれ筒状のボビン29a,29bの外周をガイドにして、垂直部22a及び垂直部22bに対してコイル23,24が巻かれている。これらコイル23,24は、その中心軸が上記垂直部22a,22bの長手方向に平行となるように巻かれている。このようなコイル23,24は、例えば、直径0.05mmの銅線が、それぞれ50回ずつ巻かれて構成される。
【0027】
以上のような感磁部21は、コア22の垂直部22a,bの長手方向(図4で示すx方向)へ平行に入射する外部磁界に対する感度が非常に高くなっている。また、感磁部21は、このx方向に平行入射する外部磁界に対してインピーダンス変化が生じ、その変化率が非常に大きくなっている。なお、このコア22の垂直部22a,bの長手方向すなわち図4で示すx方向を、以下この感磁部21の感磁方向として説明を行う。
【0028】
また、感磁部21のコイル23,24は、高周波のパルス電流で励磁される。ここで、コイル23,24の巻き線方向と励磁する高周波パルス電流の電流方向との関係は、その極性が同一である関係にある。つまり、コイル23に発生する磁界H1とコイル24に発生する磁界H1′とが、同一の方向となるような関係にある。例えば、コイル23とコイル24との巻き線方向が同一である場合はそれぞれに同相の高周波パルス電流が励磁され、また、コイル23とコイル24との巻き線方向が逆である場合はそれぞれに逆相の高周波パルス電流が励磁される関係となっている。
【0029】
このようなコイル23,24は、端子台26において信号線31,32,33と接続され、この信号線31,32,33を介して例えばこの磁性金属センサ2の外部に設けられた駆動検出回路と接続される。これらコイル23,24は、この駆動検出回路から励磁電流が供給され、この駆動検出回路により出力が検出される。
【0030】
図5にこの駆動検出回路の回路図を示す。
【0031】
駆動検出回路30は、発振回路34と、発振回路34からのパルス信号に基づきコイル23,24の駆動電流をスイッチングするスイッチング回路35と、コイル23,24の出力電圧を検出して平滑化する平滑回路36と、コイル23,24のスレッショルドレベルを決定する基準電圧回路37と、平滑化されたコイル23,24の出力とスレッショルドレベルを比較する比較回路38とを備えている。
【0032】
感磁部21のコイル23,24は、この図5に示すように直列接続されている。この直列接続されたコイル23,24の一端から電源電圧Vccが印加され、他端がスイッチング回路35を介して接地されている。また、このコイル23,24の中点Mの電圧が検出出力として取り出される。
【0033】
発振回路34は、例えば、周波数1MHz,デューティ比1:10のパルス信号を発生する。スイッチング回路35は、このパルス信号に基づき、直列接続されたコイル23,24に流れる電流をスイッチングする。このことにより、これらコイル23,24は、高周波パルス電流で励磁される。
【0034】
平滑回路36は、直列接続されたコイル23,24の中点Mの電圧を検出して平滑化する。基準電圧回路37は、例えば、電源電圧を所定の値の抵抗で分圧して、基準電圧を発生する。この基準電圧は、比較回路38に対して、コイル23,24の出力のスレッショルドレベルとして与えられる。
【0035】
ここで、この基準電圧の値は、磁性金属センサ2に対して何等磁界や金属が近接していない状態における直列接続されたコイル23,24の中点Mの電圧である。例えば、コイル23,24の与えられた磁界に対する変化率や磁界が与えられていないときの抵抗値が同一であれば、この基準電圧は、電源電圧Vccの1/2となる。
【0036】
比較回路38は、平滑回路36から供給される平滑化されたコイル23,24の中点Mの電圧と、基準電圧回路37から供給されるスレッショルドレベルの基準電圧とを比較して2値化し、その2値化した信号を例えば図示しない制御回路等に供給する。
【0037】
この図示しない制御回路等が、この比較回路38により2値化した信号のパルス数をカウントすることにより上記金属片11の検出数を求めることができ、この検出数から磁性金属センサ2と被検出体1との相対移動位置を検出することができる。
【0038】
以上のように駆動検出回路30は、コイル23,24に高周波のパルス電流を励磁し、また、コイル23,24の出力を検出することができる。
【0039】
また、磁石25は、上記感磁部21に対して感磁方向に平行で一様な磁界を与えるように、位置決め部25aにより感磁部21と所定間隔を保って位置決めされて固定される。この磁石25は、感磁部21の接続部22cに対向する位置に設けられ、感磁部21に対してコア22の接続部22c側から感磁方向に平行な磁界を与える。例えば、この磁石25は、1×1×2mmの直方体のフェライト磁石からなり、1×2mmの面が上記感磁部21の接続部22cに対向するように配置される。この場合、磁石25は、この1×2mmの面に垂直となるように、例えば、表面磁束密度が約600Gで着磁される。
【0040】
また、感磁部21と磁石25との間の距離lは、この磁石25の強さと、この感磁部21の磁界に対するインピーダンス特性に応じて定められる。具体的には、コイル23,24のいずれかのコイルに対して磁石25による磁界を与え、出力の最大値(すなわち、この磁石25から与えられた磁界により飽和状態となった場合の出力)及び出力の最小値(すなわち、この磁石25からの磁界が及んでいない場合の出力)を検出する。そして、これら検出した値の中間の値となるような位置を求め、このときの感磁部21と磁石25との間の距離をlとして定める。例えば、上述した感磁部21及び磁石25の場合では、距離lを2mmと定めることができる。
【0041】
なお、この磁石25は、フェライト磁石に限られず、例えば、Sm系やZnMn系の永久磁石、又は、電磁石等を用いても良い。また、磁石25に電磁石を用いた場合には、電流量により発生する磁界を制御することができるので、上記距離lの調整をこの電流量に依存させることもできる。
【0042】
以上のような磁石25は、感磁部21に対して感磁方向のバイアス磁界を与えることができ、このため、外部磁界に対してインピーダンスの変化が直線的であり、かつ、インピーダンス変化が急峻な特性を示す範囲で、この感磁部21を使用することができる。
【0043】
そして、このような略U字状の開磁路型のコア22にコイル23及びコイル24が巻かれた感磁部21と、この感磁部21に感磁方向の磁界を与える磁石25等は、例えば、その保護のため、エポキシ樹脂が封入された状態でアルミケース27に収容され、全体として磁性金属センサ2を構成する。
【0044】
以上説明したように磁性金属センサ2では、開磁路を形成したコア22を備える感磁部21を有し、この感磁部21に対して磁石25により感磁方向の磁界が与えられている。また、この感磁部21のコア22には、並列に配置され、極性が同一のコイル23及びコイル24が設けられている。従って、この磁性金属センサ2では、感磁部21に備えられるコア22に巻かれたコイル23,24のいずれか一方に磁性金属が接近すると、磁石25により与えられている磁界が乱れて変化する。そのため、この磁性金属センサ2では、この磁界の変化に応じて生じるインピーダンスの変化を検出回路により検出することにより、磁性金属が近接したかどうかを検出することができる。
【0045】
つぎに、上記被検出体1と上記磁性金属センサ2との配置の関係について説明する。
【0046】
被検出体1が上述したように図示しない駆動機構により図1中に示したa,a方向、すなわち、金属片11が並列に配置された方向に平行移動するのに対し、磁性金属センサ2は、センサ固定台3上に固定されて設置される。また、この磁性金属センサ2は、被検出体1が金属片11が並列に配置された方向に対して平行移動した場合おいて、各金属片11の検出面11aに、上記感磁部21のU字状のコア22の開口部が対向するように設置される。すなわち、この磁性金属センサ2は、感磁部21の感磁方向(図4に示すx方向)が金属片11の長手方向に一致し、上記被検出体1の移動方向a,aに垂直となるように配置される。
【0047】
また、この磁性金属センサ2は、図6に示すように、被検出体1の移動方向a,aにおけるコア22の垂直部22a及び垂直部22bの幅g′が、金属片11が並列に配置された間隔λに対して、(n+1/2)λとなるように、所定の角度をもって配置される(但し、nは、0以上の整数。)。すなわち、この磁性金属センサ2は、コア22の垂直部22aが、1の金属片11の検出面11aに対向するときに、他方の垂直部22bがいずれの検出面11aとも対向しない位置となるように、角度を設定してセンサ固定台3上に配置される。
【0048】
例えば、上述したような寸法のコア22及び金属片11であれば、この垂直部22aと垂直部22bとを結ぶ直線と、被検出体1の移動方向a,aとの角度θを、以下のように定めることができる。
【0049】
Figure 0003626341
以上のように被検出体1と磁性金属センサ2との配置関係を定めることによって、この被検出体1がa,a方向に平行移動した場合、磁性金属センサ2の検出出力が以下の状態を繰り返すこととなる。すなわち、磁性金属センサ2の検出出力は、垂直部22aが1の金属片11の影響により応答して垂直部22bがいずれの金属片11の影響によっても応答しない状態と、垂直部22bが1の金属片11の影響により応答して垂直部22aがいずれの金属片11の影響によっても応答しない状態とを交互に繰り返すこととなる。
【0050】
従って、この交互に繰り返される検出出力をカウントすることによって、被検出体1の移動位置を検出することができる。
【0051】
つぎに、磁性金属センサ2の金属片11の検出動作について説明する。
【0052】
まず、1つの金属片11を、この磁性金属センサ2のコイル23からコイル24にかけて通過させた場合の検出出力について図7を用いて説明する。なお、この図7は、横軸に、1つのみで構成される金属片11のコイル23,24に対する位置を表し、縦軸に、図5に示す駆動検出回路30において検出したコイル23とコイル24を直列接続した場合の中点Mの電圧を表している。また、縦軸のスレッショルドレベルは、上述したようにこの磁性金属センサ2に何等磁界や金属を近づけていない場合の中点Mの電圧を表している。
【0053】
金属片11がコイル23及びコイル24のいずれにも接近していない位置Pにある場合には、コイル23及びコイル24を通る磁束の磁気回路の磁気抵抗は変化せず、磁石25から与えられる磁束の本数に変化は生じていない。従って、コイル23及びコイル24のいずれのインピーダンスも変化しないので、中点Mの電位は、スレッショルドレベルにある。
【0054】
続いて、金属片11がコイル23に接近していくと、金属片11の透磁率が空気の透磁率よりも大きいことから、このコイル23を通る磁束の磁気回路の磁気抵抗が小さくなっていき、磁石25から与えられる磁束の本数が増加する。それに対し、コイル24は金属片11に応答しないため、コイル24を通る磁束の磁気回路の磁気抵抗はコイル23側の磁束が増加する分だけ減少する。そのため、コイル23のインピーダンスが小さくなっていき、それに対して、コイル24のインピーダンスは大きくなっていく。従って、金属片11がコイル23に接近するにつれて、中点Mの電位は、スレッショルドレベルから順次高くなっていく。そして、金属片11がコイル23に最も接近した位置Pとなる場合に、中点Mの電位が最も高くなる。
【0055】
続いて、金属片11がコイル23に最も接近した位置Pからコイル24に接近していくと、コイル23から金属片11が離れていくため、コイル23を通る磁束の磁気回路の磁気抵抗が大きくなっていき、磁石25から与えられる磁束の本数が減少していく。それに対して、コイル24に金属片11が接近するため、コイル24を通る磁束の磁気回路の磁気抵抗は小さくなっていく。そのため、コイル23のインピーダンスが大きくなっていき、同時に、コイル24のインピーダンスが小さくなっていく。従って、金属片11がコイル23からコイル24に接近するにつれて、中点Mの電位は順次低くなっていく。そして、金属片11がコイル23とコイル24の中間位置Pに来ると中点Mの電位はスレッショルドレベルとなり、金属片11がコイル24に最も接近した位置Pとなると中点Mの電位が最も低くなる。
【0056】
続いて、金属片11がコイル24に最も接近した位置Pから、コイル23及びコイル24のいずれにも接近していない位置Pに移動すると、コイル23及びコイル24を通る磁束の磁気回路の磁気抵抗がいずれも金属片11に応答しなくなる。従って、コイル23及びコイル24のいずれのインピーダンスも変化しないので、中点Mの電位が、スレッショルドレベルとなる。
【0057】
以上のように、磁性金属センサ2では、金属片11がコイル23からコイル24にかけて通過すると、中点Mの電位が、金属片11が接近していないときの電位をスレッショルドレベルとして、プラスマイナスに振れる。従って、この磁性金属センサ2では、このスレッショルドレベルを中心に検出出力を比較することによって、金属片11の位置を容易かつ確実に検出することができる。
【0058】
つぎに、コイル23とコイル24の間隔をλ/2にした磁性金属センサ2を、間隔λで並列に配置された複数の金属片11に対して相対的に移動させた場合の検出出力について図8を用いて説明する。なお、この図8は、横軸に、複数の金属片11に対する磁性金属センサ2の位置を表し、縦軸に、図5に示す駆動検出回路30においてコイル23とコイル24を直列接続した場合の中点Mの電圧を表している。また、縦軸のスレッショルドレベルは、上述したようにこの磁性金属センサ2に何等磁界や金属を近づけていない場合の中点Mの電圧を表している。
【0059】
この磁性金属センサ2では、コイル23に1つの金属片11が最も接近した位置にあるときには、コイル24にはいずれの金属片11も接近していない。そのため、コイル23が金属片11に応答している状態において、コイル24が金属片11に応答していない。従って、検出出力となる中点Mの電位は、スレッショルドレベルよりも大きくなっている。
【0060】
また、この磁性金属センサ2では、コイル24に1つの金属片11が最も接近した位置にあるときには、コイル23にはいずれの金属片11も接近していない。そのため、コイル24が金属片11に応答している状態において、コイル23が金属片11に応答していない。従って、検出出力となる中点Mの電位は、スレッショルドレベルよりも小さくなる。
【0061】
従って、この磁性金属センサ2では、間隔λで並列に配置された複数の金属片11に対して相対的に移動させた場合、スレッショルドレベルを中心に上下に振れる信号を検出出力として得ることができる。
【0062】
なお、図9に、一例として、上述した寸法の磁性金属センサ2と金属片11を適用した場合の、磁性金属センサ2と金属片11の相対移動位置に対する直列接続したコイル23とコイル24の中点Mの電位の関係を表した図を示す。
【0063】
以上のように、磁性金属センサ2では、間隔λで並列に配置された複数の金属片11に対して相対的に移動させた場合における検出出力を、金属片11がコイル23,24のいずれにも接近していない位置の中点Mの電位をスレッショルドレベルとして比較することにより、1の金属片11の数を容易かつ確実に検出することができる。
【0064】
従って、本発明の実施の形態の金属片カウンタでは、この磁性金属センサ2の検出出力に基づき金属片11の数をカウントすることによって、磁性金属センサ2と被検出体1の相対位置を求めることができる。
【0065】
また、更に別の磁性金属センサを上記磁性金属センサ2と(m±1/4)λの距離をもって相対移動方向にずらして配置することで、上記図8に示した信号が90゜の位相差を有する2相の信号として得ることができる(mは整数)。従って、この2相の信号に基づき相対的な移動量を出力する信号をつくることができるので、このように配置された磁性金属センサを用いて位置検出装置を構成することが可能となる。
【0066】
つぎに、磁性金属センサ2に磁気インピーダンス効果素子を適用した場合について説明する。
【0067】
これまで本発明の実施の形態の金属片カウンタを説明するにあたり、略U字型のコア22の垂直部22a,22bにコイル23,24を巻いた感磁部21を備える磁性金属センサ2を適用した場合を示したが、この金属片カウンタでは、例えば、特開平6−281712号公報で提案されているようないわゆる磁気インピーダンス効果(MI)素子41,42を感磁部21に適用することも可能である。
【0068】
このMI素子41,42は、材質がFe、Si、Co、B等で構成されたアモルファス合金からなる。このMI素子は、図10に示すように、略ワイヤ形状となっている。このMI素子41,42は、長手方向に対して高周波通電すると、この長手方向に入射する外部磁界に対してインピーダンス変化が生じる。
【0069】
このMI素子41,42を磁性金属センサ2に適用した場合の配置関係を図11に示す。
【0070】
このMI素子41,42は、所定のギャップ幅gをもって長手方向が平行となるよう配置され、その配置位置が上述した垂直部22a,22bに対応する位置となっている。また、このMI素子41,42は、磁石25により長手方向に平行な磁界が与えられ、この方向に入射する外部磁界に対する感度が非常に高くなっている。また、このMI素子41,42は、この方向の外部磁界に対してインピーダンス変化が生じ、その変化率が非常に大きくなっている。
【0071】
また、MI素子41,42は、高周波のパルス電流で励磁される。ここで、MI素子41,42は、感磁方向が同一となるような同相の高周波パルス電流で励磁され、その極性が同一となっている。
【0072】
このようなMI素子41,42は、信号線を介してこの磁性金属センサ2の外部に設けられた駆動検出回路と接続される。これらMI素子41,42は、この駆動検出回路から励磁電流が供給され、この駆動検出回路により出力が検出される。
【0073】
図12にこのMI素子41,42の駆動検出回路の回路図を示す。
【0074】
駆動検出回路40は、発振回路34と、発振回路34からのパルス信号に基づきMI素子の駆動電流をスイッチングするスイッチング回路35と、MI素子41の出力電圧を検出して平滑化する平滑回路36aと、MI素子42の出力電圧を検出して平滑化する平滑回路36bと、平滑化されたMI素子41,42の出力どうしを比較する比較回路38とを備えている。
【0075】
MI素子41,42は、それぞれ並列的に接続されて励磁されている。
【0076】
MI素子41は、一端が抵抗Rを介して電源電圧Vccが供給され、他端がスイッチング回路35を介して接地されている。また、MI素子42は、一端が上記抵抗Rと同一の抵抗値の抵抗Rを介して電源電圧Vccが供給され、他端がスイッチング回路35を介して接地されている。このMR素子41,42は、それぞれ抵抗R,Rとの接続点から検出出力が取り出される。
【0077】
発振回路34は、例えば、周波数1MHz,デューティ比1:10のパルス信号を発生する。スイッチング回路35は、このパルス信号に基づき、並列接続されたMI素子41,42に流れる電流をスイッチングする。このことにより、これらMI素子41,42は、高周波パルス電流で励磁される。
【0078】
平滑回路36aは、MI素子41と抵抗Rとの接続点の電圧を検出して平滑化する。平滑回路36bは、MI素子42と抵抗Rとの接続点の電圧を検出して平滑化する。
【0079】
比較回路38は、平滑回路36aにより平滑化されたMI素子41の出力電圧と、平滑回路36bにより平滑化されたMI素子42の出力電圧とを比較して2値化し、その2値化した信号を例えば図示しない制御回路等に供給する。
【0080】
この図示しない制御回路等が、この比較回路38により2値化した信号のパルス数をカウントすることにより上記金属片11の検出数を求めることができ、この検出数から磁性金属センサ2と被検出体1との相対移動位置を検出することができる。
【0081】
従って、この駆動検出回路40は、MI素子41,42に高周波のパルス電流を励磁し、また、MI素子41とMI素子42との出力を検出することができる。
【0082】
このことから、MI素子41,42を適用した磁性金属センサ2では、MI素子41,42のいずれか一方に金属片11が接近すると、磁石25により与えられている磁界が変化する。このとき、他方のMI素子41,42には金属片11が接近せず、磁石25から与えられる磁界は一方のMI素子と差動的に変化する。そのため、この磁性金属センサ2に何等磁界や金属が接近していないときの2つのMI素子41とMI素子42との出力電圧をスレッショルドレベルとした場合、複数の金属片11を通過するにつれ、このスレッショルドレベルを上下する差動電圧を得ることができる。従って、この磁性金属センサ2では、この磁界の変化に応じて生じたインピーダンスの変化を、2つのMI素子41,42との間で比較することにより、この磁性金属センサ2と被検出体1との相対移動を容易かつ確実に検出することができる。
【0083】
以上のような磁性金属センサ2では、MI素子を用いるため、コストが安くまた特性が良くことができる。
【0084】
なお、以上実施の形態を説明するにあたり被検出体1が平行移動すると説明したが、本発明では、被検出体1とセンサ2との間で相対移動すればよいので、磁性金属センサ2側が平行移動しても良い。また、被検出体を円形状に構成し、回転数や角度を測定するようにしても良い。
【0085】
また、実施の形態で示した磁性金属センサ2の駆動検出回路30,40の回路構成は、一例であり、本発明ではその回路構成が限定されるものではない。
【0086】
また、本発明は、以上の実施の形態に限らず、本発明の要旨を逸脱することなく、その他様々な構成を取り得ることは勿論である。
【0087】
【発明の効果】
本発明に係る磁性金属センサでは、一対の磁電変換手段の両者の検出信号を比較して、所定の間隔λで並列に配置された複数の磁性金属片を検出することにより、高精度、高速かつ確実に、微小な磁性金属片を検出することができる。
【0088】
本発明に係る磁性金属検出システムでは、磁性金属センサの一対の磁電変換部の両者の検出信号を比較して、所定の間隔λで並列に配置された複数の磁性金属片を検出することにより、高精度、高速かつ確実に、微小な磁性金属片を検出することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態の金属片カウンタの斜視図である。
【図2】上記金属片カウンタの被検出体の要部の平面図、及び、この被検出体の金属片の側面図である。
【図3】上記金属片カウンタの磁性金属センサの部分断面図である。
【図4】上記磁性金属センサに設けられた感磁部及びこの感磁部のコアを示す図である。
【図5】上記磁性金属センサの駆動検出回路を示す回路図である。
【図6】上記被検出体と上記磁性金属センサの配置関係を示す図である。
【図7】上記磁性金属センサの検出動作を説明する図である。
【図8】上記磁性金属センサの検出動作を説明する図である。
【図9】上記磁性金属センサと被検出体の相対移動位置に対する駆動検出回路の出力電圧を表す図である。
【図10】MI素子を説明する図である。
【図11】上記MI素子を適用した場合の本発明の実施の形態の金属片カウンタの磁性金属センサの配置関係を説明する図である。
【図12】上記MI素子を適用した金属片カウンタの磁性金属センサの駆動検出回路の回路図である。
【符号の説明】
1 被検出体、2 磁性金属センサ、3 センサ固定台、11 金属片、11a 検出面、12 指示部、21 感磁部、22 コア、22a,22b 垂直部、22c 接続部、23,24 コイル、25 磁石、30,40 駆動検出回路、34 発振回路、35 スイッチング回路、36,36a,36b 平滑回路、37 基準電圧回路、38 比較回路

Claims (2)

  1. 複数の磁性金属片が所定の間隔λで並列に配置された被検出部に対して、この複数の磁性金属片が並列に配置された方向に相対移動して、上記磁性金属片を検出する磁性金属センサにおいて、
    感磁方向の磁界変化に応答する軟磁性材料からなる感磁素子を有し、互いの感磁素子の感磁方向に垂直な方向の間隔がgとされ、当該感磁素子に生じる感磁方向の磁界変化に応じた電気信号を出力する一対の磁電変換手段と、
    上記一対の磁電変換手段の各感磁素子に対して、感磁方向の磁界を与える磁界発生手段とを備え、
    上記一対の磁電変換手段は、磁化極性が互いに同一となるように高周波信号で励磁駆動され、
    上記一対の磁電変換手段は、インピーダンスの変化量に基づき磁性金属片の検出信号が生成され、
    上記一対の磁電変換手段は、上記被検出部との相対移動方向に対して上記感磁方向が垂直となり、且つ、互いの感磁素子同士の上記相対移動方向に対する間隔g´が
    g´=(n+1/2)×λ :nは0以上の整数、且つ、g´<g
    となるように、配設されること
    を特徴とする磁性金属センサ。
  2. 複数の磁性金属片が所定の間隔λで並列に配置された被検出部と、
    上記複数の磁性金属片が並列に配置された方向に、上記被検出部に対して相対移動するように設けられた磁性金属センサと、
    上記磁性金属センサを駆動するとともに、上記磁性金属センサの検出信号に基づき上記被検出部の各磁性金属片を検出する駆動検出部とを備える磁性金属検出システムであって、
    上記磁性金属センサは、
    感磁方向の磁界変化に応答する軟磁性材料からなる感磁素子を有し、互いの感磁素子の感磁方向に垂直な方向の間隔がgとされ、当該感磁素子に生じる感磁方向の磁界変化に応じた電気信号を出力する一対の磁電変換手段と、
    上記一対の磁電変換手段の各感磁素子に対して感磁方向の磁界を与える磁界発生手段とを具備しており、
    上記駆動検出部は、磁化極性が互いに同一となるように高周波信号によって上記一対の磁電変換手段を励磁駆動するとともに、上記一対の磁電変換手段のインピーダンスの変化量に基づき磁性金属片の検出信号を生成し、
    上記一対の磁電変換手段は、上記被検出部との相対移動方向に対して上記感磁方向が垂直となり、且つ、互いの感磁素子同士の上記相対移動方向に対する間隔g´が
    g´=(n+1/2)×λ :nは0以上の整数、且つ、g´<g
    となるように、配設されること
    を特徴とする磁性金属検出システム。
JP35370497A 1997-05-21 1997-12-22 磁性金属センサ及び磁性金属検出システム Expired - Fee Related JP3626341B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP35370497A JP3626341B2 (ja) 1997-12-22 1997-12-22 磁性金属センサ及び磁性金属検出システム
EP98108946A EP0880035B1 (en) 1997-05-21 1998-05-15 Magnetic metal sensor and method for detecting magnetic metal
DE69837694T DE69837694T2 (de) 1997-05-21 1998-05-15 Fühler für magnetisches Metall und Verfahren zum Detektieren eines magnetischen Metalls
KR1019980018033A KR100532687B1 (ko) 1997-05-21 1998-05-19 자성금속센서및자성금속검출방법
US09/080,957 US6236200B1 (en) 1997-05-21 1998-05-19 Magnetic metal sensor and method for detecting magnetic metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35370497A JP3626341B2 (ja) 1997-12-22 1997-12-22 磁性金属センサ及び磁性金属検出システム

Publications (2)

Publication Number Publication Date
JPH11183195A JPH11183195A (ja) 1999-07-09
JP3626341B2 true JP3626341B2 (ja) 2005-03-09

Family

ID=18432659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35370497A Expired - Fee Related JP3626341B2 (ja) 1997-05-21 1997-12-22 磁性金属センサ及び磁性金属検出システム

Country Status (1)

Country Link
JP (1) JP3626341B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001137618A (ja) * 1999-09-03 2001-05-22 Tsukishima Kikai Co Ltd ろ過・乾燥装置
JP6149542B2 (ja) * 2013-06-27 2017-06-21 愛知製鋼株式会社 磁気検査装置および磁気検査方法
JP6913617B2 (ja) * 2017-12-01 2021-08-04 昭和電工株式会社 磁気センサ、計測装置及び磁気センサの製造方法

Also Published As

Publication number Publication date
JPH11183195A (ja) 1999-07-09

Similar Documents

Publication Publication Date Title
KR100532687B1 (ko) 자성금속센서및자성금속검출방법
US6118271A (en) Position encoder using saturable reactor interacting with magnetic fields varying with time and with position
JP5014415B2 (ja) 電気機械用検出装置
US6160395A (en) Non-contact position sensor
JP4712390B2 (ja) 位置検出器
JP6107942B2 (ja) 磁気電流センサおよび電流測定方法
US5229715A (en) Variable reluctance sensor for electromagnetically sensing the rate of movement of an object
JP2010500862A (ja) 位置又は移動用測定系を有するモータ
EP3450987B1 (en) Speed detecting device and stray magnetic field suppressing method
JP4582564B2 (ja) 磁束測定装置
JP3664289B2 (ja) 磁性金属センサ
JP3626341B2 (ja) 磁性金属センサ及び磁性金属検出システム
JP4195152B2 (ja) 位置検出装置
CA2283209C (en) Device for detecting the position of a moveable magnet for generating a magnetic field
JPH10206104A (ja) 位置検出装置
JP3937372B2 (ja) 位置検出装置
JP2000338257A (ja) 磁性金属センサ
JP3064293B2 (ja) 回転センサ
US20040237649A1 (en) Ferraris sensor
JP3064292B2 (ja) 回転センサ
JP3618425B2 (ja) 磁気センサ
JPS5896252A (ja) 電磁式センサ
JP7046721B2 (ja) 速度検出装置
JP3613572B2 (ja) 磁性金属センサ
JP2003257738A (ja) 永久磁石、永久磁石の製造方法および位置センサ

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees