JP3618974B2 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP3618974B2
JP3618974B2 JP28550897A JP28550897A JP3618974B2 JP 3618974 B2 JP3618974 B2 JP 3618974B2 JP 28550897 A JP28550897 A JP 28550897A JP 28550897 A JP28550897 A JP 28550897A JP 3618974 B2 JP3618974 B2 JP 3618974B2
Authority
JP
Japan
Prior art keywords
titanium nitride
film
nitride film
contact hole
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28550897A
Other languages
English (en)
Other versions
JPH11121401A (ja
Inventor
健壹 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP28550897A priority Critical patent/JP3618974B2/ja
Publication of JPH11121401A publication Critical patent/JPH11121401A/ja
Application granted granted Critical
Publication of JP3618974B2 publication Critical patent/JP3618974B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、導電領域上に形成された絶縁膜を貫通し、その導電領域に電気的に接続するコンタクトを含む半導体装置の製造方法に関するものである。
【0002】
【従来の技術】
LSIの高集積化に伴い素子の微細化が進み、LSIの製造工程も複雑化が進んでいる。それに伴い、上層−下層配線(活性領域)間を接続するコンタクトホールのアスペクト比(アスペクト比=(コンタクトホールの深さ)/(コンタクトホールの直径))は増大し続けている。現在のようなLSIでは、このような高アスペクト比のコンタクトホール内に形成されるコンタクトに関しても、十分な信頼性を確保するため、コンタクトホール内を導電性物質で埋設する技術(プラグ技術)が広く使用されてきている。
【0003】
一般にコンタクトホールの埋設に用いる物質としての導電性物質は、ドープトポリシリコン、タングステンなどが用いられているが、ドープトポシリシリコンは比抵抗値が比較的大きく、使用箇所が限定されるなどの制約がある。またタングステンについては、ブランケットCVD(Chemical Vapor Deposition)法によってタングステンプラグを形成したい場合に、下地として密着層、バリア層が必須となり、構造、製造工程が複雑で、コストが高いという問題を有している。
【0004】
これに対し、チタンナイトライドをコンタクトホールの埋設に用いる研究、開発が進んでいる。チタンナイトライドは高耐熱性物質で比抵抗値が比較的低く、成膜の際に密着層を必要としないため、構造、製造工程が簡単になるという利点がある。
チタンナイトライドによってコンタクトを形成する技術(TiNプラグ技術)に関して、K.Ohto et al.,1996 IEDM Technical Digest,SanFrancisco,CA,pp.361−364,K.Mori et al.,Extended Abstract of the 1991 International Conference on Solid State Device and Materials,Yokohama,pp.210−212 等がある。
【0005】
次に、一般的なチタンナイトライドプラグの形成方法を説明する。図4は従来の技術によって形成されたコンタクトの断面投影図を示すものであり、図において、101は半導体基板、102は半導体基板の非活性領域に形成された素子分離膜、103は半導体基板101の活性領域の表面領域に形成された不純物領域、104は半導体基板101上に積層された絶縁膜、105は絶縁膜104内に埋設されたコンタクトであり、コンタクト105は絶縁膜104に開口されたコンタクトホールの内壁に成膜されたチタン膜106とコンタクトホールを埋設するチタンナイトライド膜107によって構成されているとする。このコンタクト105の底面はチタンシリサイド膜108を介して不純物領域103に接している。
【0006】
また、絶縁膜104の表面には、コンタクト105の上部に接する状態の上層配線109がパターニングされている。
なお、コンタクト105を構成するチタンナイトライド膜107の膜内には成膜時に生じたクラック110が残った状態となる。
【0007】
次に、図4の半導体装置の製造方法について説明する。
まず、図5(a)に示すように、半導体基板101の表面に素子分離膜102を形成し、さらに活性領域に不純物領域103を形成する。その後、絶縁膜104を積層し、絶縁膜104内に不純物領域103の表面を一部露出させるコンタクトホール104aを開口する。
【0008】
その後、図5(b)に示すように、チタン膜106をスパッタリング若しくはCVD法によって積層し、熱処理を加えることでコンタクトホール104aの底面にチタンシリサイド膜108を形成する。
次に、図5(c)に示すように、CVD法によってチタンナイトライド膜107を積層し、コンタクトホール104a内を埋設し、コンタクト105を形成する。このとき、成膜したチタンナイトライド膜107にはクラック110が形成される。
【0009】
次に、CMP(Chemical Mechanical Polishing)法によってエッチバックを行い、絶縁膜104の表面上のチタンナイトライド膜107及びチタン膜106を除去する。
その後、コンタクトホール105の上部に電気的に接する上層配線109をパターニングすることで図4に相当する半導体装置を得ることが可能である。
【0010】
このように形成した半導体装置にあっては、コンタクト105を構成するチタンシリサイド膜107の成膜時に、チタンシリサイド膜107の膜厚が700Å(一般的なCVD法による場合)よりも大きな膜厚とすると膜ストレスによってクラック110が生じていた。このクラック110のために完成後の半導体装置の信頼性は劣化していた。
【0011】
よって、信頼性良くチタンナイトライド膜107を含むコンタクト105(TiNプラグ)を形成するためにはチタンナイトライド膜107の最大膜厚がクラックを形成しない程度の膜厚で制限されてしまい、コンタクト105の開口径が大きなコンタクトホール104aには上記の従来の技術による半導体装置及びその製造方法を適用することは困難であった。
【0012】
また、別の従来の技術として、特開平8−306664号公報に記載された技術がある。この技術はコンタクトホール内を導電物質で埋設する際、一度のスパッタリング工程で埋設を行うと、コンタクトホール内部が完全に埋設される前に開口部上部に局部的に厚い導電物質が積層され埋め込み特性が悪化すること(ボイドの形成)を抑制するための技術でり、コンタクトホールを開口後、最初にスパッタリング法によって完全にコンタクトホール内を埋設しない程度にチタンナイトライド膜を積層し、次に絶縁膜表面に積層されたチタンナイトライド膜をエッチバックし、さらにスパッタリング法によってチタンナイトライド膜を積層してコンタクトホールを埋設することで、埋め込み特性を向上させるという技術である。
【0013】
【発明が解決しようとする課題】
この発明は上記のような問題を解決するためになされたものであり、チタンナイトライド膜107によるコンタクトホール104aによる埋め込みを、コンタクトホール104aの開口径に応じて、複数回のチタンナイトライド膜の成膜によって行い、1回の成膜によって形成されるチタンナイトライド膜の膜厚を、クラックが形成されない程度の大きさに抑制し、コンタクト105の信頼性を得るものである。
【0014】
【課題を解決するための手段】
この発明の請求項1の半導体装置の製造方法は、導電領域上に絶縁膜を成膜し、上記絶縁膜の表面から上記導電領域に当接するコンタクトホールを開口する工程、上記コンタクトホールの内壁及び底面に沿ってCVD法により第一のチタンナイトライド膜を積層する工程、製造過程にある半導体装置を常温に戻す工程、上記第一のチタンナイトライド膜が積層された上記コンタクトホール内にCVD法により第二のチタンナイトライド膜を積層して上記コンタクトホールを埋設し、コンタクトを得る工程を含んでおり、コンタクトホールの内壁及び底面に沿ってCVD法により第一のチタンナイトライド膜を積層する工程と、製造過程にある半導体装置を常温に戻す工程を複数回繰り返すことで上記コンタクトホール内に複数層からなる上記第一のチタンナイトライド膜を形成し、第一のチタンナイトライド膜に生じたクラックを第二のチタンナイトライド膜によって充填するものである。
【0015】
また、この発明の請求項2の半導体装置の製造方法は、請求項1に対応する半導体装置の製造方法において、第二のチタンナイトライド膜は700Å以下の膜厚となるように成膜され、コンタクトホールの内壁及び底面に積層された第一のチタンナイトライド膜によって構成される開口径1000Å以下の開口部内部を埋め込むものである。
【0016】
さらに、この発明の請求項3の半導体装置の製造方法は、請求項1に対応する半導体装置の製造方法において、コンタクトホールを開口後、少なくとも上記コンタクトホールの底面に密着するチタン、ニッケル、コバルトのいずれかからなる膜を形成する工程を含むものである。
【0023】
【発明の実施の形態】
実施の形態1.
この発明の実施の形態1について説明する。
図1は、この発明によって形成された半導体装置を示すものであり、図において符号1は半導体基板、2は半導体基板1の表面の非活性領域に形成された素子分離膜、3は半導体基板1の表面領域の活性領域に形成された不純物領域、4は半導体基板1の表面に積層された絶縁膜、5は絶縁膜4の内部に埋設して形成されたコンタクトであり、このコンタクト5は絶縁膜4に開口されたコンタクトホールの内壁にチタン膜6が密着しており、チタンナイトライド膜7によって埋設された構造であり、コンタクト5の底面はチタンシリサイド膜8を介して不純物領域3に接している。さらに、絶縁膜4の表面にはコンタクト5の上面に接して上層配線9が形成され、コンタクト5を介して上層配線9と不純物領域3とが電気的に接続されている。
【0024】
なお、この図1の半導体装置のコンタクト5の水平方向の直径は3000Å程度であり、コンタクト5を構成するチタンナイトライド膜7は複数回のCVD法によるチタンナイトライド膜の成膜によって形成されたものであり、コンタクトホールを埋め込む際の最終回のCVD法によるチタンナイトライド膜の成膜工程において成膜されるチタンナイトライド膜の厚さは、膜内にクラックが形成されない程度の膜厚とすることを特徴とするものである。
【0025】
次に、この発明による実施の形態1の半導体装置の製造方法について説明する。
まず、図2(a)に示すように半導体基板1の非活性領域となる領域に素子分離膜2を形成する。その後、活性領域となる半導体基板1の表面領域に不純物注入若しくは拡散によって不純物領域3を形成する。さらに絶縁膜4を半導体基板1の表面に積層し、次にこの絶縁膜4に対して選択的に異方性エッチングを行い開口径3000Å程度のコンタクトホール4aを開口し、不純物領域3の表面を一部表出させる。なお、この図2においてはコンタクトホール4aの形状は円筒である例を示しているが、適応するデバイスに応じて、異なる形状のコンタクトホールとすることも可能である。
【0026】
その後、図2(b)に示すように、CVD法若しくはスパッタリング法によって少なくともコンタクトホール4aの底面にチタン膜6を積層する。その後、熱処理を加えて、コンタクトホール4aの底面に位置する半導体基板1とチタン膜6とを互いに反応させ、チタンシリサイド膜8を形成する。この熱処理は必要に応じて行えば良い。下層配線に相当する物質がどのような物質であるかによって熱処理等の処理を行うことが適当である。
【0027】
なお、半導体基板1の表面領域とコンタクト5との接続の場合には、上述のようにチタン膜6をコンタクトホール4aの底面部分に成膜することでコンタクト抵抗低減層とできるが、チタン膜6をコバルト膜、ニッケル膜に代えることも可能であり、これらの膜によってもコンタクト抵抗低減を図ることができ良好な電気的接続が可能となる。また、下層配線を構成する物質によってはチタン膜6に相当する膜の形成を省略することも可能である。
【0028】
次に、図2(c)に示すように、チタンナイトライド膜7aをCVD法によって500Å程度の膜厚となるように成膜し、この製造過程にあるウェハを常温に戻す。このとき、コンタクトホール4aの内部は完全には埋め込まれず、開口径の小さなコンタクトホール4aが形成された状態となる。
なお、チタンナイトライド膜7aは、その膜厚が500Åと小さいため、成膜時に生じるストレスが小さく、膜内にクラックが形成されることがない。
【0029】
その後、チタンナイトライド膜の成膜工程と、ウェハを常温まで戻す工程を繰り返し、(開口径が3000Åであれば、3回、若しくはそれ以上の回数を繰り返す。)コンタクトホール4aの開口部を徐々に埋め込んで行き、複数層からなるチタンナイトライド膜7bを得る。このときのコンタクトホール4aの開口径は1000Å以下の寸法となる。
図2(d)に、チタンナイトライド膜7bが形成された段階で、一回のCVD法によって積層するチタンナイトライド膜の膜厚が大きく、成膜時の膜ストレスが大きくなることでクラック10が生じた場合の図を示す。
クラック10は、チタンナイトライド膜7bの露出した表面部分から膜内に向かって形成されている。
【0030】
次に、図2(e)に示すように、クラック10が形成されない程度の小さな膜厚(一般的なCVD法では、700Åより大きな膜厚の場合クラックが生じるため、700Å以下の膜厚とする。)、例えば500Å程度のチタンナイトライド膜7をCVD法によって成膜することでコンタクトホール4aの開口部を完全に埋め込む。このとき同時にクラック10の間隙部分にも同様にチタンナイトライドを充填することができ、結果的にクラック10をチタンナイトライド膜で塞ぐことが可能となる。
【0031】
その後、図2(f)に示すように、絶縁膜4の表面に積層されたチタン膜6及びチタンナイトライド膜7をCMP法によって除去する。CVD法でなはく、化学反応を用いたドライエッチングによって不要となるチタン膜6及びチタンナイトライド膜7を除去することも可能であり、さらに絶縁膜4上に一部を残した状態にパターニングし、上層配線等として用いることも可能である。
さらに、絶縁膜4の表面に、コンタクト5の上面に接する状態に上層配線9をパターニングすることで、図1に示すような半導体装置を得ることが可能となる。
【0032】
このように、チタンナイトライド膜7を含むコンタクト5を形成する場合に、CVD法によるチタンナイトライド膜の成膜と、ウェハを常温とする工程とを、それぞれ複数回繰り返してコンタクトホール4aの埋設を行い、コンタクトホール4aを完全に埋め込む際のチタンナイトライド膜の成膜条件をクラックが形成されないような小さな膜厚とすることで、それまでの工程で成膜していたチタンナイトライド膜7bにクラック10が形成されていたとしても、そのクラック10の間隙内を次工程で成膜するチタンナイトライド膜によって充填でき、間隙を塞ぐことができる。従って、信頼性の高いコンタクト5(TiNプラグ)を得ることが可能となる。
【0033】
上記のような構造のコンタクト5は、絶縁膜を介して上部及び下部に形成された導電領域を電気的に接続する部分に広く適用することが可能であり、特に開口径が比較的大きく、一度のCVD法によるチタンナイトライド膜の埋め込みではクラックが形成されてしまうコンタクトに適応することが望ましい。
【0034】
なお、この製造工程の図2(d)に示したクラック10は、発明に必須の構成ではなく、コンタクト5の製造過程においてクラック10生じたか生じないかにかかわらず、この発明を用いることで、最終的に信頼性の高いコンタクト5が得られるということを示すためのものである。
この発明の複数回のチタンナイトライド膜の成膜工程において、クラックが生じない場合は、より信頼性の高いコンタクト5(TiNプラグ)が得られることは言うまでもない。
【0035】
なお、チタンナイトライド膜を所定の膜厚以上の厚さに成膜した場合にクラックが生じるという主原因は、CVD法によるチタンナイトライド膜の成膜時の熱ストレスによるものと考えられている。
また、コンタクトホール径、一度の成膜によるチタンナイトライド膜の膜厚などの例を示したが、形成しようとするコンタクトホール径に応じて、内部に埋め込むチタンナイトライド膜の膜厚が変化することは言うまでもない。
【0036】
実施の形態2.
次に、この発明の実施の形態2について説明する。
この実施の形態2は、実施の形態1の製造方法とは異なる製造方法を示すものである。
実施の形態1では、コンタクトホール4aを埋め込む際に、CVD法による複数回のチタンナイトライド膜の埋め込みを繰り返し、最後にクラックを形成しない膜厚のチタンナイトライド膜を成膜することでコンタクトホール4a内を完全に埋め込み、コンタクト5を形成していた。この実施の形態2では、2回のチタンナイトライド膜の成膜でコンタクトホール4a内の埋め込みを完全に行うことを特徴としている。
【0037】
この実施の形態2の半導体装置の製造方法を説明する。なお、実施の形態1の説明に用いた図面に付した符号とこの実施の形態2の説明に用いる符号とで同一符号は同一若しくは相当部分を示すものである。
まず、図3(a)に示すように、半導体基板1上の絶縁膜4に開口径3000Å程度のコンタクトホール4aを開口する。その後、図3(b)に示すように、チタン膜6をCVD法若しくはスパッタリング法によって積層し、必要に応じて、熱処理を加え、コンタクトホール4aの底面部分をシリサイド化し、チタンシリサイド膜8を形成する。
【0038】
次に、図3(c)に示すように、CVD法によってチタンナイトライド膜7cを成膜する。このときのチタンナイトライド膜7cの膜厚は、コンタクトホール4aを完全には埋設しない程度の膜厚、例えば1000Å程度の膜厚となるように積層する。このとき、開口径が1000Å程度の小さなコンタクトホール4aが形成された状態となる。
チタンナイトライド膜7cの積層後、この製造過程にある半導体装置が形成されているウェハを常温に戻す。
CVD法によって積層するチタンナイトライド膜7cの膜厚が大きいため、成膜時の膜ストレスが大きく、膜内にはクラック10が形成される。
【0039】
その後、図3(d)に示すように、二度目のチタンナイトライド膜の成膜をCVD法によって行い、コンタクトホール4aの内部を完全に埋設してコンタクト5を得る。
この2度目のチタンシリサイド成膜の際のチタンシリサイド膜の膜厚は、500Å程度とし、成膜時に生じる膜ストレスが小さく、クラックが形成されない程度であり、さらに1度目に成膜されるチタンナイトライド膜7cの膜厚と2度目に成膜されるチタンナイトライド膜の膜厚との合計が、コンタクトホール4aの埋設に必要な膜厚とする。なおコンタクトホール4aの内壁に付着形成するチタン膜6の膜厚はコンタクトホール4aの開口径と比較して非常に小さいため、近似的にコンタクトホール4aの開口径はチタンナイトライド膜7の径と考える。
【0040】
次に、図3(e)に示すように、絶縁膜4上のチタン膜6及びチタンナイトライド膜7を必要に応じて除去する。(図面の場合は絶縁膜4上のチタン膜6及びチタンナイトライド膜7をCMP法によって全て除去している。)
その後、上層配線9をコンタクト5の上部に接するように形成することで図1に示すような半導体装置を得ることが可能となる。
【0041】
上記のように、コンタクトホール4aを完全に埋め込む際にクラックを形成しないチタンナイトライド膜を成膜することで、1度目のコンタクトホール4aの埋め込み時に成膜したチタンナイトライド膜7cにクラック10が生じていても、このクラック10の間隙に次工程でチタンナイトライドを充填して塞ぐことが可能であり、結果的にクラック10の悪影響のない信頼性の高いコンタクト5(TiNプラグ)を得ることができる。
【0042】
なお、実施の形態1と同様に、チタンシリサイド膜8の形成は任意であり、またチタン膜6は、下層配線に相当する物質に応じてコバルト、ニッケル等の物質に代えて形成することも可能であり、この物質はコンタクト5の抵抗低減が可能となる膜であればチタン、ニッケル、コバルトに限らず、用いることができる。さらに図3(d)に示した絶縁膜4上のチタンナイトライド膜7及びチタン膜6は必要に応じて除去しても良いし、また上層配線等として必要な部分のみ選択的に残すことも可能であることは言うまでもない。
【0043】
【発明の効果】
以下に、この発明の各請求項の効果について記載する。
この発明の請求項1に係る半導体装置の製造方法は、コンタクトホール内を第一、第二のチタンナイトライド膜で埋設し、チタンナイトライド膜の成膜毎に常温に戻すことで熱によるストレスを解消することが可能となる。さらに第一のチタンナイトライド膜にクラックが生じた場合においても、次工程の第二のチタンナイトライド膜の成膜と同時にクラック内を充填することが可能であり、良好な電気特性の半導体装置を得ることが可能となる。
また、第一のチタンナイトライド膜を複数の層とし、CVD法による成膜毎に常温とすることで膜ストレスを解消し、クラックの形成を抑制し、良好な電気特性の半導体装置を得ることが可能となる。
さらに、第一のチタンナイトライド膜に生じたクラックを第二のチタンナイトライド膜によって充填することで、クラックが形成されなかった場合に相当する良好な電気特性を得ることが可能となる。
【0044】
また、この発明の請求項2に係る半導体装置の製造方法は、請求項1に対応する効果に加え、第二のチタンナイトライド膜を700Å以下の膜厚とすることでクラックの形成を抑制することが可能であり、第一のチタンナイトライド膜に生じたクラックを抑制できるとともに、コンタクトホール内を確実に充填することが可能となり、最終的に、第一のチタンナイトライド膜にクラックが生じなかった場合と同様の良好な電気特性の半導体装置を得ることが可能となる。
【0045】
さらに、この発明の請求項3に係る半導体装置の製造方法は、請求項1の効果に加え、コンタクトの底面にチタン、コバルト、ニッケルのいずれかからなる膜を形成するため、コンタクト抵抗を低減することが可能となり、良好な電気特性の半導体装置を得ることが可能となる。
【図面の簡単な説明】
【図1】この発明の実施の形態1の半導体装置を示す図である。
【図2】この発明の実施の形態1の半導体装置の製造方法を示す図である。
【図3】この発明の実施の形態2の半導体装置の製造方法を示す図である。
【図4】従来の技術を示す図である。
【図5】従来の技術を示す図である。
【符号の説明】
1.半導体基板
2.素子分離膜
3.不純物領域
4.絶縁膜
4a.コンタクトホール
5.コンタクト
6.チタン膜
7、7a、7b、7c.チタンナイトライド膜
8.チタンシリサイド膜
9.上層配線
10.クラック

Claims (3)

  1. 導電領域上に絶縁膜を成膜し、上記絶縁膜の表面から上記導電領域に当接するコンタクトホールを開口する工程、上記コンタクトホールの内壁及び底面に沿ってCVD法により第一のチタンナイトライド膜を積層する工程、製造過程にある半導体装置を常温に戻す工程、上記第一のチタンナイトライド膜が積層された上記コンタクトホール内にCVD法により第二のチタンナイトライド膜を積層して上記コンタクトホールを埋設し、コンタクトを得る工程を含んでおり、
    コンタクトホールの内壁及び底面に沿ってCVD法により第一のチタンナイトライド膜を積層する工程と、製造過程にある半導体装置を常温に戻す工程を複数回繰り返すことで上記コンタクトホール内に複数層からなる上記第一のチタンナイトライド膜を形成し、
    第一のチタンナイトライド膜に生じたクラックを第二のチタンナイトライド膜によって充填することを特徴とする半導体装置の製造方法。
  2. 第二のチタンナイトライド膜は700Å以下の膜厚となるように成膜され、コンタクトホールの内壁及び底面に積層された第一のチタンナイトライド膜によって構成される開口径1000Å以下の開口部内部を埋め込むことを特徴とする請求項1記載の半導体装置の製造方法。
  3. コンタクトホールを開口後、少なくとも上記コンタクトホールの底面に密着するチタン、ニッケル、コバルトのいずれかからなる膜を形成する工程を含むことを特徴とする請求項1記載の半導体装置の製造方法。
JP28550897A 1997-10-17 1997-10-17 半導体装置の製造方法 Expired - Fee Related JP3618974B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28550897A JP3618974B2 (ja) 1997-10-17 1997-10-17 半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28550897A JP3618974B2 (ja) 1997-10-17 1997-10-17 半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JPH11121401A JPH11121401A (ja) 1999-04-30
JP3618974B2 true JP3618974B2 (ja) 2005-02-09

Family

ID=17692444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28550897A Expired - Fee Related JP3618974B2 (ja) 1997-10-17 1997-10-17 半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP3618974B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100357224B1 (ko) * 2000-02-08 2002-10-19 주식회사 하이닉스반도체 컨택 플러그 제조 방법
US11776980B2 (en) * 2020-03-13 2023-10-03 Applied Materials, Inc. Methods for reflector film growth

Also Published As

Publication number Publication date
JPH11121401A (ja) 1999-04-30

Similar Documents

Publication Publication Date Title
US6534361B2 (en) Method of manufacturing a semiconductor device including metal contact and capacitor
JP3319555B2 (ja) 半導体装置の製造方法
JP2728025B2 (ja) 半導体装置の製造方法
JP2004193563A (ja) Mimキャパシタを有する半導体素子
JPH05206290A (ja) 多層相互接続集積回路用ビア形成方法
JP3102405B2 (ja) 半導体装置の製造方法
JP3104534B2 (ja) 半導体装置とその製法
US20020070456A1 (en) Semiconductor device having interconnection implemented by refractory metal nitride layer and refractory metal silicide layer and process of fabrication thereof
JPH07193024A (ja) 半導体装置およびその製造方法
EP0566253A1 (en) Method for forming contact structures in integrated circuits
JP3618974B2 (ja) 半導体装置の製造方法
US6239015B1 (en) Semiconductor device having polysilicon interconnections and method of making same
JPH1126576A (ja) 半導体装置及びその製造方法
KR100246100B1 (ko) 반도체 장치의 다층 배선 및 그 형성 방법
EP0696060B1 (en) Method of making a wiring and a contact structure of a semiconductor device
JP3463961B2 (ja) 半導体装置
JP2000012686A5 (ja)
JP2968005B2 (ja) 半導体装置の製造方法
KR970007835B1 (ko) 반도체 장치의 금속 배선층 형성방법
JP2925094B2 (ja) 半導体装置の製造方法
JPH10106973A (ja) 半導体装置およびその製造方法
JP2695861B2 (ja) 半導体装置の製造方法
KR100223872B1 (ko) 금속 배선 구조 및 그 형성방법
KR100871741B1 (ko) 반도체 소자의 금속 배선 형성 방법
KR100899566B1 (ko) 반도체 소자의 비트라인 형성 방법

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees