JP3617618B2 - 半導体レーザ素子の製造方法 - Google Patents

半導体レーザ素子の製造方法 Download PDF

Info

Publication number
JP3617618B2
JP3617618B2 JP36195099A JP36195099A JP3617618B2 JP 3617618 B2 JP3617618 B2 JP 3617618B2 JP 36195099 A JP36195099 A JP 36195099A JP 36195099 A JP36195099 A JP 36195099A JP 3617618 B2 JP3617618 B2 JP 3617618B2
Authority
JP
Japan
Prior art keywords
film
protective film
angstrom
laser
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36195099A
Other languages
English (en)
Other versions
JP2001177179A (ja
Inventor
昇 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP36195099A priority Critical patent/JP3617618B2/ja
Publication of JP2001177179A publication Critical patent/JP2001177179A/ja
Application granted granted Critical
Publication of JP3617618B2 publication Critical patent/JP3617618B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、レーザチップの端面に所定の反射率を有する保護膜を設けた半導体レーザ素子およびその製造方法に関し、特に、高い信頼性を有する半導体レーザ素子に適した保護膜を得ることができる半導体レーザ素子およびその製造方法に関する。
【0002】
【従来の技術】
半導体レーザ素子においては、図3に示すように、GaAsレーザチップ1の両端面1a、1bに等しい反射率を有する保護膜101a、101bが設けられている構成のものが多い。この場合、両端面からの光出力Poは等しくなる。
【0003】
この保護膜101aがAlからなる場合、例えばAl膜の屈折率(n)をn=1.60、レーザチップ1の屈折率をn=3.50として計算すると、保護膜101aの膜厚dを変化させることによって、図4に示すように、保護膜101aの反射率が変化する。なお、この図4では、レーザ発振波長(λ)7800オングストロームでの計算結果を示している。
【0004】
この図4に示すように、保護膜の厚さに関わらず、反射率は保護膜が無い場合よりも小さくなる。そして、光学的膜厚n×dが発振波長の1/4の奇数倍になったときに反射率が最小となり、光学的膜厚n×dが発振波長の1/2の整数倍になったときに保護膜が無い場合とほぼ同じ反射率となる。これは、Al保護膜101aの屈折率がGaAsレーザチップ1の屈折率よりも小さいためである。
【0005】
これに対して、GaAsレーザチップ1の屈折率よりも大きい屈折率を有する膜、例えばアモルファスSi等の膜を用いた場合、保護膜の厚さに関わらず、反射率は保護膜が無い場合よりも大きくなる。そして、光学的膜厚n×dが発振波長の1/4の奇数倍になったときに反射率が最大となり、光学的膜厚n×dが発振波長の1/2の整数倍になったときに保護膜が無い場合とほぼ同じ反射率となる。
【0006】
ところで、光出力20mW以上の高出力レーザの場合には、一般に、図5に示すように、主出射面(前面)側からの光出力Pfを高くするために、前面側1aを保護膜が無い場合の反射率よりも低い反射率となるように、その反対側(後面)側1bを保護膜が無い場合よりも高い反射率となるように設計している。
【0007】
例えば、前面側1aのAl保護膜201aは膜厚を約700オングストローム〜1600オングストロームに形成することにより、その反射率を約15%以下に設定することができる。一方、後面側1bの保護膜100は、レーザチップ1の屈折率よりも大きい屈折率を有する膜を用いても、1層では十分に高い反射率が得られない。このため、第1層および第3層102bとして厚さλ/4(λ:波長)に相当するAl膜、第2層および第4層104bとして厚さλ/4に相当するアモルファスSi膜を交互に積層し、最後の第5層103bとして厚さλ/2に相当するAl膜を積層する。これにより、約85%以上の高反射率の保護膜を形成することができる。
【0008】
以下に、レーザチップの端面に上述したような所定の反射率を有する保護膜を形成する方法を説明する。まず、図6(a)および図6(b)に示すように、レーザウェハ2における特定の素子の電極3とそれに隣接する素子の電極3との間に、発光部(チャネル)4と直交する方向に、劈開線5をスクライブにより形成する。次に、図7に示すように、ウェハ2を劈開して、レーザバー(バー状態のレーザチップ)6を形成する。
【0009】
次に、図8に示すように、レーザバー6を、レーザバー固定用治具7に電極3面を重ねるようにしてセットする。このとき、全てのレーザバー6においてレーザチップの前面(主出射面)1a側および後面1b側が同じ向きとなるようにセットする。
【0010】
次に、レーザバー固定用治具7に固定されたレーザバー6の端面に所定の反射率を有する保護膜を成膜する。この成膜には、一般に、図9に示すような真空蒸着装置が用いられる。この真空蒸着装置は、チャンバー9内に蒸着源11と上記レーザバー固定用治具7を保持するためのホルダー8と蒸着膜厚モニター用の水晶振動子14を備えている。
【0011】
この装置を用いてレーザチップの両端面1a、1bに保護膜を蒸着する場合、まず、図9に示すように、ダクト10を通してチャンバー9内を真空にする。そして、所定の真空度に達した後、蒸着源11に入れた蒸着材料12を電子ビーム等で加熱して蒸発させて、図10(a)に示すようにレーザチップ1の端面1aに保護膜101aを蒸着する。蒸着完了後、引き続いてホルダー8を180゜回転させ、図1(b)に示すようにレーザチップ1のもう一方の端面1bに保護膜101bを蒸着する。両端面1a、1bに保護膜を形成するときの成膜速度(蒸着レート)は、蒸着完了までの間、ほぼ一定となるように制御される。この蒸着レートは加熱温度により制御されるので、電子ビーム蒸着の場合には電子ビームの強度により制御される。また、抵抗加熱の場合には、抵抗体に流す電流量で制御されることは良く知られている。この蒸着レートは、蒸着材料がAlの場合、数オングストローム/秒〜30オングストローム/秒の間で設定されるのが一般的である。なお、蒸着は水晶振動子14にて膜厚をモニターしながら行い、所定の膜厚に達した時点で蒸着を停止する。
【0012】
さらに、高出力タイプの半導体レーザ素子の場合には、上述した手順と同様にして、図11(a)に示すように、前面(主出射面)1a側に反射率約15%以下の低反射保護膜201aを成膜した後、引き続いて図11(b)に示すように、後面1b側に高反射保護膜100を成膜する。この高反射保護膜100は、上述したように、第1層および第3層102bとして厚さλ/4(λ:波長)に相当するAl膜、第2層および第4層104bとして厚さλ/4に相当するアモルファスSi膜を交互に積層し、最後の第5層103bとして厚さλ/2に相当するAl膜を積層する。
【0013】
【発明が解決しようとする課題】
上述したように、レーザチップの端面に保護膜を形成する場合、保護膜の成膜速度は蒸着完了までの間、一定となるように制御される。よって、図9に示したように、蒸着材料12に入力される電子ビームパワー13も蒸着完了までの間、ほぼ一定となる。しかし、このようにして作製した半導体レーザ素子を高出力で動作させると、必要とされる信頼性が得られないという問題があった。
【0014】
本発明は、このような従来技術の問題点を解決すべくなされたものであり、レーザチップの端面に所定の反射率の保護膜を有し、信頼性の高い半導体レーザ素子およびその製造方法を提供することを目的とする。
【0015】
【課題を解決するための手段】
本発明の半導体レーザ素子の製造方法は、多数のレーザチップが形成されたレーザウェハを劈開して、複数のレーザチップがバー状態になったレーザバーを、各レーザチップのそれぞれの端面が両側に露出した状態で形成し、該レーザバーをバー固定用治具により保持して、該レーザバーにおける各レーザチップのそれぞれの端面に所定の反射率を有する所定の膜厚Tの保護膜を成膜する成膜工程を包含する半導体レーザ素子の製造方法において、前記成膜工程が、前記保護膜としてAl膜を、電子ビーム蒸着法によって、5オングストローム/秒以上10オングストローム/秒以下の成膜速度で、前記膜厚Tの1/5以上1/2以下に達するまで成膜する第1成膜工程と、該第1成膜工程に連続して、Al膜を、前記膜厚Tに達するまで10オングストローム/秒以上20オングストローム/秒以下の成膜速度Rであってr<Rの条件で成膜する第2工程と、を包含すること特徴とし、そのことにより上記目的が達成される。
【0016】
好ましくは、前記第1の成膜工程の成膜速度が5オングストローム/秒であり、前記第2の成膜工程の成膜速度が10オングストローム/秒である
【0017】
好ましくは、前記膜厚Tが1500オングストロームであり、前記第1の成膜工程における膜厚が、300オングストロームである。
【0018】
好ましくは、前記レーザバーにおける各レーザチップの一方の端面に成膜されたAl 膜上に、アモルファスSi膜とAl 膜とを交互に積層する第3成膜工程をさらに包含する。
【0024】
以下、本発明の作用について説明する。
【0025】
本発明にあっては、レーザチップの端面に所定の反射率を有する保護膜を成膜する際に、ある膜厚に達するまでを比較的低い成膜速度で成膜するので、レーザチップ端面に与えるダメージを小さくすることが可能である。また、残りの所定膜厚までをそれよりも速い成膜速度で成膜するので、緻密で大気中の水分や酸素を通しにくい、良好な膜質の保護膜を得ることが可能である。
【0026】
両端面に所定の反射率を有する保護膜を成膜した後、一方の端面(後面側)の保護膜上に多層膜を成膜して後面側を高反射率とすることにより、高出力の半導体レーザ素子にも適用可能である。
【0027】
GaAsレーザチップの場合、保護膜の材料としては例えばAlを用いることができる。また、その上に成膜する多層膜としては、例えばアモルファスSiとAlを交互に積層したものを用いることができる。この保護膜の成膜速度は、電子ビーム蒸着の場合、電子ビームの強度により制御することが可能である。そして、蒸発に寄与しない電子流の量を低くした条件下で端面近傍の保護膜を成膜可能であるので、光出射端面に与えるダメージが小さくなる。
【0028】
半導体レーザ素子の端面保護膜の形成方法において、保護膜がある膜厚に達するまでをある成膜速度で成膜し、残りの所定膜厚までをその2倍の成膜速度で成膜すると、半導体レーザ素子のCOD(光学的破壊レベル)は、従来方法により成膜品と比較して高くなるので好ましい。また、保護膜がある膜厚に達するまでを5オングストローム/秒以上10オングストローム/秒以下の成膜速度で成膜し、残りの所定膜厚までを10オングストローム/秒以上20オングストローム/秒以下の成膜速度で成膜すると、さらに半導体レーザ素子のCOD値が高くなるので好ましい。さらに、保護膜が所定膜厚の1/5以上1/2以下に達するまでをある成膜速度で成膜し、残りの所定膜厚までをそれよりも速い成膜速度で成膜すると、半導体レーザ素子のCOD値が従来方法による成膜品と比較して高くなるので好ましい。
【0029】
【発明の実施の形態】
まず、本発明の原理について簡単に説明する。
【0030】
レーザチップの端面に比較的高い成膜速度、例えば約10オングストローム/秒〜30オングストローム/秒程度で保護膜を成膜した場合、膜質が緻密で大気中の水分や酸素を通しにくく、端面の劣化を防止する効果の大きい保護膜が得られると考えられる。
【0031】
しかし、この場合、図9に示した蒸着材料12に入力する電子ビームパワー13も高くなるため、蒸着に寄与しない迷走電子や反跳電子等の電子流15が増加し、それがレーザチップ端面にダメージを与えて半導体レーザ素子としての信頼性が損なわれるおそれがある。また、保護膜材料の飛散速度も速くなるので、保護膜材料自身によりレーザチップ端面にダメージを与えるおそれもある。さらに、熱膨張率の大きく異なるレーザチップと保護膜との密着性が良いため、レーザ発振時には端面の温度が高くなり、熱応力によってレーザチップを構成している結晶にダメージを与えることも考えられる。
【0032】
一方、保護膜の成膜速度を比較的低い条件、例えば10オングストローム/秒程度以下とした場合、保護膜の膜質を良好なものにすることが困難であり、半導体レーザ素子としての信頼性を損なうおそれがある。
【0033】
本発明はこのような考察に基づいてなされたものである。以下に、本発明の実施形態について、図面を参照しながら説明する。
【0034】
(実施形態1)
図1は、本実施形態1における半導体レーザ素子の製造方法を説明するための図である。本実施形態では、図1(b−4)に示すように、レーザチップ1の一方の端面1a側に、所定の反射率を有し、その組成が一定で、所定膜厚Tのうち、端面1aからある膜厚までの部分301aの密度が残りの部分302aの密度よりも低い保護膜が所定膜厚Tで形成している。また、他方の端面1b側には、所定の反射率を有し、その組成が一定で、所定膜厚Tのうち、端面1bからある膜厚までの部分301bの密度が残りの部分302bの密度よりも低い保護膜を形成している。
【0035】
この半導体レーザ素子の製造は、以下のようにして行うことができる。まず、従来技術と同様に、図6に示したようなウェハ2を劈開して図7に示したようなバー状態のレーザチップ6を形成し、図8に示したようにそのバー状態のレーザチップ6をバー固定用治具7に電極3面を重ねるようにしてセットする。このとき、全てのレーザバー6においてレーザチップの端面1a側および端面1b側が同じ向きとなるようにセットする。そして、レーザバー固定用治具7に固定されたレーザバー6の端面1a、1bに所定の反射率を有する保護膜を成膜する。成膜時には、図9に示したような真空蒸着装置を用いる。
【0036】
図1(a−1)に示すように、レーザバーを積層したレーザバー固定用治具7をレーザバー(レーザチップ)1の端面1aが蒸着源11側に向くように、装置内のホルダー8にセットする。そして、装置のチャンバー9をダクト10を通して排気し、所定の真空度に達した後、蒸着源11から蒸着材料12を蒸発させて成膜を開始する。
【0037】
まず、図1(b−1)に示すように、端面1aに所定の膜厚Tオングストロームよりも薄いtオングストロームの保護膜301aを成膜速度rオングストローム/秒にて成膜する。続いて、図1(b−2)に示すように、保護膜が所定の膜厚Tオングストロームになるまでの間、保護膜302aを成膜速度Rオングストローム/秒にて成膜する。このとき、成膜速度r<成膜速度Rとなるように設定する。但し、蒸着材料がAlの場合には、Rは30オングストローム/秒程度以下であるのが好ましい。
【0038】
このとき、図1(a−1)および図1(a−2)に示すように、保護膜301aの成膜速度rは保護膜302aの成膜速度Rに対して十分小さいため、保護膜301aの成膜時に蒸着材料12に照射する電子ビームパワー13’を、保護膜302aの成膜時に蒸着材料12に照射する電子ビームパワー13に比べて小さくすることができる。その結果、保護膜301aの成膜は、材料の蒸発に寄与しない電子流を低く抑えた状態にて行うことができる。
【0039】
このようにレーザチップ1の端面1aに保護膜301a、302aを成膜した後、図1(a−3)および図1(a−4)に示すように、ホルダー8を180゜回転させて、レーザチップ1のもう一方の端面1bに保護膜301b、302bを成膜する。この保護膜301b、302bは、端面1aに設けた保護膜301a、302aと同様に成膜することができる。
【0040】
まず、図1(b−3)に示すように、端面1bに所定の膜厚Tオングストロームよりも薄いtオングストロームの保護膜301bを成膜速度rオングストローム/秒にて成膜する。続いて、図1(b−4)に示すように、保護膜が所定の膜厚Tオングストロームになるまでの間、保護膜302bを成膜速度Rオングストローム/秒にて成膜する。このとき、成膜速度r<成膜速度Rとなるように設定する。
【0041】
このときにも、図1(a−3)および図1(a−4)に示すように、保護膜301bの成膜速度rは保護膜302bの成膜速度Rに対して十分小さいため、保護膜301bの成膜時に蒸着材料12に照射する電子ビームパワー13’を、保護膜301bの成膜時に蒸着材料12に照射する電子ビームパワー13に比べて小さくすることができる。その結果、端面1aに保護膜301aを成膜したときと同様に、保護膜301bの成膜は、材料の蒸発に寄与しない電子流を低く抑えた状態にて行うことができる。
【0042】
以上のように、本実施形態では、半導体レーザ素子の信頼性を左右する両光出射端面1a、1b近傍の成膜を、蒸発に寄与しない電子流の量を低くした条件下で行っているので、光出射端面に与えるダメージを小さくすることができる。しかも、残りの膜は高い成膜速度で行っているので、良好な膜質の保護膜を得ることができる。
【0043】
(実施形態2)
本実施形態2では、レーザチップ1の両端面に反射率が異なる保護膜を設けた例について説明する。このように反射率を非対称とした構造では、通常、高出力レーザに用いられ、低反射の膜は単層で、高反射の膜は多層構造であるのが一般的である。
【0044】
図2は、本実施形態2における半導体レーザ素子の製造方法を説明するための図である。光出力が約20mW以上の高出力レーザの場合、一般に、主出射面1a側からの光出力を高くするため、図2(b−5)に示すように、主出射面(前面)1a側を低反射、反対面(後面)1b側を高反射となるように設計する。本実施形態では、図2(b−5)に示すように、レーザチップ1の一方の主光出射端面(前面)1a側に、所定の反射率を有し、その組成が一定で、所定膜厚Tのうち、端面1aからある膜厚までの部分301aの密度が残りの部分302aの密度よりも低い保護膜が所定膜厚Tで形成している。また、他方の端面(後面)1b側には、多層構造により高反射の保護膜300を形成している。この保護膜300は、所定の反射率を有し、その組成が一定で、所定膜厚Tのうち、端面1bからある膜厚までの部分301bの密度が残りの部分302bの密度よりも低い保護膜を形成し、その上に第2層305b、第3層303b、第4層305bおよび第5層304bを形成している。
【0045】
保護膜材料としてAlおよびSiを用いる場合、主出射面1a側の保護膜をAlの単層膜で形成し、その反射率が約15%以下の低反射となるように設計するのが一般的である。よって、保護膜301aおよび保護膜302aを加えた膜厚Tオングストロームは、その反射率が約15%以下の低反射となるように設定される。ここで、Al膜の屈折率(n)をn=1.60、レーザチップの屈折率をn=3.50、発振波長(λ)を7800オングストロームとして計算すると、この反射率に対応する膜厚Tオングストロームは、図4に示すように約700オングストローム〜1600オングストロームとなる。
【0046】
一方、後面1b側の保護膜300は、第1層301b+302bおよび第3層303bとして厚さλ/4(波長λ)に相当するAl膜と、第2層305bおよび第4層305bとして厚さλ/4に相当するアモルファスSi膜とを交互に積層し、さらに、第5層304bとして厚さλ/2に相当するAl膜を有する。また、その反射率は約85%以上の高反射率となる。
【0047】
端面1a側の保護膜301a、302aおよび端面1b側の保護膜301b、302bの成膜は、図2(a−1)〜図2(a−4)および図2(b−1)〜図2(b−4)に示すように、実施形態1において図1(a−1)〜図1(a−4)および図1(b−1)〜図1(b−4)を用いて説明した成膜方法と同様に行うことができる。
【0048】
すなわち、図2(b−1)に示すように、端面1aに所定の膜厚Tオングストロームよりも薄いtオングストロームの保護膜301aを成膜速度rオングストローム/秒にて成膜する。続いて、図2(b−2)に示すように、保護膜が所定の膜厚Tオングストロームになるまでの間、保護膜302aを成膜速度Rオングストローム/秒にて成膜する。このとき、成膜速度r<成膜速度Rとなるように設定する。但し、蒸着材料がAlの場合には、Rは10オングストローム/秒程度以上30オングストローム/秒程度以下とし、rは10オングストローム/秒程度以下であるのが好ましい。
【0049】
このようにレーザチップ1の端面1aに保護膜301a、302aを成膜した後、図2(a−3)および図2(a−4)に示すように、ホルダー8を180゜回転させて、レーザチップ1のもう一方の端面1bに保護膜301b、302bを成膜する。この保護膜301b、302bは、端面1aに設けた保護膜301a、302aと同様に成膜することができる。
【0050】
すなわち、図2(b−3)に示すように、端面1bに所定の膜厚Tオングストロームよりも薄いtオングストロームの保護膜301bを成膜速度rオングストローム/秒にて成膜する。続いて、図2(b−4)に示すように、保護膜が所定の膜厚Tオングストロームになるまでの間、保護膜302bを成膜速度Rオングストローム/秒にて成膜する。このとき、成膜速度r<成膜速度Rとなるように設定する。また、このときの所定膜厚Tと成膜速度rにて成膜する膜厚tは、t=T/5〜T/2程度に設定する。
【0051】
そして、端面1b側の第3層303bおよび第5層304bのAl膜は、成膜開始から完了までの間、比較的高い一定の成膜速度(10オングストローム/秒〜30オングストローム/秒)で成膜を行う。また、第2層305bおよび第4層305bのアモルファスSi膜も、成膜開始から完了までの間、一定の成膜速度(1オングストローム/秒以下で成膜を行う。
【0052】
本実施形態でも、半導体レーザ素子の信頼性を左右する端面1a、1b近傍の成膜を、蒸発に寄与しない電子流の量を低くした条件下で行っているので、光出射端面に与えるダメージを小さくすることができる。しかも、残りの膜は高い成膜速度で行っているので、良好な膜質の保護膜を得ることができる。
【0053】
(実施形態3)
本実施形態3では、実施形態2と同様に、端面1aに所定の膜厚Tオングストロームよりも薄いtオングストロームの保護膜301aを成膜速度rオングストローム/秒にて成膜し、続いて、保護膜が所定の膜厚Tオングストロームになるまでの間、保護膜302aをRオングストローム/秒で成膜した。また、端面1bには所定の膜厚Tオングストロームよりも薄いtオングストロームの保護膜301bを成膜速度rオングストローム/秒にて成膜し、続いて、保護膜が所定の膜厚Tオングストロームになるまでの間、保護膜302bをRオングストローム/秒で成膜し、その上に第2層305b、第3層303b、第4層305bおよび第5層304bを形成した。但し、本実施形態3では、成膜速度rと成膜速度Rとの関係を約r=R/2に設定した。すなわち、保護膜301aの成膜速度rを保護膜302aの成膜速度Rの半分に設定し、保護膜301bの成膜速度rを保護膜302bの成膜速度Rの半分に設定した。
【0054】
蒸着材料がAlである場合には、rは10オングストローム/秒程度以下、Rは20オングストローム/秒程度以下であるのが好ましく、かつ、Rとrの値はR/2となるように設定する。また、このときの所定膜厚Tと成膜速度rにて成膜する膜厚tはt=T/5〜T/2程度に設定する。
【0055】
上記範囲内でrおよびRの値をr=R/2になるように設定し、保護膜を形成した半導体レーザ素子によれば、従来の成膜方法に比べて高いCOD値を得ることが可能となる。
【0056】
(実施形態4)
本実施形態4では、実施形態2および実施形態3と同様に、端面1aに所定の膜厚Tオングストロームよりも薄いtオングストロームの保護膜301aを成膜速度rオングストローム/秒にて成膜し、続いて、保護膜が所定の膜厚Tオングストロームになるまでの間、保護膜302aをRオングストローム/秒で成膜した。また、端面1bには所定の膜厚Tオングストロームよりも薄いtオングストロームの保護膜301bを成膜速度rオングストローム/秒にて成膜し、続いて、保護膜が所定の膜厚Tオングストロームになるまでの間、保護膜302bをRオングストローム/秒で成膜し、その上に第2層305b、第3層303b、第4層305bおよび第5層304bを形成した。但し、本実施形態4では、成膜速度rを5オングストローム/秒以上10オングストローム/秒以下、成膜速度Rを10オングストローム/秒以上20オングストローム/秒以下とし、成膜速度rと成膜速度Rとの関係を約r=R/2に設定した。
【0057】
蒸着材料がAlである場合には、実施形態3において、より具体的にrを5オングストローム/秒以上10オングストローム/秒以下、Rを10オングストローム/秒以上20オングストローム/秒以下とし、かつ、Rとrの値はR/2となるように設定する。また、このときの所定膜厚Tと成膜速度rにて成膜する膜厚tは、実施形態3と同様、t=T/5〜T/2程度に設定する。
【0058】
このようにして保護膜を形成した半導体レーザ素子によれば、最も高いCOD値を得ることが可能となる。
【0059】
(実施形態5)
本実施形態5では、実施形態2〜実施形態4と同様に、端面1aに所定の膜厚Tオングストロームよりも薄いtオングストロームの保護膜301aを成膜速度rオングストローム/秒にて成膜し、続いて、保護膜が所定の膜厚Tオングストロームになるまでの間、保護膜302aをRオングストローム/秒で成膜した。また、端面1bには所定の膜厚Tオングストロームよりも薄いtオングストロームの保護膜301bを成膜速度rオングストローム/秒にて成膜し、続いて、保護膜が所定の膜厚Tオングストロームになるまでの間、保護膜302bをRオングストローム/秒で成膜し、その上に第2層305b、第3層303b、第4層305bおよび第5層304bを形成した。但し、本実施形態5では、主出射面1a側の反射率を約15%以下にするために、屈折率n=3.50のレーザチップの端面に屈折率n=1.60のAl膜を膜厚T1500オングストロームで成膜した。そして、成膜速度rを5オングストローム/秒として膜厚t=300オングストローム(所定膜厚Tの1/5)の保護膜301aおよび301bを成膜し、成膜速度Rを10オングストローム/秒以上として残りの保護膜302aおよび302bを成膜した。
【0060】
本実施形態5で作製した半導体レーザ素子と、従来の方法で端面保護膜を形成した半導体レーザ素子について、COD値(光学的破壊レベル)の比較を行った結果を下記表に示す。なお、この表において、αが本実施形態5で作製した半導体レーザ素子を示し、βが従来の方法で端面保護膜を形成した半導体レーザ素子を示す。
【0061】
【表1】
Figure 0003617618
【0062】
この表に示すように、本実施形態5によれば、全てのロットにおいて、COD値が約30mW〜70mW上昇していることが確認できた。
【0063】
なお、上記実施形態では電子ビーム蒸着法により保護膜を成膜したが、本発明は抵抗加熱による蒸着にも適用可能である。
【0064】
【発明の効果】
以上詳述したように、本発明によれば、レーザチップの端面に所定の反射率を有する保護膜を成膜する際に、レーザチップ端面に与えるダメージを小さくすることができ、しかも、保護膜の膜質を良好なものにすることができる。従って、半導体レーザ素子としての信頼性を向上することができる。さらに、両端面に所定の反射率を有する保護膜を成膜した後、一方の端面(後面)側の保護膜上に多層膜を成膜して高反射率とすることにより、高出力の半導体レーザ素子においても、信頼性を向上することができる。
【図面の簡単な説明】
【図1】実施形態1における半導体レーザ素子の製造工程を説明するための図である。
【図2】実施形態2における半導体レーザ素子の製造工程を説明するための図である。
【図3】従来の半導体レーザ素子の構造を示す図である。
【図4】保護膜の膜厚と反射率との関係を示す図である。
【図5】従来の半導体レーザ素子の構造を示す図である。
【図6】半導体レーザ素子の製造工程を説明するための図である。
【図7】半導体レーザ素子の製造工程を説明するための図である。
【図8】半導体レーザ素子の製造に用いられる治具を説明するための図である。
【図9】半導体レーザ素子の製造に用いられる蒸着装置を説明するための図である。
【図10】従来の半導体レーザ素子の製造工程を説明するための図である。
【図11】従来の半導体レーザ素子の製造工程を説明するための図である。
【符号の説明】
1 レーザチップ
1a、1b 端面
2 ウェハ
3 電極
4 発光部(チャネル)
5 劈開線
6 レーザバー
7 レーザバー固定用治具
8 ホルダー
9 チャンバー
10 ダクト
11 蒸着源
12 蒸着材料
13、13’ 電子ビームパワー
14 水晶振動子
15、15’ 電子流
101a、101b、100、201a、102b、300、301a、302a、301b、302b 保護膜
303b、102b 第3層
304b、103b 第5層
305b、104b 第2層および第4層
100 保護膜

Claims (4)

  1. 多数のレーザチップが形成されたレーザウェハを劈開して、複数のレーザチップがバー状態になったレーザバーを、各レーザチップのそれぞれの端面が両側に露出した状態で形成し、該レーザバーをバー固定用治具により保持して、該レーザバーにおける各レーザチップのそれぞれの端面に所定の反射率を有する所定の膜厚Tの保護膜を成膜する成膜工程を包含する半導体レーザ素子の製造方法において、
    前記成膜工程が、
    前記保護膜としてAl膜を、電子ビーム蒸着法によって、5オングストローム/秒以上10オングストローム/秒以下の成膜速度で、前記膜厚Tの1/5以上1/2以下に達するまで成膜する第1成膜工程と、
    該第1成膜工程に連続して、Al膜を、前記膜厚Tに達するまで10オングストローム/秒以上20オングストローム/秒以下の成膜速度Rであってr<Rの条件で成膜する第2工程と、
    を包含すること特徴とする半導体レーザ素子の製造方法。
  2. 前記第1の成膜工程の成膜速度が5オングストローム/秒であり、前記第2の成膜工程の成膜速度が10オングストローム/秒である請求項1に記載の半導体レーザ素子の製造方法。
  3. 前記膜厚Tが1500オングストロームであり、前記第1の成膜工程における膜厚が、300オングストロームである請求項2に記載の半導体レーザ素子の製造方法。
  4. 前記レーザバーにおける各レーザチップの一方の端面に成膜されたAl膜上に、アモルファスSi膜とAl膜とを交互に積層する第3成膜工程をさらに包含する請求項1に記載の半導体レーザ素子の製造方法。
JP36195099A 1999-12-20 1999-12-20 半導体レーザ素子の製造方法 Expired - Fee Related JP3617618B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36195099A JP3617618B2 (ja) 1999-12-20 1999-12-20 半導体レーザ素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36195099A JP3617618B2 (ja) 1999-12-20 1999-12-20 半導体レーザ素子の製造方法

Publications (2)

Publication Number Publication Date
JP2001177179A JP2001177179A (ja) 2001-06-29
JP3617618B2 true JP3617618B2 (ja) 2005-02-09

Family

ID=18475401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36195099A Expired - Fee Related JP3617618B2 (ja) 1999-12-20 1999-12-20 半導体レーザ素子の製造方法

Country Status (1)

Country Link
JP (1) JP3617618B2 (ja)

Also Published As

Publication number Publication date
JP2001177179A (ja) 2001-06-29

Similar Documents

Publication Publication Date Title
JP4598845B2 (ja) 窒化物半導体レーザ装置
US8735192B2 (en) Nitride semiconductor light emitting device and method of fabricating nitride semiconductor laser device
JP5430826B2 (ja) 窒化物半導体レーザ素子
US7142576B2 (en) Semiconductor laser
JP3856300B2 (ja) 半導体レーザ素子
JP2003209318A (ja) 半導体レーザ素子および半導体レーザ素子の製造方法
JP2003198044A (ja) 半導体レーザ素子およびその製造方法、並びに、レーザバー固定装置
KR100853241B1 (ko) 질화물 반도체 발광소자 및 질화물 반도체 레이저 소자의제조방법
JP3617618B2 (ja) 半導体レーザ素子の製造方法
JP6886493B2 (ja) レーザ面のための量子井戸パッシベーション構造
JP2000049410A (ja) 窒化物半導体レ―ザ装置
JP3509543B2 (ja) 半導体レーザ素子の製造方法
JP2002164609A (ja) 半導体レーザ素子およびその製造方法
JP2007189207A (ja) 窒化物半導体発光素子および窒化物半導体レーザ素子の製造方法
JP4740037B2 (ja) 窒化物半導体レーザ素子およびこれを備えた窒化物半導体レーザ装置
JPH0766500A (ja) 光学薄膜形成方法
JPS60187082A (ja) 半導体レ−ザ素子とその製造方法
JPH08262198A (ja) X線多層膜反射鏡
JP3382761B2 (ja) 半導体レーザ素子
KR100248208B1 (ko) 레이저 다이오드의 거울면 코팅 방법
JP5766659B2 (ja) 窒化物半導体発光素子
KR101039967B1 (ko) 반도체 레이저 다이오드 및 그 제조방법
JPH07249823A (ja) 半導体発光装置の製造方法
JP2007095742A (ja) 半導体レーザ素子及びその製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

LAPS Cancellation because of no payment of annual fees