JP3607040B2 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP3607040B2
JP3607040B2 JP13437397A JP13437397A JP3607040B2 JP 3607040 B2 JP3607040 B2 JP 3607040B2 JP 13437397 A JP13437397 A JP 13437397A JP 13437397 A JP13437397 A JP 13437397A JP 3607040 B2 JP3607040 B2 JP 3607040B2
Authority
JP
Japan
Prior art keywords
protective film
semiconductor substrate
silicon nitride
frequency
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13437397A
Other languages
English (en)
Other versions
JPH10308389A (ja
Inventor
薫 宮越
裕之 登坂
重來 山賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP13437397A priority Critical patent/JP3607040B2/ja
Publication of JPH10308389A publication Critical patent/JPH10308389A/ja
Application granted granted Critical
Publication of JP3607040B2 publication Critical patent/JP3607040B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体基板およびエピタキシャル薄膜等の熱処理工程を有する半導体装置の製造方法に関し、特に化合物半導体基板およびエピタキシャル薄膜等に不純物イオンを注入した後、活性化アニールのような高温の熱処理工程を有する半導体装置の製造方法に関する。
【0002】
【従来の技術】
ガリウム砒素、インジウムリン等の化合物半導体基板等にイオン注入法によって不純物を添加し、伝導キャリアとして利用する場合、注入時に発生する結晶欠陥の復元や、添加した不純物原子を所望の格子位置に移動させるため、活性化アニールと呼ばれる熱処理が必要となる。
【0003】
一般にこの熱処理温度は、800℃を越える高温で行われる。そのため、化合物半導体基板表面から蒸気圧の高い砒素原子やリン原子が蒸発し、空孔が発生して、キャリアの活性化率の低下や半導体基板表面の平坦性の劣化、さらに半導体基板表面に残留するガリウム等が原因となって、電子デバイスの特性が劣化するという問題があった。
【0004】
このような問題を解決するため、雰囲気制御アニール法やキャップアニール法が提案されている。このうち、雰囲気制御アニール法は、熱処理装置の雰囲気中に、例えばガリウム砒素の場合は、過剰の砒素圧を加えながら加熱する方法で、一般には砒素圧源としてアルシンが用いられていた。このアルシンは、非常に毒性が強く、安全性の面で問題があった。また、アルシンを使用しない方法も提案されているが、熱処理装置の構造が非常に複雑になったり、十分な砒素圧が得られないという欠点があった。さらに、砒素圧源の純度が低いため、半導体基板を汚染してしまうという欠点があった。
【0005】
これに対しキャップアニール法は、半導体基板を熱的に安定な保護膜で覆い熱処理する方法で、簡便な方法として広く採用されている。特に、短時間に急熱急冷を行うことができる赤外線ランプを加熱源とするランプアニール法では、半導体基板上に保護膜を形成して熱処理する方法が広く用いられている。
【0006】
キャップアニール法に使用される保護膜を形成する方法として最も一般的な方法は、比較的低温で保護膜が形成できるプラズマCVD法である。これは、モノシランとアンモニアを反応ガスとし、励起用高周波電源の周波数を13.56MHzとして形成するものである。この方法により形成される窒化シリコン(SiN)は、伸張応力を有する膜となる。
【0007】
しかし、伸張応力を有する窒化シリコンを保護膜として、活性化アニールのような高温の熱処理を行うと、窒化シリコンとガリウム砒素との熱膨張率が異なり、剥離や亀裂が生じ、保護膜として機能しなくなるという問題があった。図2に□印で示した曲線は、ガリウム砒素基板表面にシリコンイオンを、加速エネルギー48KeV、注入量8.8×1012/cm2の条件で注入した後、反応ガスとしてモノシランを8sccm、アンモニアを9sccm、希釈ガスとして窒素を400sccmの割合で導入した後、チャンバー内を0.7Torrに調整し、基板温度300℃、励起用高周波電源の周波数を13.56MHzとして、窒化シリコン膜を厚さ500オングストローム形成した後、850℃で所定の時間活性化アニールした後のシート抵抗の変化を示す。図に示すように、アニール時間が50秒程度までは、シート抵抗が低下するが、50秒をこえると逆にシート抵抗が増加する傾向を示すことがわかる。
【0008】
これは、アニール時間が長くなると窒化シリコン膜に剥離や亀裂が発生し、ガリウム砒素基板表面から砒素が蒸発し始めるためと考えられる。従って、従来のプラズマCVD法で形成した窒化シリコン膜を保護膜として使用する場合、十分に活性化を行うためアニール時間を長くすることができないという問題点があった。
【0009】
【発明が解決しようとする課題】
このような欠点を解消した保護膜として、酸化シリコン膜と窒化シリコン膜を交互に積層したり、これらの複合膜を使用する方法も提案されている。しかし、酸化シリコン膜と窒化シリコン膜を交互に形成する場合、それぞれの膜をCVD法で形成するためには、原料ガスの組成が異なり、同一反応装置内で形成したとしても、一方の膜を形成した後、原料ガスを一旦取り去り、改めて別の原料ガスを導入する工程を経なければならず、製造工程が複雑になるという問題があった。また、酸化シリコンと窒化シリコンの複合膜である窒化珪素酸膜を形成する場合、窒素と酸素の組成を制御することが困難であったり、窒化シリコン膜に較べて砒素の蒸発を阻止する能力が低いという問題があった。本発明は、上記問題点を解消し、簡便な方法で保護膜を形成する方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は上記目的を達成するため、化合物半導体基板表面に不純物イオンを注入し、前記化合物半導体基板表面から蒸気圧の高い元素が蒸発することを防ぐために、熱的に安定な保護膜で被覆して、前記注入した不純物イオンの活性化のための熱処理を行い、その後前記保護膜を除去する工程を有する半導体装置の製造方法において、プラズマCVD法により、反応ガスとしてモノシランおよびアンモニアを用い、励起用高周波電源の周波数を1MHz以下で圧縮内部応力を有する窒化シリコン膜が形成される値に設定し、前記不純物イオンを注入した化合物半導体基板表面に直接、単層の前記窒化シリコン膜を形成する工程と、前記注入した不純物イオンの活性化のための熱処理を行い、その後前記化合物半導体基板表面から前記窒化シリコン膜を除去する工程とを含むことを特徴とするものである。
【0011】
特に、不純物イオンを注入した半導体基板表面に、前記保護膜を形成した後、活性化のための熱処理を行う際、プラズマCVD法の励起用高周波電源の周波数を制御することにより、圧縮内部応力を有する保護膜を形成すると、半導体基板を構成する元素の蒸発や、基板と保護膜との熱膨張率の違いに起因する結晶欠陥の発生を抑えることができる。
【0012】
また、ガリウムおよび砒素を含む半導体基板を使用する場合、モノシランおよびアンモニアを反応ガスとし、励起用高周波電源の周波数を380KHzとすることで、砒素の蒸発と結晶欠陥の発生を効果的に抑えることが可能となる。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。図1に一般的なプラズマCVD装置を示す。図に示すように、不純物イオンの注入領域を備えたガリウム砒素基板1を、プラズマCVD装置のチャンバー2内の加熱台3上に、注入領域を上面にしてセットする。加熱台3は、通常300〜350℃に設定されており、ガリウム砒素基板1を加熱する。
【0014】
チャンバー2内にモノシラン、アンモニアおよび希釈ガスとなる窒素を混合した反応ガス4を、1:1.2:50の割合で導入する。チャンバー2内が所定の圧力(0.6Torr)となるように排気、調整した後、励起用高周波電源を接続した電極5により、約100Wの高周波出力パワーを所定の時間印加する。その結果、ガリウム砒素基板1表面に窒化シリコンが堆積する。
【0015】
ここで本発明では、励起用高周波電源の周波数を従来の13.56MHzより低い周波数の380KHzに設定する。このような条件で形成される窒化シリコンは、圧縮内部応力を持つようになる。また、ピンホールの発生等が少ないことも確認された。
【0016】
図2に○印で示す曲線は、励起用高周波電源の周波数を380KHzとした上記方法により、窒化シリコン膜を形成し、850℃の活性化アニールを所定の時間施し、シート抵抗を測定した結果を示す。図2に示すガリウム砒素基板は、その表面にシリコンイオンを、加速エネルギー48KeV、注入量8.8×1012/cm2の条件で注入した後、上記条件で500オングストロームの窒化シリコン膜を形成した。比較のため、励起用高周波電源の周波数を13.56MHzとした場合のシート抵抗の測定結果を□印で示す。
【0017】
図に示すように、周波数を380KHzとした本願発明では、加熱時間が長くなるに従い、シート抵抗が減少していくことがわかる。これに対し、周波数を13.56MHzとした従来の方法では、加熱時間が長くなるに従いシート抵抗が減少するが、さらに加熱時間を長くすると、シート抵抗が増加することがわかる。また、シート抵抗の値も大きくなっている。
【0018】
従って、本願発明の方法によれば、シート抵抗の低い活性化アニールを行うことができることがわかった。本発明によれば、励起用高周波電源の周波数を変更するのみで、砒素分子の蒸発を抑えることができ、簡便な方法である。
【0019】
図3に、活性化アニール後の不純物濃度プロファイルをシュミレーション結果を比較したグラフを示す。図において実線はシュミレーションの結果得られた理論曲線を示し、○印は周波数が380KHz、□印は周波数が13.56MHzでそれぞれ形成した窒化シリコンを保護膜として、活性化アニールを施した後、保護膜を除去し、半導体基板の不純物濃度を測定した結果を示す。図に示すように、周波数を380KHzとした本願発明の場合、表面の不純物濃度が大きく、活性化率が大きく、理論曲線に近い不純物濃度分布を得ることができることがわかった。
【0020】
以上の説明は、励起用高周波電源の周波数が380KHzである場合について説明したが、380KHzという周波数は、現在、法上、半導体素子の製造装置に使用が認められている周波数であり、必ずしもこの周波数に限定されるものではなく、法上使用が認められるなら、反応ガスの組成比等の条件により適宜選択されるものである。一般的には、1MHz以下の周波数を使用すると、反応ガスの組成比等の条件が限定されず圧縮内部応力を有する保護膜を形成することができる。また、反応ガスの選択によっては、保護膜を構成する物質が窒化シリコンと限らない場合もあり、保護膜を組成する物質も適宜設定することができる。少なくとも、周波数を選択することで、形成される保護膜が圧縮内部応力を有するように構成すればよい。
【0021】
本発明により形成した圧縮内部応力を有する保護膜は、ピンホールの形成が少ないため、従来に較べて薄い膜であっても従来同様の効果を発揮する。従って、厚い保護膜を形成する必要がないので、保護膜の応力により、基板に結晶欠陥が発生することもない。
【0022】
本発明は、ガリウム砒素基板に限定されることはなく、アルミニウムガリウム砒素、インジウムリン等の化合物半導体、シリコン系半導体に適用可能であることはいうまでもない。
【0023】
【発明の効果】
以上説明したように本発明により、圧縮内部応力を有する保護膜を励起用高周波電源の周波数を変更するのみで簡便に形成することができる方法を提供することが可能となった。圧縮内部応力を有する保護膜は、砒素のような化合物半導体を構成する元素の蒸発を効果的に抑制することができ、長時間の活性化アニールを施すことができ、シート抵抗の低い注入領域を形成することができる。従って、このような注入領域に半導体装置を形成する場合、特性の優れた半導体装置を形成することが可能となる。
【0024】
本発明の保護膜は、500オングストローム程度の薄膜で、砒素の蒸発等を抑制することができるため、保護膜下の半導体基板に結晶欠陥が発生しにくくなる。従って、半導体基板上に特性の優れた半導体装置を歩留まり良く形成することができるという効果がある。
【0025】
圧縮応力を有する保護膜は、従来の伸張応力を有する保護膜同様、通常の方法で除去することが可能であり、従来の半導体装置の製造方法と比較して、製造工程を複雑化することもない。
【図面の簡単な説明】
【図1】本発明の実施の形態を説明する説明図である。
【図2】本発明の実施の形態により形成した保護膜と従来の製造方法により形成した保護膜を使用して活性化アニールを行った際のシート抵抗の測定結果である。
【図3】本発明の実施の形態により形成した保護膜と従来の製造方法により形成した保護膜を使用して活性化アニールを行った際の不純物濃度プロファイルを示すグラフである。
【符号の説明】
1 ガリウム砒素基板
2 チャンバー
3 加熱台
4 反応ガス
5 電極

Claims (1)

  1. 化合物半導体基板表面に不純物イオンを注入し、前記化合物半導体基板表面から蒸気圧の高い元素が蒸発することを防ぐために、熱的に安定な保護膜で被覆して、前記注入した不純物イオンの活性化のための熱処理を行い、その後前記保護膜を除去する工程を有する半導体装置の製造方法において、
    プラズマCVD法により、反応ガスとしてモノシランおよびアンモニアを用い、励起用高周波電源の周波数を1MHz以下で圧縮内部応力を有する窒化シリコン膜が形成される値に設定し、前記不純物イオンを注入した化合物半導体基板表面に直接、単層の前記窒化シリコン膜を形成する工程と、
    前記注入した不純物イオンの活性化のための熱処理を行い、その後前記化合物半導体基板表面から前記窒化シリコン膜を除去する工程とを含むことを特徴とする半導体装置の製造方法。
JP13437397A 1997-05-08 1997-05-08 半導体装置の製造方法 Expired - Lifetime JP3607040B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13437397A JP3607040B2 (ja) 1997-05-08 1997-05-08 半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13437397A JP3607040B2 (ja) 1997-05-08 1997-05-08 半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JPH10308389A JPH10308389A (ja) 1998-11-17
JP3607040B2 true JP3607040B2 (ja) 2005-01-05

Family

ID=15126882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13437397A Expired - Lifetime JP3607040B2 (ja) 1997-05-08 1997-05-08 半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP3607040B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020065032A (ja) * 2018-10-19 2020-04-23 東京エレクトロン株式会社 シリコン窒化膜の成膜方法、および成膜装置

Also Published As

Publication number Publication date
JPH10308389A (ja) 1998-11-17

Similar Documents

Publication Publication Date Title
JP3937892B2 (ja) 薄膜形成方法および半導体装置の製造方法
US6846743B2 (en) Method for vapor deposition of a metal compound film
JP2004529489A (ja) 高誘電率ゲート絶縁層の形成方法
US6602753B2 (en) Semiconductor device having a gate insulating film comprising a metal oxide and method of manufacturing the same
US4737474A (en) Silicide to silicon bonding process
KR100752559B1 (ko) 유전체막의 형성 방법
JPS63502470A (ja) 誘電体薄層を有する装置の製造方法
US6825538B2 (en) Semiconductor device using an insulating layer having a seed layer
EP0785574A2 (en) Method of forming tungsten-silicide
JP3607040B2 (ja) 半導体装置の製造方法
JPS621565B2 (ja)
US20020090802A1 (en) Safe arsenic gas phase doping
JP4955848B2 (ja) 電子素子用基板製造方法
JP2001110750A5 (ja)
JP4032889B2 (ja) 絶縁膜の形成方法
US11031241B2 (en) Method of growing doped group IV materials
JP3576323B2 (ja) 化合物半導体の熱処理方法
US7008852B2 (en) Discontinuous dielectric interface for bipolar transistors
US5162242A (en) Method for annealing compound semiconductor devices
TWI232506B (en) Method for producing amorphous silicon layer with reduced surface defects
JP2581281B2 (ja) 化合物半導体装置の製造方法
JP2001244199A (ja) ベータ鉄シリサイドの成膜方法
CN117476543A (zh) 碳化硅半导体结构及其制备方法、碳化硅半导体器件
JPS5927094B2 (ja) 化合物結晶の熱処理方法
JPH0778991A (ja) 半導体装置および半導体装置の製造方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041006

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term