JP3586473B2 - 抵抗溶接機の電極間抵抗測定装置及び測定方法 - Google Patents

抵抗溶接機の電極間抵抗測定装置及び測定方法 Download PDF

Info

Publication number
JP3586473B2
JP3586473B2 JP15726193A JP15726193A JP3586473B2 JP 3586473 B2 JP3586473 B2 JP 3586473B2 JP 15726193 A JP15726193 A JP 15726193A JP 15726193 A JP15726193 A JP 15726193A JP 3586473 B2 JP3586473 B2 JP 3586473B2
Authority
JP
Japan
Prior art keywords
current
value
electrodes
voltage
integration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15726193A
Other languages
English (en)
Other versions
JPH079164A (ja
Inventor
真吾 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nadex Co Ltd
Original Assignee
Nadex Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nadex Co Ltd filed Critical Nadex Co Ltd
Priority to JP15726193A priority Critical patent/JP3586473B2/ja
Publication of JPH079164A publication Critical patent/JPH079164A/ja
Application granted granted Critical
Publication of JP3586473B2 publication Critical patent/JP3586473B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Generation Of Surge Voltage And Current (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、ワークを挟んだ2つの電極間に溶接用電流を流してそのジュール熱によってそのワークの溶接を行う抵抗溶接機における両電極間の抵抗を測定する装置及び方法に関するものである。
そして、特に、両電極間に流される溶接用電流が時間的に変化するものであって、両電極間の電圧を測定しようとするとその溶接用電流の時間的変化に起因して誘導電圧が生じる場合において、その誘導電圧成分に関する値を含まない正確な抵抗を測定する装置及び方法に関するものである。
【0002】
【従来の技術】
図5に示すように、抵抗溶接機40では、2つの電極44a,44b間に2つのワークW,Wが挟まれ、両電極44a,44b間に大きな溶接用電流iが流され、その電流iによって生じたジュール熱によって両ワークW,Wが溶接される。
そして、かかる抵抗溶接溶接機による溶接の途中においては、その溶接の段階において両電極44a,44b間の抵抗や電圧が変化することがわかっている。このため、その電極間の抵抗や電圧を測定することによって、その時点において溶接がどの段階まで進んでいるかがわかるのである。そして、溶接段階に応じて電極44a,44bの加圧等を適宜行うことによって、良好な溶接を行うことができるのである。
【0003】
したがって、そのためには両電極44a,44b間の抵抗または電圧を正確に測定することが必要である。
しかしながら、図5中のアーム42aから電極44a,44b間を通ってアーム42bを流れる溶接用電流iが時間的に変化するものの場合においては、各電極44a,44bに接続されたリード線72a,72bを各アーム42a,42bに這わせてその検出端74a,74b間の電圧を検出すると、その検出電圧Vは次のようになる。
V=V+M・di/dt
ここで、Vは電極間電圧であり、V=R・iと表される(Rは電極間抵抗である)。Mはリード線72a,72bとアーム42a,42bとの間の相互インダクタンスである。
すなわち、検出電圧Vは、電極間電圧V=R・iのみでなく、両アーム42a,42bを流れる電流iによって両リード線72a,72bに誘導される誘導電圧M・di/dtが加算された値となる。この誘導電圧成分が含まれているため、電極間電圧Vを正確に求めることができず、電極間抵抗も正確に求めることができないのである。
【0004】
このような背景の下、電極間電圧Vを求めることを目的とした装置が、特開昭62−101386号公報に開示されている。
この装置では、ロゴスキーコイルによって溶接用電流iの微分値e(t)=−M′・di/dtが求められ(公報では−M・di/dtと表されている)、それが増幅器で増幅率αで増幅されてα・e(t)=−α・M′・di/dtとされる。そして、この値が前述の検出電圧V=V+M・di/dt(公報ではV+K・di/dtと表されている)に加算されて次のようにされる。
Figure 0003586473
そして、増幅率αの値がα=M/M′と設定されることによって、電極間電圧Vが、V+α・e(t)=V=R・iと求められるのである。
【0005】
しかしながら、上記の公報に記載の装置では、増幅器における増幅率αの値をα=M/M′と設定する方法が開示されていない。このため、何度も試行錯誤的に増幅率αの値を変更し、誘導成分(M−α・M′)・di/dtがゼロとなるように導いていくしかない。
しかし、それでは、その手順が非常に煩雑であり、正確に電極間電圧V=R・iを求めることが困難である。このため、正確な電極間抵抗を測定することも困難である。
【0006】
そこで、本発明は、抵抗溶接機の正確な電極間抵抗を容易に測定することができる装置及び方法を提供することを課題とする。
【0007】
【課題を解決するための手段】
この課題を解決するために、請求項1に係る発明は、例えば、図1に模式的に示すように、ワークWを挟んだ2つの電極A,A間に時間的に変化する電流を流してそのジュール熱によってワークWの溶接を行う抵抗溶接機における両電極A,A間の抵抗を測定する装置(B11)であり、前記電極A,A間に流す電流は、交流電源を整流回路を介して直流電源とし、この直流電源をスイッチング回路を介して時間的に変化させるインバータ回路を介して供給し、両電極A,A間の電圧を検出する電圧検出手段(C1)と、両電極A,A間を流れる電流を時間的に微分した値である電流微分値を検出する電流微分値検出手段(D1)と、溶接用電流iが基準電流isより大きな値となる隣り合うタイミング間で、前記電流微分値を積分して、前記両電極間に流れる溶接用電流値を算出する電流値算出手段(E1)を備えている。
又、溶接用電流iが基準電流isより大きな値となる隣り合うタイミング間で、前記電圧検出手段(C1)で検出された電圧を時間的に積分する電圧積分手段(F11)と、同じタイミング間で、電流値算出手段(E1)で算出された電流値を時間的に積分する電流積分手段(G11)とを備え、
前記電圧積分手段(F11)による積分値を前記電流積分手段(G11)による積分に値によって除算する除算手段(H11)とを有する。
【0008】
また、請求項2に係る発明は、例えば、図1に模式的に示すように、ワークWを挟んだ2つの電極A,A間に時間的に変化する電流を流してそのジュール熱によってワークWの溶接を行う抵抗溶接機における両電極A,A間の抵抗を測定する装置(B12)であって、前記電極A,A間に流す電流は、交流電源を整流回路を介して直流電源とし、この直流電源をスイッチング回路を介して時間的に変化させるインバータ回路を介して供給し、両電極A,A間の電圧を検出する電圧検出手段(C1)と、両電極A,A間を流れる溶接用電流iを時間的に微分した値である電流微分値を検出する電流微分値検出手段(D1)と、前記電流微分値を時間的に積分して両電極A,A間を流れる溶接用電流値を算出する電流値算出手段(E1)を備えている。
また、前記電流微分値を時間的に積分し始める積分開始タイミングからその積分値がゼロとなるタイミングまでの間である積分値ゼロタイミング間(T n で、電圧検出手段(C1)で検出された電圧を時間的に積分する電圧積分手段(F12)と、前記積分値ゼロタイミング間(T n で前記電流値を時間的に積分する電流積分手段(G12)と、電圧積分手段(F12)による積分値を電流積分手段(G12)による積分値によって除算する除算手段(H12)とを有している。
【0009】
また、請求項3に係る発明は、例えば、図2に模式的に示すように、ワークWを挟んだ2つの電極A,A間に時間的に変化する電流を流してそのジュール熱によってワークWの溶接を行う抵抗溶接機における両電極A,A間の抵抗を測定する方法B21であって、前記電極A,A間に流す電流は、交流電源を整流回路を介して直流電源とし、この直流電源をスイッチング回路を介して時間的に変化させるインバータ回路を介して供給し、両電極A,A間の電圧を検出する電圧検出段階(C2)と、両電極A,A間を流れる溶接用電流iを時間的に微分した値である電流微分値を検出する電流微分値検出段階(D2)と、前記電流微分値を時間的に積分して両電極A,A間を流れる溶接用電流値を算出する電流値算出段階(E2)と、前記電流値の大きさが相互に一致する2つのタイミング間である電流一致タイミング間(T n で、電圧検出段階(C2)で検出された電圧を時間的に積分する電圧積分段階(F21)と、前記電流一致タイミング間(T n で前記電流値を時間的に積分する電流積分段階(G21)と、電圧積分段階(F21)による積分値を電流積分段階(G21)による積分値によって除算する除算段階(H21)とを有する。
【0010】
また、請求項4に係る発明は、例えば、図2に模式的に示すように、ワークWを挟んだ2つの電極A,A間に時間的に変化する電流を流してそのジュール熱によってワークWの溶接を行う抵抗溶接機における両電極A,A間の抵抗を測定する方法(B22)であって、前記電極A,A間に流す電流は、交流電源を整流回路を介して直流電源とし、この直流電源をスイッチング回路を介して時間的に変化させるインバータ回路を介して供給し、両電極A,A間の電圧を検出する電圧検出段階(C2)と、両電極A,A間を流れる電流を時間的に微分した値である電流微分値を検出する電流微分値検出段階(D2)と、前記電流微分値を時間的に積分して両電極A,A間を流れる電流値を算出する電流値算出段階(E2)と、前記電流微分値を時間的に積分し始める積分開始タイミングからその積分値がゼロとなるタイミングまでの間である積分値ゼロタイミング間(T n で、電圧検出段階(C2)で検出された電圧を時間的に積分する電圧積分段階(F22)と、前記積分値ゼロタイミング間(T n で前記電流値を時間的に積分する電流積分段階(G22)と、電圧積分段階(F22)による積分値を電流積分段階(G22)による積分値によって除算する除算段階(H22)とを有する。
【0011】
【作用】
請求項1に係る発明において、前記電極A,A間に流す電流は、交流電源を整流回路を介して直流電源とし、この直流電源をスイッチング回路を介して時間的に変化させるインバータ回路を介して供給され、まず、電圧検出手段(C1)によって、各電極A,A間の電圧(検出電圧)が検出される。この検出電圧には、両電極A,A間の電圧のみでなく、電極A,A間に流される電流の時間的変化に起因する誘導電圧成分が含まれている。
一方、電流微分値検出手段(D1)によって、両電極A,A間を流れる電流を時間的に微分した値である電流微分値が検出され、その電流微分値が電流値算出手段(E1)によって時間的に積分され、両電極A,A間を流れる電流値が算出される。
そして、溶接用電流iが基準電流isより大きな値となる隣り合うタイミング間で、電圧積分手段(F11)によって電圧検出手段(C1)で検出された電圧を時間的に積分する。
その際、その検出電圧に含まれる前記誘導電圧成分は前記電流微分値に比例するものであり、この電圧積分手段(F11)による積分の範囲(溶接用電流iが基準電流isより大きな値となる隣り合うタイミング間(T n )が、前述したように両電極A,A間を流れる電流値(これは前記電流微分値が電流値算出手段(E1)によって積分されて算出されたものである)が、相互に一致するタイミング間であるため、その誘導電圧成分が電流一致タイミング間(T n にわたって積分された値はゼロとなる。
すなわち、検出電圧に含まれる誘導電圧成分は、電圧積分手段(F11)によって電流一致タイミング間にわたって積分されることによって除去されるのである。
一方、電流積分手段(G11)によって、電流値算出手段(E1)で算出された電流値は、溶接用電流iが基準電流isより大きな値となる隣り合うタイミング間で積分される。
そして、除算手段(H11)によって、電圧積分手段(F11)による積分値が電流積分手段(G11)による積分値によって除算され、溶接用電流iが基準電流isより大きな値となる隣り合うタイミング間での平均的な抵抗が求められる。
その際、この電圧積分手段(F11)による積分値には前述したように誘導電圧成分が含まれていないため、その抵抗は、誘導電圧成分に関する値を含まない正確な電極A,A間の抵抗なのである。
このようにして、請求項1に係る発明の電極間抵抗測定装置(B11)によって、誘導電圧成分に関する値を含まない正確な電極A,A間の抵抗が容易に測定されるのである。
【0012】
また、請求項2に係る発明においては、まず、請求項1の発明と同様に、電圧検出手段(C1)によって両電極A,A間の電圧(検出電圧)が検出され、電流微分値検出手段(D1)によって両電極A,A間を流れる電流を時間的に微分した値である電流微分値が検出され、電流値算出手段(E1)によって両電極A,A間を流れる電流値が算出される。
そして、電圧積分手段(F12)によって、その電流微分値を時間的に積分し始める積分開始タイミングからその積分値がゼロとなるタイミングまでの間(積分値ゼロタイミング間)において、前記検出電圧が時間的に積分される。その際、その検出電圧に含まれる前記誘導電圧成分は前記電流微分値に比例するものであり、この電圧積分手段(F12)による積分の範囲(積分値ゼロタイミング間(T n )が前記電流微分値を時間的に積分し始める積分開始タイミングからその積分値がゼロとなるタイミングまでの範囲であるため、その誘導電圧成分が積分値ゼロタイミング間にわたって積分された値はゼロとなる。すなわち、検出電圧に含まれる誘導電圧成分は、電圧積分手段(F12)によって積分値ゼロタイミング間にわたって積分されることによって除去されるのである。
一方、電流積分手段(G12)によって、前記積分値ゼロタイミング間にわたって前記電流値が時間的に積分される。
そして、除算手段(H12)によって、電圧積分手段(F12)による積分値が電流積分手段(G12)による積分値によって除算され、積分値ゼロタイミング間の平均的な抵抗が求められる。その際、この電圧積分手段(F12)による積分値には前述したように誘導電圧成分が含まれていないため、その抵抗は、誘導電圧成分に関する値を含まない正確な電極A,A間の抵抗なのである。
このようにして、請求項2に係る発明の電極間抵抗測定装置(B12)によっても、誘導電圧成分に関する値を含まない正確な電極A,A間の抵抗が容易に測定されるのである。
【0013】
また、請求項3に係る発明においては、請求項1に係る発明の各手段C1〜H11による処理が、対応する各段階C2〜H21において行われ、両電極A,A間の抵抗が容易に測定される。
【0014】
また、請求項4に係る発明においては、請求項2に係る発明の各手段C1〜H12による処理が、対応する各段階C2〜H22において行われ、両電極A,A間の抵抗が容易に測定される。
【0015】
【実施例】
<第1実施例>
次に、請求項1及び請求項3の発明を具体化した実施例を図3〜図7に基づいて説明する。
図3及び図4に示すように、電極間抵抗検出回路はCPU10に接続されており(図3)、各種の回路12,14,16等を有している(図4)。そのうちの抵抗溶接機40(図3及び図4中符号なし)は、図5に示すように、1対のアーム42a,42bを有し、その先端には電極44a,44b(電極A,Aに該当する)が設けられている(図3及び図4も参照)。そして、図3中の電源回路30及びスイッチング回路32によって、アーム42aから電極44a,44b間を経てアーム42bに溶接用電流iが流され、両電極44a,44b間に挟まれたワークW,Wにおいて発生したジュール熱によって両ワークW,Wが溶接されるのである。
【0016】
まず、図3中の電源回路30及びスイッチング回路32について、図6に基づいて説明する。交流電源50からの電流は、整流回路52によって整流されて脈流とされ、コンデンサ54によって平滑化され、トランジスタ回路56を流れる。トランジスタ回路56のトランジスタ58a及びトランジスタ58bには、インバータ制御のためのパルス状のスイッチング信号を出力するスイッチング回路32が接続されている。スイッチング回路32では、両信号出力線60a,60bからともにオフ信号が出力される時間を挟んで、各信号出力線60a,60bから交互にオン信号が出力される。これによって、順に、トランジスタ58aがオン,両トランジスタ58a,58bがオフ,トランジスタ58bがオン,両トランジスタ58a,58bがオフとされ(以下、トランジスタ58a,58bの一方がオン状態のことをトランジスタ58がオン状態であるといい、両トランジスタ58a,58bともオフ状態のことをトランジスタ58がオフ状態であるという)、変圧器62の1次コイル64側では、どちらの方向へも電流が流れない時間を挟んで各方向へ交互へ電流が流れる。
そして、その変圧器62及びダイオード66を経て、電極44a,44b間には、図7(1) に示すように、変圧され整流されかつかなり平滑化された溶接用電流iが流れる。すなわち、トランジスタ58がオン状態とされると徐々に電流iが増加していき、オフ状態とされると徐々に電流iが減少していくのであり、電流iの値は図示のように三角波状となるのである。このように、溶接用電流iは時間的に変化するのである。なお、この図7(1) のグラフは、以下のようにして、図7(2) のグラフから算出されるのである。
【0017】
図3に示すように、一方の電極44aにはトロイダルコイル70が設けられており、それに基づいて電流微分値検出回路12(電流微分値検出手段Dに該当する)によって、電極44a,44b間を流れる溶接用電流iを時間的に微分した値(電流微分値)di/dtが検出される。その検出結果は図7(2) のとおりである。
そして、電極44a,44b間に溶接用電流iが通電中であると通電検出回路17によって検出されている間にわたって、この図7(2) の電流微分値di/dtが積分回路16(電流値算出手段E1に該当する)によって積分され、前述した図7(1) の溶接用電流iの値が算出される。
【0018】
また、図3〜図6に示すように、各電極44a,44bにはリード線72a,72bが接続されており、各リード線72a,72bは各アーム42a,42bを這わせられ、その検出端74a,74bは電圧検出回路14(電圧検出手段Cに該当する)に接続されている。その検出端間電圧Vは次式で表され、その検出結果は図7(3) のとおりである。
V=V+M・di/dt
ここで、Vは電極間電圧であり、V=R・iと表される(Rは電極間抵抗である)。また、Mはリード線72a,72bとアーム42a,42bとの間の相互インダクタンスである。すなわち、リード線72a,72bにおいてはアーム42a,42bを流れる溶接用電流iによって誘導電圧M・di/dtが生じるため、両リード線72a,72bの検出端74a,74b間には、電極間電圧Vにその誘導成分が加算された電圧が検出されるのである。
【0019】
一方、検出レベル設定回路20からは、図7(1) 中に破線で示すような基準電流isが出力される。基準電流isは、図示のように、溶接用電流iの複数の極大値及び複数の極小値のほぼ中間の値となるようにされている。
そして、レベル判定回路21によって、溶接用電流iと基準電流isとの値が比較され、両者の大きさが一致するタイミングt,t,t,…,t2n−1,t2n,…が検出される。
そして、溶接用電流iが基準電流isよりも大きな値となる隣り合うタイミング間(タイミングt・t間,t・t間,…,t2n−1・t2n間,…)が電流一致タイミング間T1,T2,…,Tn,…とされ、各電流一致タイミング間の始期(タイミングt,t,…,t2n−1,…)にタイミング発生回路22から積分開始信号が各積分回路24,25に出力され、各電流一致タイミング間の終期(タイミングt,t,…,t2n,…)に積分終了信号が出力される。
この各信号に基づいて、積分回路24(電圧積分手段F11に該当する)によって、検出端間電圧Vが各電流一致タイミング間ごとに積分(定積分)され、数1に示す電圧積分値SV1,SV2,…,SVn,…が出力される。その電圧積分値SV1,SV2,…,SVn,…の検出結果は図7(6) のとおりである。なお、以下、定積分に関する値については、添字がnのものを適宜代表値として表現する。
【数1】
Figure 0003586473
ここで、電流一致タイミング間Tnの始期(タイミングt2n−1)及び終期(タイミングt2n)における溶接用電流iが、前述したようにi=isで同値であるため、その微分値であるdi/dtをその電流一致タイミング間で定積分した値はゼロとなり、数1のSVnについて数2が成立する。
【数2】
Figure 0003586473
すなわち、検出端間電圧Vが電流一致タイミング間Tnにおいて定積分されることによって、検出端間電圧Vから誘導成分M・di/dtに関する値が除去されるのである。
【0020】
また、同様に、積分回路25(電流積分手段G11に該当する)によって溶接用電流iが各電流一致タイミング間Tnごとに積分され、数3に示す電流積分値SI1,SI2,…,SIn,…が出力される。その電流積分値SI1,SI2,…,SIn,…の検出結果は図7(7) のとおりである。
【数3】
Figure 0003586473
そして、電圧積分値SVn及び電流積分値SInの値が各サンプルホールド回路26,27において一旦保持され、除算回路28(除算手段H11に該当する)によって電圧積分値SVnが電流積分値SInによって除算され、数4に示す除算値D1,D2,…,Dn,…が算出される。
【数4】
Figure 0003586473
すなわち、この除算値Dnは、電極間電圧Vを電流一致タイミング間Tnで積分した値SVnを、溶接用電流iを電流一致タイミング間Tnで積分した値で除算したものであり、電流一致タイミング間Tnにおける平均的な電極間抵抗Rとなるのである。そして、前述したように、電圧積分値SVnからは誘導成分に関する値が除去されているため、この抵抗Rは、誘導成分に関する値を含まない正確な電極間抵抗なのである。
【0021】
以上のように、この装置及び方法によれば、誘導成分に関する値を含まない電極間抵抗を容易に測定することができるのである。
【0022】
なお、請求項1及び3に係る発明における電流一致タイミング間は、この第1実施例のように溶接用電流iが基準電流isよりも大きな値となる隣り合うタイミング間(タイミングt・t間,t・t間,…,t2n−1・t2n間,…)に限らず、タイミングt・t間,タイミングt・t間,タイミングt・t間のように、溶接用電流iが基準電流isと一致するタイミング間はすべて電流一致タイミング間に該当する。
また、基準電流という概念を用いなくても、電流値が相互に一致するタイミング間であれば、電流一致タイミング間に該当する。
【0023】
<第2実施例>
次に、請求項2及び請求項4の発明を具体化した実施例を、図3,図5〜図8に基づいて、第1実施例との相違点を中心に説明する。
この実施例は、第1実施例における定積分をするタイミング間の求め方に以下のような違いがある。そのために、図3中の電極間抵抗検出回路102において、図4中の検出レベル設定回路20及びレベル判定回路21のかわりに、図8に示すように、積分回路90及びタイミング検出回路91が設けられている。
【0024】
まず、溶接用電流iが通電中である間にわたって図7(2) の電流微分値di/dtの値が積分回路16によって積分されて、図7(1) の溶接用電流iが求められる。この点は第1実施例と同様である。
一方、図7(3) に示すように、溶接用電流iが増加中である際のタイミング(タイミングt,t,…t2n−1,…)から、積分回路90によって電流微分値di/dtの値が積分され、数5に示す電流微積分値Inが算出される(この値は溶接用電流iの値と所定の定数値だけ異なるのみである)。
【数5】
Figure 0003586473
そして、この電流微積分値Iがゼロとなる初めてのタイミング(タイミングt,t,…t2n,…)がタイミング検出回路91によって検出され、この積分開始タイミングから電流微積分値Iがゼロとなるまでのタイミング間(タイミングt・t間,t・t間,…,t2n−1・t2n間,…)が積分値ゼロタイミング間T1,T2,…,Tn,…とされる。
そして、この積分値ゼロタイミング間は数学的に第1実施例の電流一致タイミング間と一致し、積分回路24,25,サンプルホールド回路26,27,除算回路28における処理も第1実施例と同様であるため、適宜、第1実施例と同じ記号を用いて説明する。
【0025】
すなわち、タイミング発生回路92によって、その積分値ゼロタイミング間Tnの始期(タイミングt,t,…,t2n−1,…)に積分開始信号が出力され、積分値ゼロタイミング間Tnの終期(タイミングt,t,…,t2n,…)に積分終了信号が出力される。この各信号に基づいて、第1実施例と同様に積分回路24(電圧積分手段F12)によって検出端間電圧Vが各積分値ゼロタイミング間Tnごとに積分されて、数6に示す電圧積分値SVnが算出される。その検出結果は第1実施例と同様に図7(6) のようになる。
【数6】
Figure 0003586473
ここで、積分値ゼロタイミング間Tnにおける電流微積分値Inが前述したようにゼロであることから、第1実施例と同様に、数6のSVnについて数7が成立し、検出端間電圧Vから誘導成分M・di/dtが除去されるのである。
【数7】
Figure 0003586473
【0026】
また、積分回路25(電流積分手段G12)によって溶接用電流iが各積分値ゼロタイミング間Tnごとに積分されて、数8に示す電圧積分値SInが算出される。その検出結果も第1実施例と同様に図7(7) のようになる。
【数8】
Figure 0003586473
【0027】
そして、第1実施例と同様に、除算回路28(除算手段H12)によって電圧積分値SVnが電流積分値SInによって除算され、誘導成分に関する値を含まない電極間抵抗Rが、R=SVn/SInとして求められるのである。
【0028】
なお、請求項2及び4に係る発明における積分値ゼロタイミング間は、この第2実施例のように溶接用電流iが増加中である際のタイミングから、電流微分値di/dtが定積分された電流微積分値がゼロとなる初めてのタイミングまでのタイミング間に限らず、積分開始タイミングから積分された電流微積分値が2度目またはそれ以上においてゼロとなったタイミング(t,t,…,t2n−1,t2n,…)が積分値ゼロタイミング間の終期とされてもよし、溶接用電流iが減少中のタイミング(t,t,…,t2n,…)から積分されてもよい。
【0029】
【発明の効果】
本発明によれば、誘導成分に関する値を含まない両電極A,A間の正確な抵抗を容易に測定することができる。このため、その抵抗によって溶接がどの段階まで進んでいるかがわかり、それに応じて電極A,Aの加圧等を適宜行うことによって、ワークWを良好に溶接することができることとなる。
【図面の簡単な説明】
【図1】請求項1及び請求項2の発明の内容を模式的に示したブロック図である。
【図2】請求項3及び請求項4の発明の内容を模式的に示したブロック図である。
【図3】本発明の第1・第2実施例の装置の全体を示すブロック図である。
【図4】第1実施例における図3のうちの電極間検出回路を詳しく示すブロック図である。
【図5】図3における抵抗溶接機40の要部を示す図である。従来の一般的な抵抗溶接機40の説明図を兼ねる。
【図6】図3における電源回路30及びスイッチング回路32の具体的内容を示す配線図である。
【図7】図3中の各回路における検出値を示すグラフである。
【図8】第2実施例における図3のうちの電極間検出回路を詳しく示すブロック図である。
【符号の説明】
12 電流微分値検出回路(電流微分値検出手段D1)
14 電圧検出回路(電圧検出手段C1)
16 積分回路(電流値算出手段E1)
24 積分回路(電圧積分手段F11,F12)
25 積分回路(電流積分手段G11,G12)
28 除算回路(除算手段H11,H12)
44a,44b 電極(A,A)
W ワーク

Claims (4)

  1. ワークを挟んだ2つの電極間に時間的に変化する電流を流してそのジュール熱によってそのワークの溶接を行う抵抗溶接機における前記両電極間の抵抗を測定する装置であって、
    前記電極間に流す電流は、交流電源を整流回路を介して直流電源とし、この直流電源をスイッチング回路を介して時間的に変化させ、
    前記両電極間の電圧を検出する電圧検出手段と、
    前記両電極間に流れる溶接用電流を時間的に微分した値である電流微分値を検出する電流微分値検出手段と、
    溶接用電流が基準電流より大きな値となる隣り合うタイミング間で、前記電流微分値を積分して、前記両電極間に流れる溶接用電流値を算出する電流値算出手段と、
    溶接用電流が基準電流より大きな値となる隣り合うタイミング間で、前記電圧検出手段で検出された電圧を時間的に積分する電圧積分手段と、
    溶接用電流が基準電流より大きな値となる隣り合うタイミング間で、前記電流値算出手段で算出された電流値を時間的に積分する電流積分手段とを備え、
    前記電圧積分手段による積分値を前記電流積分手段による積分に値によって除算する除算手段と
    を有することを特徴とする抵抗溶接機の電極間抵抗測定装置。
  2. ワークを挟んだ2つの電極間に時間的に変化する電流を流してそのジュール熱によってそのワークの溶接を行う抵抗溶接機における前記両電極間の抵抗を測定する装置であって、
    前記電極間に流す電流は、交流電源を整流回路を介して直流電源とし、この直流電源をスイッチング回路を介して時間的に変化させ、
    前記両電極間の電圧を検出する電圧検出手段と、
    前記両電極間に流れる溶接用電流を時間的に微分した値である電流微分値を検出する電流微分値検出手段と、
    前記電流微分値を時間的に積分して前記両電極間に流れる溶接用電流値を算出する電流値算出手段と、
    前記電流微分値を時間的に積分し始める積分開始タイミングから、その積分値がゼロとなるタイミングまでの間である積分値ゼロタイミング間で、前記電圧検出手段で検出された電圧を時間的に積分する電圧積分手段と、
    前記積分値ゼロタイミング間で前記溶接用電流値を時間的に積分する電流積分手段と、
    前記電圧積分手段による積分値を前記電流積分手段による積分に値によって除算する除算手段と
    を有することを特徴とする抵抗溶接機の電極間抵抗測定装置。
  3. ワークを挟んだ2つの電極間に時間的に変化する電流を流してそのジュール熱によってそのワークの溶接を行う抵抗溶接機における前記両電極間の抵抗を測定する方法であって、
    前記電極間に流す電流は、交流電源を整流回路を介して直流電源とし、この直流電源をスイッチング回路を介して時間的に変化させ、
    前記両電極間の電圧を検出する電圧検出段階と、
    前記両電極間に流れる溶接用電流を時間的に微分した値である電流微分値を検出する電流微分値検出段階と、
    溶接用電流が基準電流より大きな値となる隣り合うタイミング間で、前記電流微分値を積分して前記両電極間に流れる溶接用電流値を算出する電流値算出段階と、
    溶接用電流が基準電流より大きな値となる隣り合うタイミング間で、前記電圧検出手段で検出された電圧を時間的に積分する電圧積分段階と、
    溶接用電流が基準電流より大きな値となる隣り合うタイミング間で、前記電流値を時間的に積分する電流積分段階と、
    前記電圧積分手段による積分値を前記電流積分手段による積分に値によって除算する除算段階と
    を有することを特徴とする抵抗溶接機の電極間抵抗測定方法。
  4. ワークを挟んだ2つの電極間に時間的に変化する電流を流してそのジュール熱によってそのワークの溶接を行う抵抗溶接機における前記両電極間の抵抗を測定する装置であって、
    前記電極間に流す溶接用電流は、交流電源を整流回路を介して直流電源とし、この直流電源をスイッチング回路を介して時間的に変化させ、
    前記両電極間の電圧を検出する電圧検出段階と、
    前記両電極間に流れる溶接用電流を時間的に微分した値である電流微分値を検出する電流微分値検出段階と、
    前記電流微分値を時間的に積分して前記両電極間に流れる溶接用電流値を算出する電流値算出段階と、
    前記電流微分値を時間的に積分し始める積分開始タイミングから、その積分値がゼロとなるタイミングまでの間である積分値ゼロタイミング間で、前記電圧検出手段で検出された電圧を時間的に積分する電圧積分段階と、
    前記積分値ゼロタイミング間で前記溶接用電流値を時間的に積分する電流積分段階と、
    前記電圧積分手段による積分値を前記電流積分手段による積分に値によって除算する除算段階と
    を有することを特徴とする抵抗溶接機の電極間抵抗測定方法
JP15726193A 1993-06-28 1993-06-28 抵抗溶接機の電極間抵抗測定装置及び測定方法 Expired - Lifetime JP3586473B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15726193A JP3586473B2 (ja) 1993-06-28 1993-06-28 抵抗溶接機の電極間抵抗測定装置及び測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15726193A JP3586473B2 (ja) 1993-06-28 1993-06-28 抵抗溶接機の電極間抵抗測定装置及び測定方法

Publications (2)

Publication Number Publication Date
JPH079164A JPH079164A (ja) 1995-01-13
JP3586473B2 true JP3586473B2 (ja) 2004-11-10

Family

ID=15645789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15726193A Expired - Lifetime JP3586473B2 (ja) 1993-06-28 1993-06-28 抵抗溶接機の電極間抵抗測定装置及び測定方法

Country Status (1)

Country Link
JP (1) JP3586473B2 (ja)

Also Published As

Publication number Publication date
JPH079164A (ja) 1995-01-13

Similar Documents

Publication Publication Date Title
JPH1133743A (ja) 単位体積当たりの累積発熱量を指標とする抵抗溶接システム
US8497454B2 (en) Induction hardening monitoring apparatus
US5072180A (en) Temperature compensated method and apparatus for detecting the oscillation of a resonant circuit to determine distance or proximity
JP3586473B2 (ja) 抵抗溶接機の電極間抵抗測定装置及び測定方法
JP3421387B2 (ja) 抵抗溶接機の電極間電圧測定装置及び測定方法
CN110618308B (zh) 一种单相变交流电压零点检测方法及装置
WO2016038756A1 (ja) 溶接電流測定装置、抵抗溶接監視装置及び抵抗溶接制御装置
KR20210069398A (ko) 3 상 인버터의 전류 측정 장치 및 그 방법
JP3172847B2 (ja) 抵抗溶接機のチップ間電圧検出方法およびその装置
JPH0644542Y2 (ja) インバータ式抵抗溶接機の制御又は測定装置
JPH02300670A (ja) インダクタス測定装置
JPH0732217A (ja) ワイヤ放電加工機における被加工物厚さ測定装置と該測定装置を使用した加工条件変更方法
JPS6142900A (ja) X線発生装置
JP2747375B2 (ja) 抵抗溶接装置
JPS63150110A (ja) 放電加工装置
JP7492518B2 (ja) 位相シフトの決定方法及び位相シフトの決定システム
JPH0127392B2 (ja)
JPH0639312Y2 (ja) 温度検出回路
JPS6150708B2 (ja)
JP3562204B2 (ja) インピーダンスセンサ
JP2002206956A (ja) 電磁流量計
JPS6015434B2 (ja) 溶接電極間電圧検出装置
JPH0549948B2 (ja)
JP2001133488A (ja) 交流電圧測定装置及び方法
JPS60180719A (ja) 放電電圧検出装置

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040519

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040809

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 9

EXPY Cancellation because of completion of term