JP3580146B2 - アルミニウム合金ビレットの縦型連続鋳造方法 - Google Patents

アルミニウム合金ビレットの縦型連続鋳造方法 Download PDF

Info

Publication number
JP3580146B2
JP3580146B2 JP28462798A JP28462798A JP3580146B2 JP 3580146 B2 JP3580146 B2 JP 3580146B2 JP 28462798 A JP28462798 A JP 28462798A JP 28462798 A JP28462798 A JP 28462798A JP 3580146 B2 JP3580146 B2 JP 3580146B2
Authority
JP
Japan
Prior art keywords
billet
aluminum alloy
casting
vicinity
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28462798A
Other languages
English (en)
Other versions
JP2000107842A (ja
Inventor
博文 長海
一男 青木
健 小松
亘保 萩沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP28462798A priority Critical patent/JP3580146B2/ja
Publication of JP2000107842A publication Critical patent/JP2000107842A/ja
Application granted granted Critical
Publication of JP3580146B2 publication Critical patent/JP3580146B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、アルミニウム合金ビレットの縦型連続鋳造において、鋳造の初期段階で生じる鋳塊品質、特に割れ欠陥を回避する連続鋳造方法に関する。
【0002】
【従来の技術】
一般に、アルミニウム合金のビレットの縦型連続鋳造は、図4(A)に示すように、上下が開口するリング形の強制冷却鋳型1にその上方から、図示しないスパウト及びフロートを介して、アルミニウム合金の溶湯Mを注湯し、凝固した鋳塊Cをその下端を支える下型2と共に上記鋳型1の下方に引き下ろすことにより行われている。即ち、上記鋳型1の下方の開口部からその内部に下型2を挿入した状態で注湯が開始され、鋳型1及び下型2に囲まれた空間内に所定量の溶湯Mが供給され且つその表面が凝固した段階で、下型2と共に鋳塊Cが鋳型1の下方に引き下ろされる。
【0003】
そして、鋳型1から引き下ろされた鋳塊Cは、その周表面に鋳型1内の冷却水Wが噴射孔1aから下向き円錐状に噴射され、強制冷却されてビレットBとなる。尚、図4(A)中の符号Fは、溶湯Mと鋳塊Cとの境界は凝固界面を示す。
ところで、上記鋳造の初期段階において、鋳型1から引き下ろされた鋳塊Cの下端部は冷却水Wにより急冷され、当該部分の温度が急降下し、鋳塊Cの垂直方向に沿う温度勾配が高くなる結果、鋳塊Cの内部に熱応力を誘発する。同時に鋳塊Cの周表面と中心部との温度勾配も高くなり、同様に熱応力を生じる。更に、鋳塊Cは下型2との接触によっても急冷され、同様に熱応力を生じる。
これらの熱応力は、図4(A)に示すように、鋳塊Cの下端部に熱間割れ4を発生させる原因になる。
【0004】
また、割れ4により引張り応力が生じ、鋳塊Cの内部に縦割れが生じ易くなる。更に、鋳塊Cと下型2の間に隙間6を生じると、鋳塊Cから下型2への放熱が妨げられ、鋳塊Cの下端部が再溶解する再溶解部から割れが生じることもある。以上のアルミニウム合金の連続鋳造における問題点を解決するため、既に種々の技術が提案されている。例えば、連続鋳造の初期段階では、鋳塊に当てる冷媒中に炭酸ガス等を混合して鋳塊表面からの放熱を抑制し、次の段階で炭酸ガス等の混合量を順次減少させて、鋳塊の冷却速度を通常の速度に戻す鋳造方法(特公昭55−42903号公報参照)がある。
【0005】
また、鋳造の初期段階で間欠的に冷却水を鋳塊の下端部に噴射して、当該部分の収縮を制御するパルス冷却鋳造法(米国特許第3441079号明細書参照)も提案されている。
更に、鋳造の初期段階で用いる鋳塊の冷却水として、ポリオキシエチレン・プロピレン・ポリエーテルを所定量溶解した水溶液を用いることにより鋳塊の冷却速度を緩和し、鋳塊の下端部に生じる割れ等の欠陥を防止する連続鋳造方法(特開平9−122862号公報参照)も提案されている。
【0006】
しかしながら、上記炭酸ガス等を冷却媒体中に混合する鋳造方法は、炭酸ガス等の生成及びその混合量の制御等を必要とし、これらのために大規模な生成・制御設備等を要する。また、上記パルス冷却鋳造法や特殊な溶液を冷却水に用いる鋳造方法では、冷却水の供給と停止を制御するために煩雑な制御装置を必要とする。しかも、この制御系に故障が生じると、鋳塊の冷却が中断されるため、鋳塊の一部が再溶解して鋳型の内部に損傷を招来するという問題点も有する。
そして、鋳造の初期段階を終えた定常段階になると、図4(B)に示すように、上記鋳型1内に供給された溶湯Mは、鋳型1との接触により冷却され、その周表面に厚さ約10mm程の薄い凝固層8を順次形成し、ビレットBとなる。
【0007】
以上の鋳塊の冷却速度を減少させる方法の他に、鋳造初期段階の上記割れ等を防止するため、鋳塊品質を改善するため、次のような方法も提案されている。
即ち、鋳型内の湯面レベルを低くして鋳造する低湯面レベル鋳造や、鋳造速度を増加させる方法がある。しかし、これらの方法では湯漏れが発生する危険がある。更に、冷却水量を増やす方法もあるが、これによる冷却速度の向上には限界がある。何れの方法によっても、鋳造初期段階における割れ等の欠陥を防ぐことは困難であるか、或いは大掛かりな設備を必要としていた。
【0008】
【発明が解決すべき課題】
本発明は、以上に説明した従来の技術における問題点を解決し、複雑な設備を用いず、簡便な方法で鋳造初期段階における割れ等の欠陥を確実に予防できるアルミニウム合金ビレットの縦型連続鋳造方法を提案することを課題とする。
【0009】
【課題を解決するための手段】
本発明は、上記課題を解決するため、縦型連続鋳造の初期段階における非定常熱伝導解析及び基礎実験を鋭意検討することによって成されたものである。
即ち、本発明のアルミニウム合金ビレットの縦型連続鋳造方法(請求項1)は、アルミニウム合金の溶湯を筒形状の強制冷却鋳型内に上方から注湯し、上記鋳型により1次冷却して表面に薄い凝固層を形成すると共に、該凝固層を形成した鋳塊をその下端を支える下型と共に上記鋳型から引き下ろし、該鋳塊の表面に冷媒を供給し2次冷却することにより、断面円形又は長円形のアルミニウム合金ビレットを得る縦型連続鋳造方法であって、鋳造開始時からビレットの鋳込み長さが100mmに至るまでの初期段階において、ビレットの底面からの距離が同じ断面における表層部と径方向の中心近傍との凝固時冷却速度の差を5.0K/s(ケルビン/秒、以下同じ)以下とし、及び/又は、ビレットの上記断面における表層部と径方向の中心近傍との凝固時温度勾配の差を3000K/m(ケルビン/メートル、以下同じ)以下とする、ことを特徴とする。
【0010】
これによれば、上記何れか一方、好ましくは双方の条件を満たすことにより、縦型連続鋳造の初期段階における所謂熱間割れ等の欠陥を防いだアルミニウム合金のビレットを確実に得ることが可能となる。
尚、上記冷却速度の差が5.0K/sを超えたり、温度勾配の差が3000K/mを超えると、ビレットに熱間割れが発生し易くなるため、これら以下の上記範囲とした。また、これらの各条件範囲の下限値は特に限定しないが、実用的な操業が可能な範囲で適宜選定される。尚また、上記冷却速度及び温度勾配は、何れも固相率1に達したときのものである。
【0011】
また、前記鋳造開始後で且つビレットの鋳込み長さが50mmに到達した段階において、前記ビレットの底面からの距離が同じ断面における表層部と径方向の中心近傍との凝固時冷却速度の差を4.3K/s以下とし、及び/又は、ビレットの上記断面における表層部と径方向の中心近傍との凝固時温度勾配の差を2950K/m以下とする、アルミニウム合金ビレットの縦型連続鋳造方法(請求項2)も含まれる。
通常の始端面形状を有するビレットにおいては、鋳込み長さが50mmに到達した段階で上記冷却速度差や温度勾配差が最大となる。従って、これら2つの条件を制御する上記方法によれば、一層確実に初期段階における所謂熱間割れ等の欠陥を防ぐことができる。
【0012】
更に、前記ビレットの表層部は、当該ビレットの周表面からその径方向の中心近傍に沿って20mm±10mmの範囲である、アルミニウム合金ビレットの縦型連続鋳造方法(請求項3)も含まれる。より好ましいビレットの表層部は、当該ビレットの周表面からその中心方向に沿って20mm±5mmの範囲である。
これによれば、前記割れ等の欠陥の予防を一層正確に行うことができる。
【0013】
【実施例】
以下において本発明の具体的な実施例について説明する。尚、便宜上前記図4中の要素や部分と同様なものについては、共通する符号を用いるものとする。
熱解析及び実験の対象を、表1中の※印に示す組成を有するJIS:A6000系のアルミニウム合金からなり、直径325mm,長さ600mmのビレットBとした。また、その解析領域は、ビレットBが幾何学的及び熱的に軸対称と仮定し、その半径方向で165mm、長さ(軸)方向で675mmとし、且つ両方向とも5mm間隔で等分割した。
【0014】
係る熱解析において、凝固潜熱の測定には示差走査熱量測定器(セイコー電子工業(株)の商品記号:SSC5200H)を、凝固温度範囲の測定には断熱型比熱測定装置(真空理工(株)の商品記号:SH−3000型)を用いた。また、直接差分外節点法により鋳塊C(ビレットB)の凝固過程における非定常熱伝導解析を行った。この解析で使用した鋳塊C,鋳型1,下型2の各物性値を表1に示す。
尚、凝固潜熱と凝固温度範囲は実験の実測値を使用し、凝固潜熱の取扱いはエンタルピ法とし、固相率と温度の関係は4次近似式を使用した。
【0015】
【表1】
Figure 0003580146
【0016】
また、実験における測定には、K熱電対(素線径0.3mm)を用いて、鋳塊Cの底面(鋳込み先端)から20mm,50mm,70mm、及び400mmの位置にK熱電対をセットし、鋳塊Cの周表面から20mm及び70mmの各位置で、0.5秒毎に温度履歴を測定した。
先ず、上記合金、鋳型1、及び下型2を用い、鋳込み温度720℃、鋳造速度55mm/分、湯面高さ15mm、冷却水(W)の給水量150リットル/分、及び鋳込み長さ650mmの条件で、縦型連続鋳造を行った。得られたビレットB内の温度履歴について、実測値と計算値とを図1(A)のグラフに示す。このグラフの結果から、計算値は実測値と略一致しており、熱解析の計算精度を確認し得た。
【0017】
次に、鋳造速度を変化させた場合のビレットBの底面から50mmの非定常部における周表面から径方向の中心近傍までの凝固時(固相率1に至った時点を凝固時とする)温度勾配(K/m)の分布を計算した。その結果を図1(B)のグラフに示す。このグラフから、凝固時温度勾配は周表面から25mm付近まで増加し、その後は中心近傍に向けて減少する傾向を示す。且つ、鋳造速度が増えても120mmから中心近傍までの間では、凝固時温度勾配は殆んど変化が見られなかった。
従って、図1(B)のグラフから鋳造速度が増加するに伴い表層部と径方向の中心近傍との凝固時温度勾配の差は増大することが判った。尚、非定常部と定常部の境界は、概ねビレットBの底面から約100mmの位置である。
【0018】
更に、鋳造速度を変化させた場合のビレットBの底面から50mm(非定常部)及び400mm(定常部)における周表面から径方向の中心近傍までの凝固時冷却速度(K/s)の分布を計算した。それらの結果を図2(A),(B)のグラフに示す。
双方のグラフから、何れの鋳造速度においても400mmの位置における表層部の凝固時冷却速度は、50mmの位置のそれより小さく、且つ表層部と径方向の中心近傍との凝固時冷却速度の差も小さくなっている。また、冷却速度は、各グラフ共に周表面から一旦増加し、約20mm付近で最大となり、その後は径方向の中心近傍に向けて減少していく傾向が見られる。
更に、何れのグラフでも鋳造速度が増加するに連れて、凝固時冷却速度が増加している。尚、周表面からの距離が100mmを超えると400mm位置の冷却速度のほうが50mm位置よりも高くなった。
【0019】
そして、前記ビレットBのうち鋳造速度が55mm/分のものについて、その底面からの距離と表層部及び径方向の中心近傍における凝固時冷却速度と凝固時温度勾配の関係をそれぞれ計算した。それらの結果を図3(A),(B)のグラフに示した。尚、上記表層部は周表面から20mm±2.5mmの範囲内における位置を指す。
図3(A)において、ビレットBの底面から50mmまでの非定常部では、表層部の凝固時冷却速度は、一部を除き急激に増加した後、100mmの位置に向けて減少し、且つその後の定常部では5K/s付近で一定となった。
また、径方向の中心近傍の凝固時冷却速度は、ビレットBの底面から50mmまでの非定常部で急激に減少し、且つ約20〜40mmで最低となった後、100mmの位置に向けて増加し、且つその後の定常部では4K/s付近で一定となった。両者間における各凝固時冷却速度の最大差は、ビレットBの底面から約40〜50mmの非定常部における約6K/sであった。
【0020】
また、図3(B)において、ビレットBの底面から50mmまでの非定常部では、表層部の凝固時温度勾配は、一旦増加した後100mm付近に向けて減少し、且つその後の定常部では約6000K/m付近で一定となった。
また、径方向の中心近傍における凝固時温度勾配は、ビレットBの底面から30mmまでの非定常部で一旦急減した後、100mm付近に向けて緩やか増加し、且つその後の定常部では4000K/m付近で一定となった。両者間の各凝固時温度勾配の最大差は、ビレットBの底面から約40〜50mmの非定常部における約3600K/mであった。
【0021】
一方、表2に示すように、鋳造速度、鋳造温度、及び冷却水(W)の給水量をそれぞ変化させて、25本のビレットBを前記アルミニウム合金、鋳型1、及び下型2を用いて鋳造した。得られた各ビレットBにおける割れの有無を観察し、且つビレットBの底面から50mmの非定常部の位置における表層部と径方向の中心近傍との凝固時冷却速度の差と凝固時温度勾配の差を計算した。それらの結果も表2に示す。
尚、ビレットBの割れの有無は、各ビレットBをその底面から50mmの位置で切断した切断面を目視により観察した。また、表2中のNo,1〜5は実施例を、No,6〜25は比較例を示す。
【0022】
【表2】
Figure 0003580146
【0023】
表2から、割れは概ね鋳造速度が増加するに連れて生じ易くなる傾向が判る。
また、割れは、ビレットBの非定常部における表層部と径方向の中心近傍との凝固時冷却速度の差が6K/sを超えたり、凝固時温度勾配の差が3500K/mを超えると確実に生じることも判明した。係る差により割れを生じる熱応力を誘発したものである。一方、No,1〜5の実施例のビレットBでは、割れは全く生じていなかった。
【0024】
これらの結果は、前記熱解析による凝固時冷却速度の最大差約6K/s、及び凝固時温度勾配の最大差3600K/mと対応している。即ち、鋳造の初期段階に形成される非定常部における表層部と径方向の中心近傍との凝固時冷却速度の差を5.0K/s以下としたり、又は凝固時温度勾配の差を3000K/m以下とするか、或いは双方を満足するという、本発明による効果も裏付けられた。これらの条件に従うことにより、予め割れを皆無にしたアルミニウム合金のビレットBを確実に縦型連続鋳造によって得ることができ、歩留まり良く健全なビレットBを得ることが可能となる。
【0025】
尚、本発明は前記合金やA6061等のJIS:A6000系のアルミニウム合金に限らず、縦型連続鋳造の初期段階で割れを生じ易い各種のアルミニウム合金に適用することも可能である。
また、鋳造するビレットには断面円形の他、断面長円形のものも含まれる。
【0026】
【発明の効果】
以上において説明した本発明の縦型連続鋳造方法によれば、複雑な設備を用いることなく、予め鋳造条件を所定の範囲に設定することにより、鋳造初期段階における割れ及びこれに伴う欠陥を予防して、健全な組織を有するアルミニウム合金ビレットを確実に且つ効率良く得ることが可能となる。
【 図面の簡単な説明】
【図1】(A)は鋳造中のビレットの各位置における温度履歴の実測値と計算値を示すグラフ、(B)は鋳造速度を変化させた場合のビレット表層部から中心近傍に至る凝固時温度勾配の挙動を示すグラフ。
【図2】(A)及び(B)は共に、鋳造速度を変化させた場合のビレットの各位置における凝固時冷却速度のビレット表層部から中心近傍に至る挙動を示すグラフ。
【図3】(A)は鋳造速度:55mm/分の際におけるビレット表層部及び中心近傍における凝固時冷却速度とビレット底面からの距離の関係を示すグラフ、(B)は同じく鋳造速度:55mm/分の際における凝固時温度勾配とビレット底面からの距離の関係を示すグラフ。
【図4】(A)は一般的なアルミニウム合金の縦型連続鋳造の初期段階の状態を示す概略図、(B)はその後の定常段階の状態を示す概略図。
【符号の説明】
1…鋳型(強制冷却鋳型)
2…下型
8…薄い凝固層
C…鋳塊
B…ビレット
W…冷却水(冷媒)

Claims (3)

  1. アルミニウム合金の溶湯を筒形状の強制冷却鋳型内に上方から注湯し、上記鋳型により1次冷却して表面に薄い凝固層を形成すると共に、該凝固層を形成した鋳塊をその下端を支える下型と共に上記鋳型から引き下ろし、該鋳塊の表面に冷媒を供給し2次冷却することにより、断面円形又は長円形のアルミニウム合金ビレットを得る縦型連続鋳造方法であって、
    鋳造開始時からビレットの鋳込み長さが100mmに至るまでの初期段階において、ビレットの底面からの距離が同じ断面における表層部と径方向の中心近傍との凝固時冷却速度の差を5.0K/s以下とし、及び/又は、ビレットの上記断面における表層部と径方向の中心近傍との凝固時温度勾配の差を3000K/m以下とする、
    ことを特徴とするアルミニウム合金ビレットの縦型連続鋳造方法。
  2. 前記鋳造開始後で且つビレットの鋳込み長さが50mmに到達した段階において、
    前記ビレットの底面からの距離が同じ断面における表層部と径方向の中心近傍との凝固時冷却速度の差を4.3K/s以下とし、及び/又は、ビレットの上記断面における表層部と径方向の中心近傍との凝固時温度勾配の差を2950K/m以下とする、ことを特徴とする請求項1に記載のアルミニウム合金ビレットの縦型連続鋳造方法。
  3. 前記ビレットの表層部は、当該ビレットの周表面からその径方向中心近傍に沿って20mm±10mmの範囲である、ことを特徴とする請求項1又は2に記載のアルミニウム合金ビレットの縦型連続鋳造方法。
JP28462798A 1998-10-06 1998-10-06 アルミニウム合金ビレットの縦型連続鋳造方法 Expired - Fee Related JP3580146B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28462798A JP3580146B2 (ja) 1998-10-06 1998-10-06 アルミニウム合金ビレットの縦型連続鋳造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28462798A JP3580146B2 (ja) 1998-10-06 1998-10-06 アルミニウム合金ビレットの縦型連続鋳造方法

Publications (2)

Publication Number Publication Date
JP2000107842A JP2000107842A (ja) 2000-04-18
JP3580146B2 true JP3580146B2 (ja) 2004-10-20

Family

ID=17680924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28462798A Expired - Fee Related JP3580146B2 (ja) 1998-10-06 1998-10-06 アルミニウム合金ビレットの縦型連続鋳造方法

Country Status (1)

Country Link
JP (1) JP3580146B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009226470A (ja) * 2008-03-25 2009-10-08 Kobe Steel Ltd アルミニウム鋳塊またはアルミニウム合金鋳塊の製造方法

Also Published As

Publication number Publication date
JP2000107842A (ja) 2000-04-18

Similar Documents

Publication Publication Date Title
JP5145791B2 (ja) 小断面ビレットの連続鋳造方法
JPH01170550A (ja) 鋼の連続鋳造用鋳型
AU2013208852B2 (en) Double-jet cooling device for semicontinuous vertical casting mould
TWI655979B (zh) Steel continuous casting method
JP3580146B2 (ja) アルミニウム合金ビレットの縦型連続鋳造方法
JP2001105102A (ja) 連続鋳造用鋳型および連続鋳造方法
JP4301133B2 (ja) 丸鋳片の連続鋳造方法、丸鋳片および継目無管の製管方法
JP3401785B2 (ja) 連続鋳造における鋳片の冷却方法
US3763921A (en) Direct chill casting method
JPH0671389A (ja) 水平連続鋳造法
JP2004330252A (ja) 丸鋳片の連続鋳造方法および丸鋳片
JP2001191150A (ja) アルミニウム合金ビレットの垂直連続鋳造方法
JP4023366B2 (ja) ビレット鋳片の連続鋳造方法
JP3643487B2 (ja) チクソキャスティング用材料の加熱方法
JP2520534B2 (ja) 連続鋳造方法
JP2001276958A (ja) 連続鋳造鋳鉄及びその製造方法
JPH0191948A (ja) 鋳塊の半連続鋳造法及び鋳造装置
EP0042995A1 (en) Apparatus and method for continuous casting of metallic strands at exceptionally high speeds using oscillating mold assembly
JP2024035081A (ja) 連続鋳造用鋳型
JP2003290878A (ja) 水平連続鋳造方法
JPH09122860A (ja) アルミニウムの連続鋳造方法
JP2000202583A (ja) 連続鋳造方法および連続鋳造用鋳型
JPH02137652A (ja) 小断面鋳片の連続鋳造方法
JPS60191641A (ja) 金属の水平連続鋳造法
JPH04371351A (ja) 横型連続鋳造方法

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040324

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees