JP3575865B2 - ポリプロピレン組成物 - Google Patents

ポリプロピレン組成物 Download PDF

Info

Publication number
JP3575865B2
JP3575865B2 JP09672595A JP9672595A JP3575865B2 JP 3575865 B2 JP3575865 B2 JP 3575865B2 JP 09672595 A JP09672595 A JP 09672595A JP 9672595 A JP9672595 A JP 9672595A JP 3575865 B2 JP3575865 B2 JP 3575865B2
Authority
JP
Japan
Prior art keywords
weight
polypropylene
polymer
elution
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09672595A
Other languages
English (en)
Other versions
JPH08291236A (ja
Inventor
勲 正田
直紀 上田
慎介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP09672595A priority Critical patent/JP3575865B2/ja
Publication of JPH08291236A publication Critical patent/JPH08291236A/ja
Application granted granted Critical
Publication of JP3575865B2 publication Critical patent/JP3575865B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、新規なポリプロピレン組成物および該ポリプロピレン組成物よりなる延伸フィルムに関する。詳しくは、成形性が良好で、且つ透明性、写像性が著しく改良された延伸フィルムを与えるポリプロピレン組成物および該ポリプロピレン組成物よりなる延伸フィルムに関する。
【0002】
【従来の技術】
ポリプロピレン延伸フィルム、特にポリプロピレン二軸延伸フィルムは、その優れた機械的物性、光学的物性により包装材料等に広く使用されている。しかしながら、これらのポリプロピレン延伸フィルムは、ポリプロピレンの持つ高い結晶性のために、透明性、写像性については、一般にポリスチレンやポリ塩化ビニル等の他の高透明性熱可塑性樹脂よりも劣っている。
【0003】
ポリプロピレン延伸フィルムの透明性を改良する試みとして、これまでにいくつかの手段が提案されている。例えば、ポリプロピレンにソルビトール誘導体、芳香族カルボン酸のアルカリ金属塩もしくはアルミニウム塩等の有機系の結晶核剤(例えば、特開昭58−80392号公報、特開昭55−12460号公報)や、微小粒径のタルク(特開平3−166244)等の無機系結晶核剤の添加、あるいは、炭素数5以上の分岐α−オレフィン重合体(特公昭45−32430号公報)、ビニルシクロアルカン重合体(特公平3−42298)等の高分子系結晶核剤を含有させることによって、フィルムの透明性、写像性を改良する方法である。
【0004】
【発明が解決しようとする課題】
しかしながら、これらの結晶核剤を結晶性ポリプロピレンに含有させると、ポリプロピレン延伸フィルムの成形に際して、押し出し成形により得られた原反シートが硬くなり、延伸時のフィルムの延伸ムラによる厚薄精度の悪化や延伸破れ等が発生し、延伸フィルムの成形性に問題があった。
【0005】
さらに、これらの結晶核剤の含有はポリプロピレン組成物の結晶化温度を上昇させ、成形された延伸フィルムを溶断シールによって製袋した際、溶断シール強度(溶断シール部の破袋強度)が低下するという問題があった。
【0006】
従って、本発明の目的は、優れた透明性、写像性を持ち、かつ、延伸フィルムの成形に際して、延伸時のフィルムの延伸ムラや延伸破れ等の起こらない、いわゆる良好な成形性を有し、また、成形された延伸フィルムの溶断シール性能の改良されたポリプロピレン組成物および該ポリプロピレンよりなる延伸フィルムを提供することにある。
【0007】
【課題を解決するための手段】
かかる観点から、本発明者らは、透明性、写像性、延伸フィルム成形性、溶断シール性の改良されたポリプロピレン延伸フィルムについて鋭意検討を重ねた結果、驚くべきことに、特定の結晶性分布を有する結晶性ポリプロピレンに結晶核剤を少量含有させたポリプロピレン組成物を使用することにより、得られるポリプロピレン延伸フィルムの透明性、写像性、溶断シール性が著しく改良され、また、該ポリプロピレン組成物は延伸フィルム成形の際の延伸ムラによる厚薄精度の悪化や延伸破れ等が発生することなく、成形性に優れることを見出し、本発明を完成するに至った。
【0008】
すなわち、本発明は(A)温度上昇溶離分別法による溶出曲線のピーク温度が105〜125℃、該溶出曲線より算出される90重量%溶出時と20重量%溶出時とにおける溶出温度の差(以下、単に溶出温度差ともいう)が9〜17℃である結晶性ポリプロピレン100重量部に、(B)結晶核剤0.00001〜1重量部を含有することを特徴とするポリプロピレン組成物および該ポリプロピレン組成物よりなり、少なくとも一軸以上に延伸されてなるポリプロピレン延伸フィルムである。
【0009】
本発明において、温度上昇溶離分別法(以下、単にTREFと略す。)は、ポリオレフィンを溶剤への溶解温度の差により分別し、各溶解温度におけるポリオレフィンの溶出量(濃度)を測定して、そのポリオレフィンの結晶性分布を評価する方法である。即ち、硅藻土、シリカビーズ等の不活性担体を充填剤として用い、そのカラム内に試料のポリオレフィンをオルトジクロルベンゼンよりなる溶剤に溶解した任意の濃度の試料溶液を注入し、カラムの温度を降下させて試料を充填剤表面に付着させた後、該カラム内にオルトジクロルベンゼンよりなる溶剤を通過させながらカラムの温度を上昇させていき、各温度で溶出してくるポリオレフィン濃度を検出し、ポリオレフィンの溶出量(重量%)とその時のカラム内の温度(℃)との値より、ポリオレフィンの結晶性分布を測定する方法である。
【0010】
上記方法において、カラムの温度の降下速度は、試料のポリオレフィンに含まれる結晶性部分の結晶化に必要な速度に、また、カラムの温度のを上昇速度は、各温度における試料の溶解が完了得る速度に調整されることが必要であり、かかるカラムの温度の降下速度および上昇速度は予め実験によって決定すればよい。一般に、カラムの温度の降下速度は、2℃/分以下の範囲で、また、カラムの温度の上昇速度は、4℃/分以下の範囲で決定される。
【0011】
ここで、溶出ピーク温度(Tp)とは、溶出温度(℃)と溶出量(重量%)の関係を示す溶出曲線において溶出量が最大となるピーク位置(℃)を示す。図1は、後述する実施例1で製造した結晶性ポリプロピレンの溶出温度(℃)と溶出量(重量%)との関係を示す溶出曲線であり、ここで、A点で示されるピーク位置の温度118.4℃が、溶出ピーク温度となる。
【0012】
また、溶出曲線より算出される溶出温度差(σ)とは、積算溶出量が20重量%と90重量%とにおける溶出温度差であり、下記式で求められる。
【0013】
σ=T(90)−T(20)
但し、T(90):積算溶出量が90重量%となるときの温度(℃)
T(20):積算溶出量が20重量%となるときの温度(℃)
図2は、後述する実施例1で製造した結晶性ポリプロピレンの溶出温度(℃)と積算溶出量(重量%)との関係を示す積算溶出曲線であり、ここで、B点がT(90)で121.1℃であり、C点がT(20)で110.1℃である。したがって、この場合の溶出温度差は(121.1−110.1)で11.0℃となる。
【0014】
上記溶出温度はポリマーの結晶性すなわち立体規則性および共重合組成に依存するので、TREFによって溶出温度とポリマーの溶出量(重量%)との関係を求めることにより、ポリマーの結晶性の分布を知ることができる。
【0015】
本発明に使用する結晶性ポリプロピレンは、TREFによる溶出曲線のピーク温度(Tp)は105〜125℃の範囲であることが必要であり、特に110〜120℃の範囲であることが好ましい。すなわち、溶出曲線のピーク温度が105℃未満の場合、得られる成形体、特に延伸フィルムに成形した場合、熱収縮率等の耐熱性や剛性が低下する。また、該ピーク温度が125℃を越えた場合、成形性が低下し、延伸フィルムに成形する場合、溶断シール性が低下したり、また、延伸フィルム成形の際の延伸性が低下して、延伸ムラによるフィルムの厚薄精度の悪化やフィルムの延伸破れが多発するために好ましくない。
【0016】
また、本発明に使用する結晶性ポリプロピレンの溶出温度差(σ)は9〜17℃の範囲であることが必要であり、特に10〜15℃の範囲であることが好ましい。該溶出温度差が9℃未満の場合、成形性が低下し、延伸フィルムと場合の溶断シール性が低下したり、延伸フィルム成形の際の延伸性が低下して、延伸ムラによるフィルムの厚薄精度の悪化やフィルムの延伸破れが多発する。また、該溶解温度差が17℃を越えると得られる成形体、特に延伸フィルムの熱収縮率等の耐熱性や剛性が低下するために好ましくない。
【0017】
本発明において使用される結晶性ポリプロピレンは、TREFによる溶出曲線のピーク温度および該溶出温度差が上記した範囲を満足するものであれば、本発明の効果を十分に達成することができるが、さらに、本発明のポリプロピレン組成物を用いて得られた延伸フィルムの熱収縮率等の耐熱性および剛性を勘案すると、積算溶出量が90重量%となる溶出温度(T(90))が110℃以上であることが好ましく、さらには115℃以上であることがより好ましい。
【0018】
また、本発明の結晶性ポリプロピレンの溶出温度20℃以下での溶出量(a)は、成形して得られる延伸フィルムの熱収縮率等の耐熱性やブロッキング防止の点から5重量%以下であることが好ましく、さらには3.5重量%以下であることがより好ましい。なお、溶出温度20℃以下での溶出量は、溶出温度20℃での積算溶出量(重量%)であり、20℃以下において溶剤に可溶のポリマー成分の量である。
【0019】
本発明に用いられる結晶性ポリプロピレンは、前記した特性を有していれば、プロピレンの単独重合体であってもよく、また、本発明の効果を阻害しない範囲で共重合成分としてプロピレン以外のα−オレフィンが含まれていてもよい。プロピレン以外のα−オレフィンとしては、エチレン、ブテン−1、ペンテン−1、3−メチル−1−ブテン、ヘキセン−1、3−メチル−1−ペンテン、4−メチル−1−ペンテン、ヘプテン−1、オクテン−1、ノネン−1、デセン−1、ドデセン−1、テトラデセン−1、ヘキサデセン−1、オクタデセン−1、エイコセン−1等の炭素数2〜20のα−オレフィンを例示することができる。これらのα−オレフィンは、共重合成分として単独もしくは複数の組み合わせで含まれていてよい。該α−オレフィンが含有される割合は、その種類により異なるが、一般には、共重合体中に占める割合で10モル%以下の範囲で選択することが好ましい。例えば、上記プロピレン以外のα−オレフィンがエチレンの場合には、TREFのピーク温度(Tp)を本発明の範囲とするために、共重合体中に占めるエチレン成分の割合を2.0モル%以下とすることが好ましい。
【0020】
本発明で使用される結晶性ポリプリピレンのアイソタクチックペンタッド分率は0.85以上であることが好ましい。なお、本発明でいうアイソタクチックペンタッド分率とは、A.ZambelliらによってMacromolecules,13,267(1980)に発表された13C−NMRスペクトルのピークの帰属に基づいて定量されたプロピレンユニット5個が連続して等しい立体配置をとる分率である。
【0021】
本発明で使用される結晶性ポリプロピレンの重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で表される分子量分布は特に制限されるものではないが、フィルム成形の場合を考えると溶融張力を増加させ加工性を向上させるためには3〜20であることが好ましい。なお、分子量分布はo−ジクロルベンゼンを溶媒としたゲルパーミエーションクロマトグラフ法(以下、GPCともいう。)で測定された値で、検量線は標準ポリスチレンで較正されたものが用いられる。
【0022】
本発明で使用される結晶性ポリプロピレンのメルトフローレイトは特に制限されるものではないが、各種の延伸フィルムへの成形性を勘案すると、通常は0.01〜100g/10分の範囲のものが使用され、さらに、0.1〜50g/10分の範囲であることが好ましい。
【0023】
本発明において、前記特性を有する結晶性ポリプロピレンの製造方法は特に限定されないが、一般には次のような方法を採用することが好ましい。例えば、異なる立体規則性の結晶性ポリプロピレンを重合し得る触媒成分を数種混合してプロピレンを重合する方法を挙げることができる。特に、固体状チタン触媒成分、有機アルミニウム化合物および立体規則性の異なる結晶性ポリプロピレンを与える電子供与体を2種以上混合してプロピレンを重合する方法を好適に採用することができる。この方法において、電子供与体は、プロピレンの重合において一般に知られているものを何等制限なく使用できるが、下記の一般式(I)および一般式(II)で示される有機ケイ素化合物を併用することが、結晶性分布の広い、すなわち、TREFによる溶出曲線より算出される90重量%溶出時と20重量%溶出時とにおける溶出温度の差(σ)が9〜17℃の範囲であるポリプロピレンを効率よく得るために好ましい。
【0024】
【化1】
Figure 0003575865
【0025】
(但し、R、R及びRは同種または異種の炭化水素基であり、nは0または1である。)
前記した固体状チタン触媒成分は、プロピレンの重合に使用されることが公知の化合物をなんら制限なく用いることができる。特に、チタン、マグネシウム及びハロゲンを成分とする触媒活性の高い固体状チタン触媒成分が好適である。このような触媒成分は、ハロゲン化チタン、特に四塩化チタンを種々のマグネシウム化合物、特に塩化マグムシウムに担持させたものとなっている。
【0026】
有機アルミニウム化合物は、プロピレンの重合に使用されることが公知の化合物をなんら制限なく採用できる。例えば、トリメチルアルミニウム、トリエチルアルミニウム、トリ−n−プロピルアルミニウム、トリ−n−ブチルアルミニウム、トリ−イソブチルアルミニウム、トリ−n−ヘキシルアルミニウム、トリ−n−オクチルアルミニウム、トリ−n−デシルアルミニウム等のトリアルキルアルミニウム類;ジエチルアルミニウムモノクロライド等のジエチルアルミニウムモノハライド類;メチルアルミニウムセスキクロライドエチルアルミニウムジクロライド等のアルキルアルミニウムハライド類などが挙げられる。他にモノエトキシジエチルアルミニウム、ジエトキシモノエチルアルミニウム等のアルコキシアルミニウム類を用いることができる。なかでもトリエチルアルミニウムが最も好ましい。有機アルミニウム化合物の使用量は固体状チタン触媒成分中のチタン原子に対しアルミニウム/チタン(モル比)で10〜1000であることが好ましく、さらに50〜500であることが好ましい。
【0027】
前記一般式(I)および一般式(II)で示される有機ケイ素化合物において、R、RおよびRで示される炭化水素基は、鎖状、分枝状、環状の脂肪族炭化水素基、または芳香族炭化水素基を挙げることができ、その炭素数は特に制限されない。好適な炭化水素基を例示すると、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、s−ブチル基、t−ブチル基、ペンチル基、ヘキシル基等の炭素数1〜6のアルキル基;ビニル基、プロペニル基、アリル基等の炭素数2〜6のアルケニル基;エチニル基、プロピニル基等の炭素数2〜6のアルキニル基;シクロペンチル基、シクロヘキシル基、シクロヘプチル基等の炭素数5〜7のシクロアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等の炭素数6〜12のアリール基等を挙げることができる。このなかで、Rは直鎖状のアルキル基、アルケニル基、アリール基であることが好ましい。また、nは0または1である。
【0028】
また、好適に用いられる有機ケイ素化合物を例示すると次の通りである。一般式(I)で示される有機ケイ素化合物としては、例えば、ジメチルジメトキシシラン、ジエチルジメトキシシラン、ジプロピルジメトキシシラン、ジビニルジメトキシシラン、ジアリルジメトキシシラン、ジ−1−プロペニルジメトキシシラン、ジエチニルジメトキシシラン、ジフェニルジメトキシシラン、メチルフェニルジメトキシシラン、シクロヘキシルメチルジメトキシシラン、ターシャリーブチルエチルジメトキシシラン、エチルメチルジメトキシシラン、プロピルメチルジメトキシシラン、シクロヘキシルトリメトキシシラン、ジイソプロピルジメトキシシラン、ジシクロペンチルジメトキシシラン、ビニルトリメトキシシラン、フェニルトリメトキシシラン、アリルトリメトキシシラン等を挙げることができる。
【0029】
一般式(II)で示される有機ケイ素化合物としては、例えば、テトラエトキシシラン、メチルトリエトキシシラン、エチルトリエトキシシラン、ビニルトリエトキシシラン、ブチルトリエトキシシラン、ペンチルトリエトキシシラン、イソプロピルトリエトキシシラン、1−プロペニルトリエトキシシラン、イソプロペニルトリエトキシシラン、エチニルトリエトキシシラン、オクチルトリエトキシシラン、ドデシルトリエトキシシラン、フェニルトリエトキシシラン、アリルトリエトキシシラン等を挙げることができる。
【0030】
一般式(I)および一般式(II)で示される有機ケイ素化合物の使用量は、それぞれ固体状チタン触媒成分のTi原子に対しSi/Ti(モル比)で0.1〜500が好ましく、さらには1〜100であることが好ましい。また、これら二種の有機ケイ素化合物の使用比率はモル比で(I):(II)=1:5〜1:25であることが必要であり、1:10〜1:20であることが好ましい。即ち、有機ケイ素化合物(I)と(II)の上記使用比率における有機ケイ素化合物(II)の量が25より多い場合には、得られた結晶性ポリプロピレンのTREFによる溶出曲線のピーク温度(Tp)が105℃未満となる傾向があり、本発明において特定される結晶性ポリプロピレンを得ることが困難となる。また、得られる結晶性ポリプロピレンの積算溶出量が90重量%となるときの温度T(90)も110℃未満となり、更に溶出温度20℃以下での溶出量(a)が5重量%を越える結果、得られる成形体、特に延伸フィルムの熱収縮率等の耐熱性が低下する傾向がある。
【0031】
また、有機ケイ素化合物(I)と(II)の上記使用比率における有機ケイ素化合物(II)の量が5よりも少ない場合には、得られた結晶性ポリプロピレンのTREFによる溶出曲線より算出される90重量%溶出時と20重量%溶出時とにおける溶出温度の差(σ)が9℃未満となる傾向があり、成形時の延伸性が低下し、その結果、フィルムの厚薄精度の悪化やフィルムの延伸破れが発生する。
【0032】
尚、前記した本発明に使用する結晶性ポリプロピレンの製造方法においては、TREFによる溶出曲線のピーク温度(Tp)が125℃を越える結晶性ポリプロピレンや、TREFによる溶出曲線より算出される90重量%溶出時と20重量%溶出時とにおける溶出温度の差(σ)が17℃を越える結晶性ポリプロピレンの生成量を効果的に抑えることが可能である。
【0033】
上記した各成分の添加順序は特に限定されず、一般式(I)および一般式(II)で示される有機ケイ素化合物を同時に混合供給しても、または別々に供給してもよい。またこれらは、予め有機アルミニウム化合物と接触あるいは混合した後に供給することもできる。
【0034】
その他の重合条件は、本発明において特定する結晶性ポリプロピレンの特性が得られる範囲において、任意に変更可能であるが一般には次の条件が好ましい。即ち、重合温度は20〜200℃、好ましくは50〜150℃であり、分子量調節剤として水素を共存させることもできる。また、重合は、スラリー重合、無溶媒重合および気相重合等が適用でき、回分式、半回分式、連続式のいずれの方法でもよく、更に重合を条件の異なる2段階に分けて行うこともできる。また、プロピレンの重合前に、プロピレンや他のモノマーの予備重合を行なってもよい。更に、上記した重合を多段に行ってもよい。
【0035】
本発明のポリプロピレン組成物においては、上記した方法で得られた結晶性ポリプロピレンを単独で使用することが一般的であるが、他の結晶性ポリプロピレンをブレンドして用いることもできる。勿論、上記した方法で得られた結晶性ポリプロピレン同士をブレンドすることもできる。
【0036】
更には、メタロセン化合物と有機アルミニウム化合物からなるメタロセン系触媒を用いるポリプロピレンの重合方法においても、異なる立体規則性の結晶性ポリプロピレンを重合し得る2種類以上の触媒成分を併用して本発明において特定された結晶性分布の広い結晶性ポリプロピレンを得る方法が適用される。
【0037】
本発明のポリプロピレン組成物において使用される結晶核剤は、有機系結晶核剤、無機系結晶核剤、高分子系結晶核剤等の結晶性ポリプロピレンに使用される結晶核剤を何等制限なく用いることができる。中でも高分子系結晶核剤が得られる成形体、特に延伸フィルムの透明性、写像性改良効果が大きく、かつ、延伸フィルムからのブリードアウトが無いため好ましく使用される。
【0038】
本発明で使用される結晶核剤の結晶性ポリプロピレンへの含有量は、該結晶性ポリプロピレンに対して、0.00001〜1重量部の範囲である。即ち、結晶核剤の含有量が0.00001重量部未満の場合は、得られる成形体の透明性、写像性改良効果が見られない。逆に1.0重量部を越えた場合は、延伸フィルムとした場合の溶断シール性が低下したり、成形性が低下し、例えば延伸フィルムの成形の際にシートの表面荒れが発生して写像性が低下したり、フィルムの厚薄精度の悪化や延伸破れ等が発生する。
【0039】
尚、結晶核剤の含有量のより好ましい範囲は結晶核剤の種類により多少異なるため、後に示すように、それぞれの結晶核剤毎に決定することが好ましい。
【0040】
本発明で使用される上記の有機系結晶核剤を具体的に例示すれば、ジベンジリデンソルビトール、ジメチルベンジリデンソルビトール等のソルビトール誘導体、p−tert−ブチル安息香酸ナトリウム、β−ナフトエン酸ナトリウム、1,2−シクロヘキサンジカルボン酸ナトリウム、ジ安息香酸アルミニウム、塩基性ジ−p−tert−ブチル安息香酸アルミニウム等の芳香族カルボン酸のナトリウム塩やアルミニウム塩等の芳香族カルボン酸金属塩、芳香族カルボン酸、リン酸2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)ナトリウム等の芳香族リン酸金属塩等を挙げることができる。該有機系結晶核剤の結晶性ポリプロピレンへの含有量は、該結晶性ポリプロピレン100重量部に対して、0.005〜1重量部の範囲、特に、0.01〜0.5重量部、、更に0.05〜0.3重量部であることが好ましい。
【0041】
本発明で使用される上記の無機系結晶核剤を具体的に例示すれば、タルク、マイカ等を挙げることができる。無機系結晶核剤の粒径は、フィシュアイの発生によるフィルム外観の悪化の観点から、平均粒径10μm以下のものが好ましく、6.0μm以下のものがさらに好ましい。無機系結晶核剤の結晶性ポリプロピレンへの好適な含有量は、結晶性ポリプロピレン100重量部に対して、0.005〜0.4重量部の範囲であり、特に、0.008〜0.2重量部であることが好ましく、さらに0.01〜0.1重量部であることがより好ましい。
【0042】
本発明で好適に使用される上記の高分子系結晶核剤としては、例えば、環状オレフィン重合体、含フッ素重合体、炭素数5以上の分岐α−オレフィン重合体、ビニルシクロアルカン重合体等を挙げることができる。
【0043】
上記環状オレフィン重合体は、重合性二重結合を環内に有するモノマーのその環構造を保持した重合体であり、炭素数4〜20個の環状オレフィンモノマーの単独重合体、上記環状オレフィンモノマー同士の共重合体、上記環状オレフィンモノマー50モル%以上と他のモノマー50モル%以下との共重合体が好適に使用できる。特に、本発明において好適に使用できる環状オレフィンモノマーを具体的に挙げると、シクロブテン、シクロペンテン、シクロペンタジエン、4−メチルシクロペンテン、4,4−ジメチルシクロペンテン、シクロヘキセン、4−メチルシクロヘキセン、4,4−ジメチルシクロヘキセン、1,3−ジメチルシクロヘキセン、1,3−シクロヘキサジエン、1,4−シクロヘキサジエン、シクロヘプテン、1,3−シクロヘプタジエン、1.3.5−シクロヘプタトリエン、シクロオクテン、1,5−シクロオクタジエン、シクロドデセン等を挙げることができる。また、これらの環状オレフィンの環にさらに直鎖もしくは分枝アルキル基が置換されてもよい。
【0044】
これら環状オレフィン重合体は一般に結晶性であり、結晶性の程度を表す結晶化度が高いほど透明化効果および透視性向上効果が高くなるという傾向にあるため、結晶化度は10%以上であることが好ましく、30%以上であることがより好ましく、さらに50%以上であることが最も好ましい。このような高い結晶化度の環状オレフィン重合体としては、前記した環状オレフィンモノマーの単独重合体、または、環状オレフィンモノマー同士もしくはα−オレフィンとのブロック共重合体を好適に使用できる。また、これら環状オレフィン重合体の重合方法は、本発明の効果が損なわれない限り特に制限されず、例えば、以下のような重合方法が用いられる。まず、触媒は、一般に周期律表第IV族の遷移金属を用いるメタロセン化合物とメチルアルミノキサンまたはアルキルアルミニウムもしくはアルキルアルミニウムハライドの共存系とからなるメタロセン系触媒、バナジウム系触媒、三塩化チタンや四塩化チタンを塩化マグネシウム等のマグネシウム化合物に担持させたチタン系触媒、アニオン重合触媒、ラジカル重合触媒等が挙げられ、これらはそれぞれ単独または組み合わせて使用されてもよい。これらの中でも好適な触媒としては、メタロセン系触媒、バナジウム系触媒、チタン系触媒である。重合のさせ方としては、気相重合、溶液重合、バルク重合など特に限定されない。
【0045】
上記環状オレフィン重合体の結晶性ポリプロピレンへの含有量は、該結晶性ポリオレフィン100重量部に対して、0.00001〜0.1重量部の範囲であり、特に、0.00005〜0.05重量部であることが好ましく、更に0.0001〜0.02重量部であることがより好ましい。
【0046】
上記の炭素数5以上の分岐α−オレフィン重合体は、重合性二重結合を有する分岐α−オレフィンモノマーの重合体であり、炭素数5以上の分岐α−オレフィンモノマーの単独重合体、上記分岐α−オレフィンモノマー同士の共重合体、上記分岐α−オレフィンモノマー50モル%以上と他のモノマー50モル%以下との共重合体が好適に使用できる。特に本発明において好適に使用できる分岐α−オレフィンモノマーは炭素数5〜10のものであり、具体的には、3−メチル−1−ブテン、3−メチル−1−ペンテン、3−エチル−1−ペンテン、4−メチル−1−ペンテン、4−メチル−1−ヘキセン、4,4−ジメチル−1−ヘキセン、4,4−ジメチル−1−ペンテン、4−エチル−1−ヘキセン、3−エチル−1−ヘキセン等を挙げることができる。
【0047】
また、上記のビニルシクロアルカン重合体は、重合性二重結合を有するビニルシクロアルカンモノマーの重合体であり、シクロアルカン構造が主鎖からペンダント状に結合している重合体である。ビニルシクロアルカンモノマーの単独重合体、上記ビニルシクロアルカンモノマー同士の共重合体、上記ビニルシクロアルカンモノマー50モル%以上と他のモノマー50モル%以下との共重合体が好適に使用できる。特に本発明において好適に使用できるビニルシクロアルカンモノマーは、具体的には、ビニルシクロブタン、ビニルシクロペンタン、ビニル−3−メチルシクロペンタン、ビニルシクロヘキサン、ビニル−3−メチルシクロヘキサン、ビニルノルボルナン等を挙げることができる。
【0048】
これら炭素数5以上の分岐α−オレフィン重合体およびビニルシクロアルカン重合体は一般に結晶性であり、結晶性の程度を表す結晶化度が高いほど透明化効果及び写像性向上効果が高くなるという傾向にあるため、結晶化度は10%以上であることが好ましく、30%以上であることがより好ましく、さらに40%以上であることが最も好ましい。このような高い結晶化度の分岐α−オレフィン重合体およびビニルシクロアルカン重合体としては、前記した分岐α−オレフィンモノマーやビニルシクロアルカンモノマーの単独重合体、または、炭素数5以上の分岐α−オレフィンモノマー同士、ビニルシクロアルカン同士もしくは他のα−オレフィンとのブロック共重合体を好適に使用できる。
【0049】
上記の炭素数5以上の分岐α−オレフィン重合体およびビニルシクロアルカン重合体の重合方法は特に制限されないが、例えば、以下のような重合方法が好適に用いられる。まず、好適な触媒は、三塩化チタン、四塩化チタンや四塩化バナジウムを塩化マグネシウム等のマグネシウム化合物に担持させたチタン系触媒、バナジウム系触媒、一般に周期律表第IV族の遷移金属を用いるメタロセン化合物とメチルアルミノキサンまたはアルキルアルミニウムもしくはアルキルアルミニウムハライドの共存系とからなるメタロセン系触媒等が挙げられ、これらはそれぞれ単独または組み合わせて使用されてもよい。重合方法としては、気相重合、溶液重合、バルク重合など特に限定されない。炭素数5以上の分岐α−オレフィン重合体およびビニルシクロアルカン重合体の結晶性ポリプロピレンへの含有方法は、結晶性ポリプロピレンの重合に先だって、予め予備重合によって炭素数5以上の分岐α−オレフィンモノマーまたはビニルシクロアルカンモノマーを重合した後、プロピレンの単独重合またはプロピレンと他のα−オレフィンとの共重合を行うことによってポリプロピレン分子鎖中に結晶性高分子構造部分を含有せしめポリプロピレン組成物とする方法が特に好ましい。
【0050】
上記炭素数5以上の分岐α−オレフィン重合体の結晶性ポリプロピレンへの含有量は、該結晶性ポリプロピレン100重量部に対して、0.0001〜1重量部の範囲であれば良いが、特に、0.001〜0.5重量部であることが好ましく、更に0.005〜0.2重量部であることがより好ましい。また、上記ビニルシクロアルカン重合体の結晶性ポリプロピレンへの含有量は、該結晶性ポリプロピレン100重量部に対して、0.00001〜0.1重量部の範囲であり、特に0.00005〜0.05重量部であることが好ましく、更に0.0001〜0.02重量部であることがより好ましい。
【0051】
前記の含フッ素重合体は、含フッ素モノマーの単独重合体、含フッ素モノマー同士の共重合体、含フッ素モノマーと炭化水素系モノマー、特にα−オレフィンとの共重合体等が使用できる。そのうち、好適に使用できる含フッ素重合体を具体的に挙げると、例えば、テトラフルオロエチレン重合体、1−フルオロエチレン重合体、1,1−ジフルオロエチレン重合体、トリフルオロエチレン重合体、1−クロロ−2,2−ジフルオロエチレン重合体、クロロトリフルオロエチレン重合体、ヘキサフルオロプロピレン重合体、ヘキサフルオロプロピレンオキサイオキサイド重合体、テトラフルオロエチレン−メチルビニルエーテル共重合体、トリフルオロエチレン−メチルビニルエーテル共重合体、テトラフルオロエチレン−パーフルオロビニルエーテル共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体等を挙げることができる。
【0052】
上記含フッ素重合体は一般に結晶性であり、結晶性の程度を表す結晶化度が高いほど透明化効果及び写像性向上効果が高くなるという傾向にあるため、結晶化度は50%以上であることが好ましく、更に70%以上であることがより好ましい。また、含フッ素重合体の粒子径は特に制限されないが、良好な透明性と写像性を有する延伸フィルムを得るためには、平均一次粒子径は2μm以下であることが好ましく、さらに1μm以下であることがより好ましい。
【0053】
上記の含フッ素重合体の結晶性ポリプロピレンへの好ましい含有量は、該結晶性ポリプロピレン100重量部に対して、0.00001〜0.1重量部の範囲が選択され、特に、0.0001〜0.05重量部であることが好ましく、さらに0.001〜0.02重量部であることがより好ましい。
【0054】
本発明における結晶核剤の結晶性ポリプロピレンへの混合方法は特に制限されず、種々の混合方法を採用することができる。具体的には、結晶核剤を結晶性ポリプロピレンに添加して、一軸押出機、二軸押出機等のスクリュー押出混練機、バンバリーミキサー、コンティニュアスミキサー、ミキシングロール等を用いて混合する方法、結晶核剤が環状オレフィン重合体、炭素数5以上の分岐α−オレフィン重合体、ビニルシクロアルカン重合体等の高分子系結晶核剤の場合、更に好ましい方法としては、高分子系結晶核剤を予め予備重合させた後、プロピレンの単独重合またはプロピレンと他のα−オレフィンとの共重合を行うことによって高分子系結晶核剤を含有するポリプロピレン組成物とする方法等を挙げることができる。また、上記に示した様な方法で高分子系結晶核剤を高濃度で含有する組成物を得た後、該組成物をマスターバッチとして他の結晶性ポリプロピレンを用いて、希釈倍率2〜1000倍の範囲で希釈(高分子系結晶核剤含有量を0.5〜0.001倍に希釈)することにより目的の高分子系結晶核剤含有量とすることができる。マスターバッチの希釈倍率は一般に20倍程度であるが、本発明においては、マスターバッチ濃度にもよるが100倍以上のかなり大きな希釈倍率でも延伸フィルムの透明性、写像性を十分に改良することができる。
【0055】
本発明のポリプロピレン組成物には、必要に応じて酸化防止剤、塩素捕捉剤、耐熱安定剤、帯電防止剤、ブロッキング防止剤、防曇剤、紫外線吸収剤、滑剤、顔料、他の樹脂やフィラー等の添加剤が効果の阻害されない限り配合されてもよい。
【0056】
本発明のポリプリピレン組成物はあらゆる成形体の製造に使用することができ、優れた透明性、剛性等の性質を発揮するが、特に、かかる本発明のポリプロピレン組成物により延伸フィルムを成形した場合に顕著な効果を発揮する。
【0057】
本発明のポリプロピレン延伸フィルムの厚さは特に制限されないが、通常は二軸延伸フィルムの場合3〜150μm、一軸延伸フィルムの場合10〜254μmであることが好ましい。本発明のポリプロピレン延伸フィルムは、少なくとも一軸方向に延伸されている。もちろん二軸方向に延伸されていてもよい。延伸倍率は特に制限されないが、一軸方向に4〜10倍であることが一般的であり、二軸延伸の場合はそれに直角な方向に4〜15倍の範囲で延伸されていることが一般的である。
【0058】
本発明のポリプロピレン延伸フィルムは、良好な溶断シール性と成形性を得るためには、面配向指数が1以下であることが好ましく、0.5〜0.9の範囲であることがより好ましく、更に0.6〜0.8であることが最も好ましい。 上記の面配向指数は、本発明のポリプロピレン組成物を用いることにより達成することが可能であり、その組成の範囲内で配合比を変えることにより適宜調節することが可能である。
【0059】
本発明でいう面配向指数とは、X線回折法によって求められるポリプロピレン結晶010面の延伸フィルム面に平行な面への面配向の程度を表す指標である。詳しくは、ポリプロピレン延伸フィルムをフィルム面に垂直な軸を中心に高速で回転させながら、フィルム面に垂直な方向よりX線を入射させて回折強度を測定し、得られたX線回折強度曲線を非晶質ピークと各結晶質ピークにピーク分離を行ない、ポリプロピレン結晶(α晶)からの111反射(2θ=21.4゜)と040反射(2θ=17.1゜)のピーク強度の比より下記式で求められる。
【0060】
〔面配向指数〕=log{I(111)/I(040)}
但し、I(111) :111反射のピーク強度(counts)
I(040) :040反射のピーク強度(counts)
図3は、後述する実施例1で成形したポリプロピレン延伸フィルムのX線回折曲線のピーク分離結果であり、A−Bが I(040)で511countsであり、C−DがI(111)で2664countsである。したがって、この場合の面配向指数はlog(2664/511)で0.717となる。
【0061】
本発明のポリプロピレン延伸フィルムの片面あるいは両面には、必要に応じてコロナ放電処理等の表面処理が施されてもよい。さらに、ヒートシール性等の機能を付与する目的で片面あるいは両面に本発明で使用される結晶性ポリプロピレンよりも融点の低い他の樹脂よりなる層が積層されてもよい。他の樹脂の積層方法は特に制限されないが、共押出し法、ラミネート法等が好適である。
【0062】
本発明のポリプロピレン延伸フィルムの製造方法は、公知の方法を何等制限なく採用することができる。例えば、テンター法による逐次二軸延伸法によって延伸フィルムを製造する方法としては、上記のポリプロピレン組成物をTダイ法、インフレーション法等でシートあるいはフィルムに成形した後、縦延伸装置に供給し、加熱ロール温度120〜170℃で3〜10倍縦延伸し、つづいてテンターを用いてテンター温度130〜180℃で4〜15倍横延伸する方法が好適である。上記の成形条件は特に制限されないが、延伸フィルムの面配向指数を小さくして良好な溶断シール性のフィルムを得るためには、縦延伸において145〜170℃で3〜5倍、横延伸において155〜180℃で4〜12倍延伸することが好ましい。さらに、必要に応じて横方向に0〜25%の緩和を許しながら80〜180℃で熱処理する方法を挙げることができる。もちろん、これらの延伸の後に再び延伸してもよく、また縦延伸において多段延伸、圧延等の延伸法を組み合わせることができる。また、一軸のみの延伸によっても延伸フィルムとすることができる。
【0063】
【発明の効果】
本発明のポリプロピレン組成物は、特に、成形される延伸フィルムの透明性、写像性、溶断シール性、熱収縮率等の耐熱性などが著しく改良され、且つ、延伸フィルム成形の際には、延伸過程において延伸ムラによる厚薄精度の悪化や延伸破れ等の起こらないという成形性の優れたポリプロピレン組成物であり、その工業的な価値は極めて高いものである。
【0064】
【実施例】
本発明をさらに具体的に説明するために、以下に実施例および比較例を掲げて説明するが、本発明はこれらの実施例に限定されるものではない。尚、以下の実施例および比較例で得られたポリプロピレン組成物および延伸フィルムの評価は次の方法にて行なった。
【0065】
(1)メルトフローレイト(MFR)
JIS K 7210に準じて測定した。
【0066】
(2)分子量分布(Mw/Mn)
センシュー科学社製の高温GPC装置SSC−7100を用い、次の条件で測定した。
【0067】
溶媒 :オルトジクロルベンゼン
流速 :1.0ml/分
カラム温度:145℃
検出機 :高温示差屈折検出器
カラム :昭和電工社製「SHODEX UT」 807,806M,806M,802.5の4本を直列につないで使用
試料濃度 :0.1重量%
注入量 :0.50ml
(3)ペンタッド分率
日本電子社製のJNM−GSX−270(13C−核共鳴周波数67.8MHz)を用い、次の条件で測定した。
【0068】
測定モード: H−完全デカップリング
パルス幅 : 7.0マイクロ秒(C45度)
パルス繰り返し時間: 3秒
積算回数 : 10000回
溶媒 :オルトジクロルベンゼン/重ベンゼンの混合溶媒(90/10容量%)
試料濃度 : 120mg/2.5ml溶媒
測定温度 : 120℃
この場合、ペンタッド分率は13C−NMRスペクトルのメチル基領域における分裂ピークの測定により求めた。また、メチル基領域のピークの帰属はA.Zambelli et al[Macromolecules 13, 267(1980)]によった。
【0069】
(4)温度上昇溶離分別法によるピーク温度(Tp)、90重量%溶出時と20重量%溶出時とにおける溶出温度の差(σ)、積算溶出量が90重量%となる溶出温度(T(90))、および、溶出温度20℃以下での溶出量(a)
センシュー科学社製の自動TREF装置SSC−7300ATREFを用い、次の条件で測定した。
【0070】
溶媒 : オルトジクロルベンゼン
流速 : 150ml/時間
昇温速度: 4℃/時間
検出機 : 赤外検出器
測定波数: 3.41μm
カラム : センシュー化学社製「パックドカラム30φ」、30mmφ×300mm
濃度 : 1g/120ml
注入量 : 100ml
この場合、カラム内に試量溶液を145℃で導入した後、2℃/時間の速度で10℃まで徐冷して試料ポリマーを充填剤表面に吸着させた後、カラム温度を上記条件で昇温することにより、各温度で溶出してきたポリマー濃度を赤外検出器で測定した。
【0071】
(5)面配向指数
日本電子社製のX線回折装置JDX−3500を用い、次の条件で測定した。
【0072】
ターゲット : 銅(Cu−Kα線)
管電圧−管電流 : 40kV−400mA
X線入射法 : 垂直ビーム透過法
単色化 : グラファイトモノクロメーター
発散スリット : 0.2mm
受光スリット : 0.4mm
検出機 : シンチレーションカウンター
測定角度範囲 : 9.0〜31.0゜
ステップ角度 : 0.04゜
計数時間 : 4.0秒
試料回転数 : 120回転/分
この場合、延伸フィルムを20mm×20mmに切り出し、これを60枚重ねて厚さ約3mmとして、広角ゴニオメーターに取り付けた透過法回転試料台に装着して測定した。ピーク分離は回折角(2θ)9〜31゜の範囲で空気散乱等によるバックグラウンドを除いた後、ガウス関数とローレンツ関数を用いた一般的なピーク分離法によって非晶質ピークと各結晶質ピークに分離した。面配向指数は前述した方法で040反射と111反射のピーク強度より算出した。
【0073】
(6)ヘイズ
JIS K 6714に従い測定した。
【0074】
(7)写像値
スガ試験機社製の写像性測定機を用い、光学くし0.125mmを使い、くし方向を延伸フィルムの横延伸方法に平行にし写像値を測定した。
【0075】
(8)溶断シール強度
共栄社製PP−500型、OPPフィルム用溶断刃を取り付けた溶断シール機を用い、溶断シール温度400℃、製袋速度100枚/分の条件で袋寸法250mm×300mmの袋を製袋した。袋の溶断シール部の中央を15mm幅で200mmの長さに切り出し、島津製作所社製オ−トグラフを用いて100mm/秒で引張試験を行ない溶断シール部の破断強度および破断伸度を測定した。これを袋の両側の溶断シール部について各10回行ない、平均値より溶断シール強度(kgf)、破断伸度(%)を評価した。
【0076】
(9)熱収縮率
JIS C 2318に従い測定した。
【0077】
実施例1
(チタン化合物の調整)
無水塩化マグネシウム9.5g、デカン100ml及び2−エチルヘキシルアルコール47ml(300mモル)を125℃で2時間加熱攪拌した後、この溶媒中に無水フタル酸5.5g(37.5mモル)を添加し、125℃でさらに1時間攪拌混合を行ない、均一溶液とした。室温まで冷却した後、−20℃に保持された四塩化チタン400ml(3.6mモル)中に1時間にわたって全量滴下装入した。この混合液の温度を2時間かけて110℃に昇温し、110℃に達したところでジイソブチルフタレート5.4ml(25mモル)を添加し、これより2時間、同温度にて攪拌下保持した。2時間の反応終了後、熱時ろ過にて固体部を採取し、この固体部を2000mlの四塩化チタンにて再懸濁させた後、再び110℃で2時間、加熱反応を行なった。反応終了後、再び熱ろ過にて固体部を採取し、デカン及びヘキサンにて、洗液中に遊離のチタン化合物が検出されなくなるまで、充分洗浄した。以上の製造方法にて調整された固体状チタン触媒成分は、ヘプタンスラリーとして保存した。固体状チタン触媒成分の組成はチタン2.1重量%、塩素57.0重量%、マグネシウム18.0重量%及びジイソブチルフタレート21.9重量%であった。
【0078】
(予備重合)
窒素置換を施した10L重合器中に精製ヘキサン6000ml、トリエチルアルミニウム100mモル、固体状チタン触媒成分をチタン原子換算で10mモル装入した後、プロピレンを全体でチタン成分10gに対し50gとなるように1時間連続的に反応器に導入した。なおこの間温度は10℃に保持した。1時間後プロピレンの導入を停止し、反応器を窒素で充分に置換した。得られたスラリーの固体部分を精製ヘキサンで5回洗浄し、チタン含有ポリプロピレンを得た。
【0079】
(プロピレンの本重合)
窒素置換を施した内容量2000Lの重合器に、プロピレン500kgを装入し、トリエチルアルミニウム1.64モル、エチルトリエトキシシラン0.164モル、シクロヘキシルメチルジメトキシシラン0.0082モル、さらに水素10Lを装入した後、重合器の内温を65℃に昇温した。チタン含有ポリプロピレンをチタン原子で0.00656モル装入し、続いて重合器の内温を70℃まで昇温し、1時間のプロピレン重合を行なった。1時間後未反応のプロピレンをパージし、白色顆粒状の重合体を得た。得られた重合体は、70℃で減圧乾燥を行なった。全重合体の収量は166kgであった。
【0080】
得られたポリプロピレンのメルトフローレイト(MFR)、ペンタッド分率、分子量分布(Mw/Mn)、温度上昇溶離分別法(TREF)による溶出曲線のピーク温度(Tp)、90重量%溶出時と20重量%溶出時とにおける溶出温度の差(σ)、積算溶出量が90重量%となる温度(T(90))、溶出温度20℃以下での溶出量(a)を表1に示した。また、図1に溶出温度(℃)と溶出量(重量%)との関係を示す溶出曲線を、図2に溶出温度(℃)と積算溶出量(重量%)との関係を示す溶出曲線を示した。
【0081】
(シクロペンテンの重合)
2000mlの攪拌機を備えたガラス製反応器に窒素雰囲気下、トルエン500ml、メチルアルミノキサン500mモル及びジメチルシリレンビスインデニルジルコニウムジクロリド0.5mモルを導入し、系内を60℃まで昇温した。シクロペンテン100mlを加えることにより重合を開始し、60℃で4時間重合を行なった。生成固体を含む反応混合物を大量の酸性メタノール中に加え重合を停止した。得られた固体を瀘過、減圧下乾燥することにより63.5gのポリシクロペンテンを得た。X線回折により求めた結晶化度は64%であった。
【0082】
(造粒)
上記(プロピレンの本重合)で得たホモポリプロピレンのパウダー100重量部に、酸化防止剤として2,6−ジ−t−ブチルヒドロキシトルエンを0.1重量部、塩素捕捉剤としてステアリン酸カルシウムを0.1重量部、帯電防止剤としてステアリルジエタノールアミド0.3重量部と、結晶核剤として上記(シクロペンテンの重合)で得たポリシクロペンテン0.001重量部を添加し、ヘンシェルミキサーで5分間混合した後、スクリュー径65mmφの押出造粒機を用い、230℃で押し出し、ペレットを造粒し原料ペレットを得た。
【0083】
(二軸延伸フィルムの成形)
得られたポリプロピレン組成物ペレットを用いて以下の方法で二軸延伸フィルムの成形実験を行なった。ポリプロピレン組成物ペレットを、スクリュー径90mmφのTダイシート押出機を用い、280℃で押し出し、30℃の冷却ロールで厚さ2mmのシートを成形した。次いで、この原反シートをテンター方式の逐次二軸延伸装置を用いて、縦方向に150℃で4.2倍縦延伸し、引き続いて165℃のテンター内で横方向に機械倍率で10倍横延伸した後、8%緩和させて熱処理を行ない、厚さ50μmの二軸延伸ポリプロピレンフィルムを16m/分の速度で成形した。
【0084】
延伸ムラの厚薄精度への影響は、テンター巻取り機の間に設置した横河電機社製の赤外線厚み測定機WEB GAGEを用いて測定したフィルムの厚みパターンにより下記基準で評価した。
【0085】
◎: ±1.0μm未満
○: ±1.0μm以上1.5μ未満
△: ±1.5μm以上2.0μ未満
×: ±2.0μm以上
さらに、5時間、連続運転を行ない、テンターでのフィルム破れの回数を評価した。また、成形されたフィルムの片面には常法に従い30W 分/mのコロナ放電処理を施し、巻取った。得られたフィルムは40℃で3日間エージングした後、ヘイズ(透明性)、写像値(写像性)、面配向指数、溶断シール強度(溶断シール性)、熱収縮率(耐熱性)の測定を行なった。その結果を表2に示した。また、図3に延伸フィルムのX線回折曲線のピーク分離の結果を示した。
【0086】
実施例2,3
実施例1と同様のホモポリプロピレンを用い、実施例1で得たポリシクロペンテンを表1の配合量としたこと以外は実施例1と同様に行なった。その結果を表1、表2に示した。
【0087】
比較例1
ポリシクロペンテン(結晶核剤)を添加せずに実施例1と同様に行なった。その結果を表1、表2に示した。
【0088】
比較例2,3
実施例1と同様のホモポリプロピレンを用い、実施例1で得たポリシクロペンテンを表1の配合量としたこと以外は実施例1と同様に行なった。その結果を表1、表2に示した。
【0089】
比較例4
有機ケイ素化合物としてシクロヘキシルメチルジメトキシシラン0.164モルを単独で用いてプロピレンを単独重合したこと以外は実施例1と同様に行なった。その結果を表1、表2に示した。
【0090】
比較例5
プロピレンの本重合において、エチレン成分含有量0.5モル%のエチレンとプロピレンとのランダムコポリマーを重合したこと以外は実施例1と同様に行なった。その結果を表1、表2に示した。
【0091】
比較例6
有機ケイ素化合物としてエチルトリエトキシシラン0.164モルを単独で用いてプロピレンを単独重合したこと以外は実施例1と同様に行なった。その結果を表1、表2に示した。
【0092】
実施例4,5
トリエチルアルミニウムの使用量を3.50モル、有機ケイ素化合物としてシクロヘキシルメチルジメトキシシラン0.013モルとエチルトリエトキシシラン0.262モルを用いた(実施例4)こと、また、トリエチルアルミニウムは上記と同量で、有機ケイ素化合物としてシクロヘキシルメチルジメトキシシラン0.066モルとエチルトリエトキシシラン0.656モルを用いた(実施例5)こと以外は実施例1と同様にしてプロピレンを単独重合し、実施例1と同様に行なった。その結果を表1、表2に示した。
【0093】
比較例7,8
有機ケイ素化合物としてシクロヘキシルメチルジメトキシシラン0.0033モルとエチルトリエトキシシラン0.099モルを用いた(比較例7)こと、およびシクロヘキシルメチルジメトキシシラン0.164モルとエチルトリエトキシシラン0.656モルを用いた(比較例8)こと以外は実施例4と同様にしてプロピレンを単独重合し、実施例1と同様に行なった。その結果を表1、表2に示した。
【0094】
【表1】
Figure 0003575865
【0095】
【表2】
Figure 0003575865
【0096】
実施例6,7
トリエチルアルミニウムの使用量を1.64モル、有機ケイ素化合物としてジイソプロピルジメトキシシラン0.0164モルとペンチルトリエトキシシラン0.164モルを用いた(実施例6)こと、ジフェニルジメトキシシラン0.0164モルとオクチルトリエトキシシラン0.164モルを用いた(実施例7)こと以外は実施例1と同様にしてプロピレンを単独重合し、実施例1と同様に行なった。その結果を表3、表4に示した。
【0097】
比較例9,10
有機ケイ素化合物としてジイソプロピルジメトキシシラン0.164モルを単独で用いた(比較例9)こと、また、ペンチルトリエトキシシラン0.164モルを単独で用いた(比較例10)こと以外は実施例6と同様にしてプロピレンを単独重合し、実施例1と同様に行なった。その結果を表3、表4に示した。
【0098】
実施例8
有機ケイ素化合物としてシクロヘキシルメチルジメトキシシラン0.0492モルとテトラエトキシシラン0.492モルを用いて実施例1と同様の方法で、エチレン成分含有量0.5モル%のエチレンとプロピレンとのランダムコポリマーを重合し、実施例1と同様に行なった。その結果を表3、表4に示した。
【0099】
実施例9
有機ケイ素化合物としてシクロヘキシルメチルジメトキシシラン0.0492モルとテトラエトキシシラン0.492モルを用いて実施例1と同様の方法で、ブテン−1成分含有量0.5モル%のブテン−1とプロピレンのランダムコポリマーを重合し、実施例1と同様に行なった。その結果を表3、表4に示した。
【0100】
実施例10
(シクロブテンの重合)
2000mlの攪拌機を備えたガラス製反応器に窒素雰囲気下、トルエン500ml、メチルアルミノキサン500mモル及びジメチルシリレンビスインデニルジルコニウムジクロリド0.5mモルを導入し、系内を60℃まで昇温した。シクロブテン200mlを加えることにより重合を開始し、室温で2時間重合を行なった。生成固体を含む反応混合物を大量の酸性メタノール中に加え重合を停止した。得られた固体を瀘過、減圧下乾燥することにより135gのポリシクロブテンを得た。X線回折により求めた結晶化度は68%であった。
【0101】
実施例8と同様の結晶性ポリプロピレンを用い、上記で得たポリシクロブテンを表3の配合量としたこと以外は実施例1と同様に行なった。結果を表3、表4に示した。
【0102】
実施例11
実施例10と同様の結晶性ポリプロピレンを用い、ポリシクロブテンを表3の配合量としたこと以外は実施例10と同様に行なった。その結果を表3、表4に示した。
【0103】
実施例12
実施例1と同様の方法で調製した固体状チタン触媒成分を用いて以下のように3−メチル−1−ブテンの予備重合を行なった。
【0104】
(3−メチル−1−ブテンの予備重合)
窒素置換を施した10L重合器中に精製ヘキサン6000ml、トリエチルアルミニウム100mモル、固体状チタン触媒成分をチタン原子換算で10mモル装入した後、3−メチル−1−ブテンを全体でチタン成分10gに対し80gとなるように2時間連続的に反応器に導入した。なお、この間温度は20℃に保持した。2時間後、3−メチル−1−ブテンの導入を停止し、反応器を窒素で充分に置換した。得られたスラリーの固体部分を精製ヘキサンで5回洗浄し、チタン触媒成分含有3−メチル−1−ブテン重合体を得た。このときの3−メチル−1−ブテン重合体の重量は72gであった。X線回折により求めた結晶化度は60%であった。
【0105】
(本重合)
窒素置換を施した内溶量2000Lの重合器に、プロピレン500kgを装入し、トリエチルアルミニウム1.64モル、有機ケイ素化合物としてシクロヘキシルメチルジメトキシシラン0.0492モルとテトラエトキシシラン0.492モル、さらに水素10Lを装入した後、重合器の内温を65℃に昇温した。チタン含有3−メチル−1−ブテンをチタン原子で0.00656モル装入し、続いて重合器の内温を70℃まで昇温し、1時間のプロピレン重合を行なった。1時間後未反応のプロピレンをパージし、白色顆粒状の重合体を得た。得られた重合体は、70℃で減圧乾燥を行なった。全重合体の収量は143kgであった。収量から求めた3−メチル−1−ブテン重合体含有ポリプロピレン中の3−メチル−1−ブテン重合体含有量は0.031重量部であった。また得られたポリプロピレンのMFR、ペンタッド分率、Mw/Mn、Tp、σ、T90、aの結果を表3に示した。
【0106】
上記で得た3−メチル−1−ブテン重合体(P−3MB−1)0.031重量部含有ポリプロピレンのパウダー100重量部に、酸化防止剤として2,6−ジ−t−ブチルヒドロキシトルエンを0.1重量部、塩素捕捉剤としてステアリン酸カルシウムを0.1重量部、帯電防止剤としてステアリルジエタノールアミド0.3重量部を添加し、実施例1と同様の方法でペレットを造粒し原料ペレットを得た。このポリプロピレン組成物ペレットを用いて実施例1と同様に延伸フィルム成形実験を行なった。その結果 を表3、表4に示した。
【0107】
実施例13,14
3−メチル−1−ブテンの予備重合において、3−メチル−1−ブテンの導入量と重合時間を変えた以外は実施例12と同様の方法で行ない、表3に示した3−メチル−1−ブテン重合体含有ポリプロピレンを得た。このとき得られた3−メチル−1−ブテン重合体の結晶化度は実施例12と同様60%であった。表3に示した3−メチル−1−ブテン重合体含有ポリプロピレンを用いた以外は実施例12と同様に行なった。その結果を表2に示した。
【0108】
比較例11,12
本重合において、表3に示した3−メチル−1−ブテン重合体含有量のポリプロピレンを重合した以外は実施例12と同様に行なった。その結果を表2に示した。
【0109】
比較例13
実施例12と同様のチタン含有3−メチル−1−ブテンを用い、本重合において、有機ケイ素化合物としてシクロヘキシルメチルジメトキシシラン0.164モルを単独で用いてプロピレンを単独重合したこと以外は実施例12と同様に行なった。その結果を表3、表4に示した。
【0110】
【表3】
Figure 0003575865
【0111】
【表4】
Figure 0003575865
【0112】
実施例15
(3−メチル−1−ペンテンの予備重合)
窒素置換を施した10L重合器中に精製ヘキサン6000ml、トリエチルアルミニウム100mモル、固体状チタン触媒成分をチタン原子換算で10mモル装入した後、3−メチル−1−ペンテンを全体でチタン成分10gに対し100gとなるように2時間連続的に反応器に導入した。なお、この間温度は20℃に保持した。2時間後、3−メチル−1−ペンテンの導入を停止し、反応器を窒素で充分に置換した。得られたスラリーの固体部分を精製ヘキサンで5回洗浄し、チタン含有3−メチル−1−ペンテン重合体を得た。このときの3−メチル−1−ペンテン重合体の重量は83gであった。X線回折により求めた結晶化度は58%であった。
【0113】
上記で得たチタン含有3−メチル−1−ペンテン重合体を用いて、実施例8と同様の方法でプロピレンの本重合(プロピレン−エチレン共重合)を行ない、表5に示した3−メチル−1−ペンテン重合体(P−3MP−1)含有量の結晶性ポリプロピレンを得た。この3−メチル−1−ペンテン重合体0.042重量部含有ポリプロピレンを用いたこと以外は実施例12と同様に行なった。結果を表5、表6に示した。
【0114】
実施例16
(ビニルシクロヘキサンの予備重合)
窒素置換を施した10L重合器中に精製ヘキサン6000ml、トリエチルアルミニウム100mモル、固体状チタン触媒成分をチタン原子換算で10mモル装入した後、ビニルシクロヘキサンを全体でチタン成分10gに対し100gとなるように2時間連続的に反応器に導入した。なお、この間温度は20℃に保持した。5時間後、ビニルシクロヘキサンの導入を停止し、反応器を窒素で充分に置換した。得られたスラリーの固体部分を精製ヘキサンで5回洗浄し、チタン含有ビニルシクロヘキサン重合体を得た。このときのビニルシクロヘキサン重合体の重量は59gであった。X線回折により求めた結晶化度は43%であった。
【0115】
上記で得たチタン含有ビニルシクロヘキサン重合体を用いて実施例8と同様の方法でプロピレンの本重合(プロピレン−エチレン共重合)を行ない、表5に示したビニルシクロヘキサン重合体(PVCH)含有量の結晶性ポリプロピレンを得た。このビニルシクロヘキサン重合体0.0005重量部含有ポリプロピレンを用いたこと以外は実施例12と同様に行なった。結果を表5、表6に示した。
【0116】
実施例17
実施例1で得たホモポリプロピレンのパウダー100重量部に、酸化防止剤として2,6−ジ−t−ブチルヒドロキシトルエンを0.1重量部、塩素捕捉剤としてステアリン酸カルシウムを0.1重量部、帯電防止剤としてステアリルジエタノールアミド0.3重量部と、テトラフルオロエチレン重合体(PEFE,旭ICI社製、商品名「フルオンルブリカントL−171J」、X線回折法結晶化度78.7%、平均一次粒子径0.2μm)0.003重量部を添加したこと以外は実施例1と同様に行なった。その結果を表5、表6に示した。
【0117】
実施例18,19
実施例17と同様のホモポリプロピレンを用い、テトラフルオロエチレン重合体を表5の配合量としたこと以外は実施例17と同様に行なった。その結果を表5、表6に示した。
【0118】
比較例14,15
実施例17と同様のホモポリプロピレンを用い、テトラフルオロエチレン重合体を表5の配合量としたこと以外は実施例17と同様に行なった。その結果を表5、表6に示した。
【0119】
比較例16
比較例4で得たホモポリプロピレンを用いたこと以外は実施例17と同様に行なった。その結果を表5、表6に示した。
【0120】
実施例20
実施例8で得た結晶性ポリプロピレン、テトラフルオロエチレン重合体(PEFE,旭ICI社製、商品名「フルオンルブリカントL−173J」、X線回折法結晶化度87.6%、平均一次粒子径0.2μm)を用い、表5の配合としたこと以外は実施例17と同様に行なった。その結果を表5、表6に示した。
【0121】
実施例21
実施例20と同様の結晶性ポリプロピレンを用い、実施例20で用いたテトラフルオロエチレン重合体を表5の配合量とした以外は実施例17と同様に行なった。その結果を表5、表6に示した。
【0122】
実施例22
本重合において、有機ケイ素化合物としてシクロヘキシルメチルジメトキシシラン0.0492モルとテトラエトキシシラン0.492モルを用いて実施例1と同様の方法で重合して得たプロピレンホモポリマーと、同様の方法で重合して得られたエチレン含有量1.0モル%のランダムコポリマーの重合パウダーをそれぞれ50重量%ずつブレンドして用い、実施例20で用いたテトラフルオロエチレン重合体を表5の配合量とした以外は実施例17と同様に行なった。その結果を表5、表6に示した。
【0123】
【表5】
Figure 0003575865
【0124】
【表6】
Figure 0003575865
【0125】
実施例23
実施例8で得た結晶性ポリプロピレン、結晶核剤としてジ(p−メチルベンジリデン)ソルビトール(Me−DBS)を用い、表7の配合としたこと以外は実施例17と同様に行なった。その結果を表7、表8に示した。
【0126】
実施例24
結晶核剤としてリン酸2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)ナトリウム(PTBPNa)を用い、表7の配合としたこと以外は実施例17と同様に行なった。その結果を表7、表8に示した。
【0127】
実施例25
結晶核剤としてジ−p−tert−ブチル安息香酸アルミニウム(Al−PTBBA)を用い、表7の配合としたこと以外は実施例17と同様に行なった。その結果を表7、表8に示した。
【0128】
比較例17
ジ−p−tert−ブチル安息香酸アルミニウムの添加量を表7の配合としたこと以外は実施例17と同様に行なった。その結果を表7、表8に示した。
【0129】
実施例26
結晶核剤として平均粒径4.2μmのタルクを用い、表7の配合としたこと以外は実施例17と同様に行なった。その結果を表7、表8に示した。
【0130】
実施例27
結晶核剤として平均粒径1.5μmのタルクを用い、表7の配合としたこと以外は実施例17と同様に行なった。その結果を表7、表8に示した。
【0131】
比較例18,19
平均粒径4.2μmのタルクの添加量を表7の配合としたこと以外は実施例17と同様に行なった。その結果を表7、表8に示した。
【0132】
実施例28
実施例7で得たホモポリプロピレンのパウダーを用い、以下の方法でヘプタン洗浄を行なった。
【0133】
(ヘプタン洗浄)
実施例7と同様のホモポリプロピレンのパウダー1kgに対して5L(約5倍量)のノルマルヘプタンを加え、60℃で1時間攪拌し洗浄を行なった。ノルマルヘプタンに不溶の固体成分を回収し、70℃で減圧乾燥を行なった。得られたポリプロピレンの特性を表7に示した。
【0134】
上記の方法で洗浄したホモポリプロピレンを用いたこと以外は実施例1と同様に行なった。その結果を表7、表8に示した。
【0135】
比較例20
比較例7で得たホモポリプロピレンを用い、実施例28と同様の方法で洗浄を行なったこと以外は実施例1と同様に行なった。その結果を表7、表8に示した。
【0136】
【表7】
Figure 0003575865
【0137】
【表8】
Figure 0003575865

【図面の簡単な説明】
【図1】実施例1の結晶性ポリプロピレンの溶出温度(℃)と溶出量(重量%)との関係を示す溶出曲線である。
【図2】実施例1の結晶性ポリプロピレンの溶出温度(℃)と積算溶出量(重量%)との関係を示す溶出曲線である。
【図3】実施例1のポリプロピレン延伸フィルムのX線回折およびそのピーク分離結果である。

Claims (2)

  1. (A)温度上昇溶離分別法による溶出曲線のピーク温度が105〜125℃、該溶出曲線より算出される90重量%溶出時と20重量%溶出時とにおける溶出温度の差が9〜17℃である結晶性ポリプロピレン100重量部、および(B)結晶核剤0.00001〜1重量部よりなることを特徴とするポリプロピレン組成物(但し、炭素数5以上の分岐α−オレフィン重合体1〜10000ppm、および、平均粒径が0.1〜10μmのタルク50〜4000ppmを、共に含む場合を除く)。
  2. 請求項1記載のポリプロピレン組成物よりなるポリプロピレン延伸フィルム。
JP09672595A 1995-04-21 1995-04-21 ポリプロピレン組成物 Expired - Lifetime JP3575865B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09672595A JP3575865B2 (ja) 1995-04-21 1995-04-21 ポリプロピレン組成物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09672595A JP3575865B2 (ja) 1995-04-21 1995-04-21 ポリプロピレン組成物

Publications (2)

Publication Number Publication Date
JPH08291236A JPH08291236A (ja) 1996-11-05
JP3575865B2 true JP3575865B2 (ja) 2004-10-13

Family

ID=14172718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09672595A Expired - Lifetime JP3575865B2 (ja) 1995-04-21 1995-04-21 ポリプロピレン組成物

Country Status (1)

Country Link
JP (1) JP3575865B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI974177A0 (fi) * 1997-11-07 1997-11-07 Borealis As Faergade polypropensammansaettningar
JP3707974B2 (ja) * 1998-12-16 2005-10-19 株式会社トクヤマ 二軸延伸ポリオレフィンフィルムおよびその製造方法
JP2002275327A (ja) * 2001-03-22 2002-09-25 Grand Polymer Co Ltd ポリプロピレン樹脂組成物および二軸延伸フィルム
US6562890B2 (en) * 2001-03-29 2003-05-13 Milliken & Company Disodium hexahydrophthalate salt compositions and nucleated polymers comprising such compositions
JP4509443B2 (ja) * 2001-09-28 2010-07-21 三井化学株式会社 α−オレフィン系重合体の製造方法
JP5132518B2 (ja) * 2008-10-27 2013-01-30 サン・トックス株式会社 熱成形用防汚性シート、防汚性成形体およびその製造方法
JP6414378B2 (ja) * 2012-08-09 2018-10-31 東洋紡株式会社 インモールドラベル用ポリプロピレンフィルム
JP6208445B2 (ja) * 2013-03-25 2017-10-04 興人フィルム&ケミカルズ株式会社 熱成形シート積層用ポリプロピレン系延伸フィルム
JP6553927B2 (ja) * 2015-04-10 2019-07-31 三井化学東セロ株式会社 二軸延伸ポリプロピレンフィルムおよびその製造方法
JP2022073267A (ja) 2020-10-30 2022-05-17 住友化学株式会社 プロピレン系重合体組成物、二軸延伸フィルム、および包装袋

Also Published As

Publication number Publication date
JPH08291236A (ja) 1996-11-05

Similar Documents

Publication Publication Date Title
JP5309377B2 (ja) ポリプロピレン樹脂組成物
US20050197456A1 (en) Sealing layer resin compositions
JP2006528726A5 (ja)
EP2630211A1 (en) Pressure sensitive adhesive with butene-1 copolymers
EP2504393B1 (en) Polyolefin compositions having improved sealability
EP1871832B1 (en) Biaxially oriented propylene polymer films
JP2000239462A (ja) プロピレン系樹脂組成物、その製造方法および用途
JP3603100B2 (ja) ポリプロピレン組成物
JP3575865B2 (ja) ポリプロピレン組成物
JP2018178107A (ja) プロピレン樹脂組成物及び射出成形体
JPH11254522A (ja) ポリプロピレンフィルム
WO2021025142A1 (ja) プロピレン系重合体組成物、無延伸フィルムおよび積層体
EP2445962B1 (en) Polyolefin compositions
JP5331281B2 (ja) 写像性の改良されたポリプロピレン系樹脂フィルム
JP3290293B2 (ja) ポリプロピレン樹脂および延伸フィルム
JP3580639B2 (ja) ポリプロピレン樹脂
JPH034371B2 (ja)
JP3107719B2 (ja) ポリプロピレン組成物
EP2583999A1 (en) Polyolefin compositions
JP2006056937A (ja) プロピレン系樹脂組成物および該樹脂組成物からなるフィルム
JP3151108B2 (ja) ポリプロピレン樹脂組成物およびポリプロピレン延伸フィルム
JP4774142B2 (ja) ポリオレフィン樹脂
WO2023117512A1 (en) Soft polyolefin composition
JP3338248B2 (ja) ポリプロピレン樹脂組成物
JP2878121B2 (ja) ポリプロピレンシートおよび延伸フィルム

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20040127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040706

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term