JP3574546B2 - 高周波可変利得増幅器 - Google Patents
高周波可変利得増幅器 Download PDFInfo
- Publication number
- JP3574546B2 JP3574546B2 JP12735197A JP12735197A JP3574546B2 JP 3574546 B2 JP3574546 B2 JP 3574546B2 JP 12735197 A JP12735197 A JP 12735197A JP 12735197 A JP12735197 A JP 12735197A JP 3574546 B2 JP3574546 B2 JP 3574546B2
- Authority
- JP
- Japan
- Prior art keywords
- bias voltage
- fet
- gate terminal
- resistance element
- frequency variable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Microwave Amplifiers (AREA)
- Control Of Amplification And Gain Control (AREA)
- Amplifiers (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Description
【発明の属する技術分野】
本発明は、例えばアレイアンテナのように多数の素子アンテナをそれぞれ所定の振幅で励振するために必要となるカスコード接続FETを用いた高周波可変利得増幅器に関し、特に利得変化時に生じる高周波信号の通過位相の変化を低減した高周波可変利得増幅器に関するものである。
【0002】
【従来の技術】
アレイアンテナのように多数の素子アンテナを用いるアンテナでは、素子アンテナの種類・配列及び励振の仕方により種々の機能が得られる特長があり、衛星通信や移動体通信などの需要拡大に伴ってその用途が拡大している。フェーズドアレイアンテナは、多数の素子アンテナをそれぞれ所定の振幅位相で励振するために、高周波信号の振幅を制御する高周波可変利得増幅器と高周波信号の通過位相を制御する移相器が必要となる。
【0003】
図11は、高周波可変利得増幅器と移相器を用いた送信用フェーズドアレイアンテナの構成を示す。21は入力端子、22は電力分配器、23,24,25,26は移相器、27,28,29,30は高周波可変利得増幅器、31,32,33,34はアンテナである。
入力端子21から入力された高周波信号は、電力分配器22で移相器23,24,25,26にそれぞれ分配され、所要の出力位相に調整される。次に、高周波可変利得増幅器27,28,29,30で所要の出力振幅に調整され、それぞれアンテナ31,32,33,34から出力される。
【0004】
この場合、高周波可変利得増幅器の利得を変化させた場合に増幅器内で信号の通過位相も変化すると、利得を変化させた場合にはその都度移相器による通過位相の微調整作業が必要となる。
図12は、従来のカスコード接続FETを用いた高周波可変利得増幅器の構成を示す。この高周波可変利得増幅器は、入力端子1、入力整合回路2、カスコード接続されたソース接地のFET3及びゲート接地のFET4、出力整合回路5、出力端子6を備える。
【0005】
入力端子1は、入力整合回路2を介してFET3のゲート端子に接続される。FET3は、ソース端子が接地され、ドレイン端子がFET4のソース端子に接続される。FET3のゲート端子には、ゲートバイアス電圧Vgが入力整合回路2を介して印加される。
FET4は、ゲート端子がキャパシタ7を介して接地され、ドレイン端子が出力整合回路5を介して出力端子6に接続される。FET4では、ゲート端子にゲートバイアス電圧Vcが印加され、ドレイン端子にドレインバイアス電圧Vdが出力整合回路5を介して印加される。キャパシタ7は、FET4のゲートを高周波帯で接地するために十分大きな容量値を有している。
【0006】
なお、入力整合回路2と出力整合回路5は、それぞれインダクタとキャパシタの組合せ回路である。したがって、入力整合回路2に印加されるゲートバイアス電圧Vgは、そのままFET3のゲート端子に加わり、出力整合回路5に印加されるドレインバイアス電圧Vdは、そのままFET4のドレイン端子に加わる。入力端子1から入力された高周波入力信号は、カスコード接続されたFET3及びFET4で順次増幅され、出力端子6から出力される。このとき、カスコード接続されたFET3及びFET4の両者とも飽和領域で動作するバイアス条件に設定した場合に大きな利得が得られる。この状態から利得を減少させるには、FET4のゲート端子に印加されるゲートバイアス電圧Vcを小さくし、ドレインバイアス電圧VdのうちFET3のドレイン端子にかかるドレインバイアス電圧配分Vd1を小さくしてFET3の相互コンダクタンスを小さくする動作を行えば良い。
【0007】
【発明が解決しようとする課題】
図13は、従来の高周波可変利得増幅器においてゲートバイアス電圧Vcを変化させた場合の小信号入力時の利得及び通過位相の変化の実測値を示す。FET3及びFET4は、両者ともゲート幅が300μmのGaAsMESFETであり、測定周波数はl.9GHzである。ドレインバイアス電圧Vdは、4Vであり、ゲートバイアス電圧Vgは、−lVで一定である。図13において、ゲートバイアス電圧Vcが0.75Vのときに利得が最大値(19dB)になり、このときの通過位相を基準にすると、ゲートバイアス電圧Vcを小さくした場合に利得が減少するとともに通過位相も遅れることがわかる。
【0008】
例えば、ゲートバイアス電圧Vcが−2.25Vのときに利得が−15dB、通過位相が−65゜になる。つまり、34dBの利得変化で65゜の位相変化が生じることになる。これは、ゲートバイアス電圧Vcを小さくした場合にFET3にかかるドレインバイアス電圧配分Vd1が小さくなり、FET3の動作点が飽和領域から線形領域に移動するため、増幅器内で高周波信号の通過位相の急激な変化が生じるからである。
【0009】
このため、従来のカスコード接続FETを用いた高周波可変利得増幅器においては、利得を変化させた場合に出力位相も大きく変化するため、利得を変化させた場合にはその都度移相器による通過位相の微調整作業が必要となるという問題点があった。
本発明の目的は、利得変化時に生じる高周波信号の通過位相の変化を低減し、例えばアレイアンテナのように多数の素子アンテナをそれぞれ所定の振幅で励振する場合に、移相器による微調整作業を不要にできる高周波可変利得増幅器を提供することにある。
【0010】
【課題を解決するための手段】
請求項1に記載の発明は、ソース接地の第1FETとゲート接地の第2FETとをカスコード接続した高周波可変利得増幅器において、第1FETのゲート端子に印加されるバイアス電圧Vgと第2FETのゲート端子に印加されるバイアス電圧Vcについて、あらかじめ実測して求めた高周波可変利得増幅器の小信号入力時での利得を変化させたときの通過位相の変化が最小となるバイアス電圧Vgとバイアス電圧Vcとの関係曲線に基づいて、その一方のバイアス電圧を他方のバイアス電圧の変化に連動して同方向へ変化させる電圧制御回路を備えることを特徴とする。
【0011】
即ち、電圧制御回路は、第1FETのゲート端子に印加されるバイアス電圧と第2FETのゲート端子に印加されるバイアス電圧との一方のバイアス電圧が例えば小さくなると、それに連動して他方のバイアス電圧を減少させる。これにより、利得変化時に生じる高周波信号の通過位相の変化を低減できる。
請求項2に記載の発明は、請求項1に記載の高周波可変利得増幅器において、電圧制御回路は、第1FETのゲート端子と第2FETのゲート端子との間を接続する第1抵抗素子と、一端が第1FETのゲート端子に接続される第2抵抗素子とを備え、第2抵抗素子の他端に印加するバイアス電圧Vsと第2FETのゲート端子に印加するバイアス電圧Vcとでもって第1FETのゲート端子に印加するバイアス電圧Vgを発生する構成であり、第1および第2抵抗素子の値は、バイアス電圧Vgとバイアス電圧Vcの変化が、あらかじめ実測して求めた高周波可変利得増幅器の小信号入力時での利得を変化させたときの通過位相の変化が最小となるバイアス電圧Vgとバイアス電圧Vcとの関係曲線を直線近似した関係になるように設定されることを特徴とする。
【0012】
即ち、電圧制御回路は、第2FETのゲート端子に印加するバイアス電圧の変化に連動して第1FETのゲート端子に印加する適切なバイアス電圧を発生できる。
請求項3に記載の発明は、請求項1に記載の高周波可変利得増幅器において、電圧制御回路は、第1FETのゲート端子と第2FETのゲート端子との間を接続する第1抵抗素子と、一端が第2FETのゲート端子に接続される第2抵抗素子とを備え、第2抵抗素子の他端に印加するバイアス電圧Vsと第1FETのゲート端子に印加するバイアス電圧Vgとでもって第2FETのゲート端子に印加するバイアス電圧Vcを発生する構成であり、第1および第2抵抗素子の値は、バイアス電圧Vgとバイアス電圧Vcの変化が、あらかじめ実測して求めた高周波可変利得増幅器の小信号入力時での利得を変化させたときの通過位相の変化が最小となるバイアス電圧Vgとバイアス電圧Vcとの関係曲線を直線近似した関係になるように設定されることを特徴とする。
【0013】
即ち、電圧制御回路は、第1FETのゲート端子に印加するバイアス電圧の変化に連動して第2FETのゲート端子に印加する適切なバイアス電圧を発生できる。
請求項4に記載の発明は、請求項1に記載の高周波可変利得増幅器において、電圧制御回路は、ドレイン端子が第2FETのゲート端子に接続され、ソース端子が第1FETのゲート端子に接続され、ゲート端子が第1抵抗素子を介してドレイン端子に接続されるとともに、第2抵抗素子及び第3抵抗素子の直列回路を介してソース端子に接続される第3FETを備え、第3FETは、第2FETのゲート端子に印加するバイアス電圧Vcと第2抵抗素子と第3抵抗素子との接続端に印加するバイアス電圧Vbとを第1抵抗素子と第2抵抗素子との電圧分圧回路で分圧した電圧値を動作点電圧とし、第3抵抗素子によって第1FETのゲート端子に印加するバイアス電圧Vgを発生する構成であり、第1から第3抵抗素子の値は、バイアス電圧Vgとバイアス電圧Vcの変化が、あらかじめ実測して求めた高周波可変利得増幅器の小信号入力時での利得を変化させたときの通過位相の変化が最小となるバイアス電圧Vgとバイアス電圧Vcとの関係曲線を近似した関係になるように設定されることを特徴とする。
【0014】
即ち、電圧制御回路は、第3FETの非線形特性を利用して広い利得可変範囲において第1FETのゲート端子に印加する適切なバイアス電圧を発生できる。
請求項5に記載の発明は、請求項4に記載の高周波可変利得増幅器において、第3FETのドレイン端子と第2FETのゲート端子との間を第4抵抗素子で接続し、第3FETのドレイン端子に第5抵抗素子の一端を接続し、第3FETの動作点電圧を、第5抵抗素子の他端に印加するバイアス電圧Vsと第2抵抗素子と第3抵抗素子との接続端に印加するバイアス電圧Vbとでもって規定する構成であり、第1から第5抵抗素子の値は、バイアス電圧Vgとバイアス電圧Vcの変化が、あらかじめ実測して求めた高周波可変利得増幅器の小信号入力時での利得を変化させたときの通過位相の変化が最小となるバイアス電圧Vgとバイアス電圧Vcとの関係曲線を近似した関係になるように設定されることを特徴とする。
【0015】
即ち、電圧制御回路は、第3FETの動作点を任意に設定して第1FETのゲート端子に印加する適切なバイアス電圧を発生できる。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
【0017】
(第1実施形態)
図1は、請求項1に対応する実施形態の高周波可変利得増幅器の構成を示す。なお、図12に示す従来例と同一構成部分には、同一符号名称を付してある。以下の各実施形態において同じである。この第1実施形態の高周波可変利得増幅器は、図12に示した従来の高周波可変利得増幅器において、ソース接地のFET3のゲート端子とゲート接地のFET4のゲート端子との間に、電圧制御回路8を設けたものである。
【0018】
電圧制御回路8は、FET3(またはFET4)のゲート端子に印加されるバイアス電圧Vg(またはVc)を変化させた場合にそれと連動して同方向に変化するバイアス電圧Vc(またはVg)を発生し、それをFET4(またはFET3)のゲート端子に印加する動作を行う。
入力端子1から入力された高周波入力信号は、カスコード接続されたFET3及びFET4で順次増幅され、出力端子6から出力される。このとき、FET4のバイアス電圧Vcを小さくして利得を減少させた場合に、電圧制御回路8は、図2に示すように、それに連動して減少する適切なバイアス電圧Vgを発生し、それをFET3のゲート端子に印加する。これにより、図3に示すように、増幅器内で発生する通過位相の変化を低減することができる。
【0019】
図2は、ゲートバイアス電圧Vcを変化させた場合に電圧制御回路8で発生すべきゲートバイアス電圧Vgの変化の実測値を示す。即ち、図2は、ゲートバイアス電圧Vcを0.75Vから−2.75Vまで0.25V間隔で変化させ、それぞれの電圧において増幅器内の遅延位相を最小にするゲートバイアス電圧Vgを求め、プロットしたものである。したがって、図2に示すゲートバイアス電圧Vcとゲートバイアス電圧Vgとの関係曲線は、この第1実施形態の電圧制御回路8の入出力特性を示すことになる。
【0020】
図3は、ゲートバイアス電圧Vcを変化させた場合の小信号入カ時の利得及び通過位相の変化の実測値を示す。図3において、ゲートバイアス電圧Vcが0.75Vのときの利得は19dBである。このときの通過位相を基準にすると、ゲートバイアス電圧Vcを小さくした場合でも利得は減少するが通過位相はほとんど変化しないことがわかる。
【0021】
例えば、ゲートバイアス電圧Vcが−2.75Vのときの利得は−15dBである。したがって、図2に示す特性の電圧制御回路8を用いれば、この利得変化の範囲内での通過位相の変化は、3゜以内に改善できる。つまり、従来構成と比較して、同じ利得減衰量34dBを得るのに通過位相の変化が65゜から3゜に改善できることがわかる。
【0022】
(第2実施形態)
図4は、請求項2に対応する実施形態の高周波可変利得増幅器の構成を示す。この第2実施形態の高周波可変利得増幅器は、第1実施形態の電圧制御回路8を第1抵抗素子R1と第2抵抗素子R2との電圧分圧回路で構成し、FET4のゲート端子に印加するゲートバイアスVcを変化させた場合に、電圧分圧回路がそれに連動してFET3のゲート端子に印加するゲートバイアス電圧Vgを発生するようにしたものである。
【0023】
第1抵抗素子R1は、FET3のゲート端子とFET4のゲート端子との間を接続する。第2抵抗素子R2は、一端がFET3のゲート端子に接続され、他端にバイアス電圧Vsが印加される。したがって、第1抵抗素子R1と第2抵抗素子R2との電圧分圧回路は、式(1)に示す関係式に従ってゲートバイアス電圧Vgを発生する。なお、式(1)において、R1は第1抵抗素子R1の抵抗値、R2は第2抵抗素子R2の抵抗値である。
【0024】
Vg={R2/(R1+R2)}Vc+{R1/(R1+R2)}Vs
・・ (1)
つまり、図2に示した曲線を式(1)で示される一次直線で近似し、所要の利得変化が得られる範囲で、第1抵抗素子R1の抵抗値、第2抵抗素子R2の抵抗値及びバイアス電圧Vsの値を決定することにより、利得変化時の通過位相の変化を低減することができる。
【0025】
図5は、第2実施形態の高周波可変利得増幅器においてゲートバイアス電圧Vcを変化させた場合に電圧制御回路である電圧分圧回路で発生するゲートバイアス電圧Vgの変化の実測値を示す。ここで、第1抵抗素子R1の抵抗値は600Ω、第2抵抗素子R2の抵抗値は150Ω、バイアス電圧Vsは−l.43Vである。なお、バイアス回路に流れる電流値は3mA以下であった。
【0026】
図6は、従来構成と第2実施形態の高周波可変利得増幅器においてゲートバイアス電圧Vcを0.75Vから−2.75Vまで0.25V間隔で変化させた場合の小信号入力時の利得と通過位相の変化の実測値の比較を示す。
図6において、ゲートバイアス電圧Vcが0.75Vのときの利得は19dBである。このときの通過位相を基準にすると、ゲートバイアス電圧Vcを小さくした場合に通過位相の変化を低減することができることがわかる。
【0027】
例えば、ゲートバイアス電圧Vcが−2.25Vのときの利得は−6dBであり、この利得変化の範囲内での通過位相の変化は6゜以内に改善されている。また、ゲートバイアス電圧Vcが−2.5Vのときの利得は−14dBであり、この利得変化の範囲での通過位相の変化は21゜以内に改善されている。
【0028】
(第3実施形態)
図7は、請求項3に対応する実施形態の高周波可変利得増幅器の構成を示す。この第3実施形態の高周波可変利得増幅器は、第1実施形態の電圧制御回路8を第1抵抗素子R1と第2抵抗素子R2との電圧分圧回路で構成し、FET3のゲート端子に印加するゲートバイアスVgを変化させた場合に、電圧分圧回路がそれに連動してFET4のゲート端子に印加するゲートバイアス電圧Vcを発生するようにしたものである。
【0029】
第1抵抗素子R1は、FET3のゲート端子とFET4のゲート端子との間を接続する。第2抵抗素子R2は、一端がFET4のゲート端子に接続され、他端にバイアス電圧Vsが印加される。したがって、第1抵抗素子R1と第2抵抗素子R2との電圧分圧回路は、式(2)に示す関係式に従ってゲートバイアス電圧Vcを発生する。なお、式(2)おいて、R1は第1抵抗素子R1の抵抗値、R2は第2抵抗素子R2の抵抗値である。
【0030】
Vc={R2/(R1+R2)}Vg+{R1/(R1+R2)}Vs・・ (2)
したがって、図2に示した曲線を式(2)で示される一次直線で近似し、所要の利得変化が得られる範囲で、第1抵抗素子R1の抵抗値、第2抵抗素子R2の抵抗値抵抗値及びバイアス電圧Vsの値を決定することにより、利得変化時の通過位相の変化を第2実施形態と同様に低減することができる。
【0031】
(第4実施形態)
図8は、請求項4、5に対応する実施形態の高周波可変利得増幅器の構成を示す。この第4実施形態の高周波可変利得増幅器は、第1実施形態の電圧制御回路8をFET9で構成し、FET4のゲート端子に印加するゲートバイアスVcを変化させた場合に、FET9の非線形特性を利用してFET3のゲート端子に印加するゲートバイアス電圧Vgを図2に示した曲線に近い形で発生できるようにしたものである。
【0032】
即ち、FET9は、ゲート端子が第1抵抗素子R1を介してドレイン端子に接続されるとともに、第2抵抗素子R2及び第3抵抗素子R3の直列回路を介してソース端子とFET3のゲート端子とに接続され、ドレイン端子が第4抵抗素子R4を介して第2FETのゲート端子に接続される。そして、このドレイン端子には第5抵抗素子R5の一端が接続され、第5抵抗素子R5の他端には、バイアス電圧Vsが印加される。また、第2抵抗素子R2と第3抵抗素子R3の接続端には、バイアス電圧Vbが印加される。
【0033】
したがって、FET9のドレインのバイアス電圧Vaは、第4抵抗素子R4と第5抵抗素子R5からなる電圧分圧回路が、ゲートバイアス電圧Vcとバイアス電圧Vsを分圧して形成する。また、FET9のゲートバイアス電圧は、第1抵抗素子R1と第2抵抗素子R2からなる電圧分圧回路が、バイアス電圧Vaとバイアス電圧Vbを分圧して形成する。そして、第3抵抗素子R3は、FET9に流れる電流を電圧に変換し、ゲートバイアス電圧Vgを取り出す電流−電圧変換素子として機能している。
【0034】
以上の構成において、第1抵抗素子R1の抵抗値、第2抵抗素子R2の抵抗値、
第3抵抗素子R3の抵抗値、第4抵抗素子R4の抵抗値、第5抵抗素子R5の抵抗値及びバイアス電圧Vb、Vsの値を適切に設定することで、FET4のゲート端子に印加するゲートバイアス電圧Vcを変化させてFET9の動作点を変化させることができ、FET3のゲート端子に印加するゲートバイアス電圧Vgを非線形に変化させることができる。これにより、所要の利得変化が得られる範囲で図2に示した曲線を図9に示すように近似することにより、図10に示すように利得変化時の通過位相の変化を低減することができる。
【0035】
図9は、ゲートバイアス電圧Vcを0.75Vから−2.75Vまで0.25V間隔で変化させた場合に電圧制御回路であるFET9が発生するゲートバイアス電圧Vgの変化の実測値を示す。ここに、第1抵抗素子R1の抵抗値は1100Ω、第2抵抗素子R2の抵抗値は400Ω、第3抵抗素子R3の抵抗値は650Ω、第4抵抗素子R4の抵抗値は210Ω、第5抵抗素子R5の抵抗値は750Ω、バイアス電圧Vsは0.75V、バイアス電圧Vbは−2.1V、FET9のゲート幅は100μmである。なお、バイアス回路に流れる電流値は4mA以下であった。
【0036】
図10は、従来構成と第4実施形態の高周波可変利得増幅器においてゲートバイアス電圧Vcを0.75Vから−2.75Vまで0.25V間隔で変化させた場合の小信号入力時の利得と通過位相の変化の実測値の比較を示す。
ゲートバイアス電圧Vcが0.75Vのときの利得は19dBであり、このときの通過位相を基準にすると、ゲートバイアス電圧Vcを小さくした場合に通過位相の変化を低減することができることがわかる。
【0037】
例えば、ゲートバイアス電圧Vcが−2.5Vのときに利得は−8dBであり、この利得変化の範囲での通過位相の変化は7゜以内に改善されている。また、ゲートバイアス電圧Vcが−2.75Vのときの利得は−18dBであり、この利得変化の範囲での通過位相の変化は21゜以内に改善されている。
ところで、図8の構成は、請求項5に対応するが、FET4のゲートバイアス電圧VcとFET9のドレインのバイアス電圧Vaとを等しくすることが可能であるので、第4抵抗素子R4と第5抵抗素子R5は省略することができる。即ち、請求項4に対応する実施形態である。この場合には、R4,R5の2つの抵抗素子とバイアス電圧Vsが不要となる分、回路の簡素化が図れる。
【0038】
ここで、図2に示した曲線の近似に関し、この第4実施形態では、FET9の非線形特性を利用した電流・電圧変換回路を適用して曲線近似を行うので、電圧分圧回路で一次直線近似を行う第2実施形態及び第3実施形態の場合よりも所要の電圧値を広範囲に亘って近似することができ、利得変化時の位相変化量を広範囲に低減することが可能となる利点を有する。
【0039】
【発明の効果】
以上説明したように、請求項1に記載の発明は、従来のカスコード接続FETを用いた高周波可変利得増幅器において、ソース接地の第1FETのゲート端子に印加されるバイアス電圧とゲート接地の第2FETのゲート端子に印加されるバイアス電圧との一方のバイアス電圧を、他方のバイアス電圧の変化に連動して同方向へ変化させる電圧制御回路を備えるので、第1FETのゲート端子に印加されるバイアス電圧と第2FETのゲート端子に印加されるバイアス電圧との一方のバイアス電圧が例えば小さくなると、それに連動して他方のバイアス電圧を減少させることができ、利得変化時に生じる高周波信号の通過位相の変化を低減できる。したがって、フェーズドアレイアンテナへの利用のように移相器と併用する場合に、利得変化時に生じる高周波信号の通過位相の変化の移相器による微調整作業を不要とした高周波可変利得増幅器を実現できる。
【0040】
請求項2、3に記載の発明は、請求項1に記載の高周波可変利得増幅器において、電圧制御回路を2つの抵抗素子からなる電圧分圧回路で構成でき、本発明を適用した高周波利得可変増幅器の構成を複雑化させないようにできる。
請求項4、5に記載の発明は、請求項1に記載の高周波可変利得増幅器において、電圧制御回路を、非線形特性を有するFETで構成してあるので、広い利得変化範囲について適切なバイアス電圧を発生させることが可能となる。
【図面の簡単な説明】
【図1】請求項1に対応する実施形態の高周波利得可変増幅器の構成を示す図である。
【図2】ゲートバイアス電圧Vcを変化させた場合に第1実施形態の電圧制御回路が発生すべきゲートバイアス電圧Vgの変化の実測値を示す図である。
【図3】第1実施形態の高周波可変利得増幅器においてゲートバイアス電圧Vcを変化させた場合の小信号入力時の利得及び通過位相の変化の実測値を示す図である。
【図4】請求項2に対応する実施形態の高周波利得可変増幅器の構成を示す図である。
【図5】ゲートバイアス電圧Vcを変化させた場合に第2実施形態の電圧制御回路(電圧分圧回路)が発生するゲートバイアス電圧Vgの変化の実測値を示す図である。
【図6】従来構成と第2実施形態の高周波可変利得増幅器においてゲートバイアス電圧Vcを変化させた場合の小信号入力時の利得及び通過位相の変化の実測値の比較図である。
【図7】請求項3に対応する実施形態の高周波利得可変増幅器の構成を示す図である。
【図8】請求項4、5に対応する実施形態の高周波利得可変増幅器の構成を示す図である。
【図9】ゲートバイアス電圧Vcを変化させた場合に第4実施形態の電圧制御回路(FET)が発生するゲートバイアス電圧Vgの変化の実測値を示す図である。
【図10】従来構成と第4実施形態の高周波可変利得増幅器においてゲートバイアス電圧Vcを変化させた場合の小信号入力時の利得及び通過位相の変化の実測値の比較図である。
【図11】高周波可変利得増幅器と移相器を用いた送信用フェーズドアレイアンテナの構成を示す図である。
【図12】従来のカスコード接続FETを用いた高周波可変利得増幅器の構成を示す図である。
【図13】従来の高周波可変利得増幅器においてゲートバイアス電圧Vcを変化させた場合の小信号入力時の利得及び通過位相の変化の実測値を示す図である。
【符号の説明】
1 入力端子
2 入力整合回路
3 ソース接地FET
4 ゲート接地FET
5 出力整合回路
6 出力端子
7 キャパシタ
8 電圧制御回路
9 FET
R1 第1抵抗素子
R2 第2抵抗素子
R3 第3抵抗素子
R4 第4抵抗素子
R5 第5抵抗素子
Claims (5)
- ソース接地の第1FETとゲート接地の第2FETとをカスコード接続した高周波可変利得増幅器において、
前記第1FETのゲート端子に印加されるバイアス電圧Vgと前記第2FETのゲート端子に印加されるバイアス電圧Vcについて、あらかじめ実測して求めた前記高周波可変利得増幅器の小信号入力時での利得を変化させたときの通過位相の変化が最小となるバイアス電圧Vgとバイアス電圧Vcとの関係曲線に基づいて、その一方のバイアス電圧を他方のバイアス電圧の変化に連動して同方向へ変化させる電圧制御回路を備える
ことを特徴とする高周波可変利得増幅器。 - 請求項1に記載の高周波可変利得増幅器において、
前記電圧制御回路は、
前記第1FETのゲート端子と前記第2FETのゲート端子との間を接続する第1抵抗素子と、一端が前記第1FETのゲート端子に接続される第2抵抗素子とを備え、
前記第2抵抗素子の他端に印加するバイアス電圧Vsと前記第2FETのゲート端子に印加するバイアス電圧Vcとでもって前記第1FETのゲート端子に印加するバイアス電圧Vgを発生する構成であり、
前記第1および第2抵抗素子の値は、前記バイアス電圧Vgと前記バイアス電圧Vcの変化が、前記あらかじめ実測して求めた前記高周波可変利得増幅器の小信号入力時での利得を変化させたときの通過位相の変化が最小となるバイアス電圧Vgとバイアス電圧Vcとの関係曲線を直線近似した関係になるように設定される
ことを特徴とする高周波可変利得増幅器。 - 請求項1に記載の高周波可変利得増幅器において、
前記電圧制御回路は、
前記第1FETのゲート端子と前記第2FETのゲート端子との間を接続する第1抵抗素子と、一端が前記第2FETのゲート端子に接続される第2抵抗素子とを備え、
前記第2抵抗素子の他端に印加するバイアス電圧Vsと前記第1FETのゲート端子に印加するバイアス電圧Vgとでもって前記第2FETのゲート端子に印加するバイアス電圧Vcを発生する構成であり、
前記第1および第2抵抗素子の値は、前記バイアス電圧Vgと前記バイアス電圧Vcの変化が、前記あらかじめ実測して求めた前記高周波可変利得増幅器の小信号入力時での利得を変化させたときの通過位相の変化が最小となるバイアス電圧Vgとバイアス電圧Vcとの関係曲線を直線近似した関係になるように設定される
ことを特徴とする高周波可変利得増幅器。 - 請求項1に記載の高周波可変利得増幅器において、
前記電圧制御回路は、
ドレイン端子が前記第2FETのゲート端子に接続され、ソース端子が前記第1FETのゲート端子に接続され、ゲート端子が第1抵抗素子を介して前記ドレイン端子に接続されるとともに、第2抵抗素子及び第3抵抗素子の直列回路を介して前記ソース端子に接続される第3FETを備え、
前記第3FETは、前記第2FETのゲート端子に印加するバイアス電圧Vcと前記第2抵抗素子と第3抵抗素子との接続端に印加するバイアス電圧Vbとを第1抵抗素子と第2抵抗素子との電圧分圧回路で分圧した電圧値を動作点電圧とし、第3抵抗素子によって前記第1FETのゲート端子に印加するバイアス電圧Vgを発生する構成であり、
前記第1から第3抵抗素子の値は、前記バイアス電圧Vgと前記バイアス電圧Vcの変化が、前記あらかじめ実測して求めた前記高周波可変利得増幅器の小信号入力時での利得を変化させたときの通過位相の変化が最小となるバイアス電圧Vgとバイアス電圧Vcとの関係曲線を近似した関係になるように設定される
ことを特徴とする高周波可変利得増幅器。 - 請求項4に記載の高周波可変利得増幅器において、
前記第3FETのドレイン端子と前記第2FETのゲート端子との間を第4抵抗素子で接続し、前記第3FETのドレイン端子に第5抵抗素子の一端を接続し、
前記第3FETの動作点電圧を、前記第5抵抗素子の他端に印加するバイアス電圧Vsと前記第2抵抗素子と第3抵抗素子との接続端に印加するバイアス電圧Vbとでもって規定する構成であり、
前記第1から第5抵抗素子の値は、前記バイアス電圧Vgと前記バイアス電圧Vcの変化が、前記あらかじめ実測して求めた前記高周波可変利得増幅器の小信号入力時での利得を変化させたときの通過位相の変化が最小となるバイアス電圧Vgとバイアス電圧Vcとの関係曲線を近似した関係になるように設定される
ことを特徴とする高周波可変利得増幅器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12735197A JP3574546B2 (ja) | 1997-05-16 | 1997-05-16 | 高周波可変利得増幅器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12735197A JP3574546B2 (ja) | 1997-05-16 | 1997-05-16 | 高周波可変利得増幅器 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10322149A JPH10322149A (ja) | 1998-12-04 |
JP3574546B2 true JP3574546B2 (ja) | 2004-10-06 |
Family
ID=14957788
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12735197A Expired - Fee Related JP3574546B2 (ja) | 1997-05-16 | 1997-05-16 | 高周波可変利得増幅器 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3574546B2 (ja) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002359530A (ja) * | 2001-03-28 | 2002-12-13 | Sharp Corp | 高周波増幅器 |
US6771123B2 (en) | 2002-04-19 | 2004-08-03 | Bose Corporation | Multichannel power amplifying |
JP4312779B2 (ja) * | 2006-08-10 | 2009-08-12 | シャープ株式会社 | 可変増幅器およびそれを用いた携帯無線端末 |
JP4855470B2 (ja) * | 2006-08-21 | 2012-01-18 | 旭化成エレクトロニクス株式会社 | トランスコンダクタンスアンプ |
US7847635B2 (en) * | 2006-08-28 | 2010-12-07 | Asahi Kasei Emd Corporation | Transconductance amplifier |
JP2015165639A (ja) * | 2014-03-03 | 2015-09-17 | パナソニック株式会社 | 可変利得多段増幅器及び受信機 |
SG11201901798PA (en) * | 2016-08-30 | 2019-03-28 | Skyworks Solutions Inc | Low-noise amplifier having programmable-phase gain stage |
JP2019530379A (ja) * | 2016-08-31 | 2019-10-17 | スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. | 利得モードによる反射損失及び不整合が改善された増幅器 |
KR102602350B1 (ko) | 2020-05-12 | 2023-11-17 | 한국전자통신연구원 | 구동 증폭 장치 |
-
1997
- 1997-05-16 JP JP12735197A patent/JP3574546B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH10322149A (ja) | 1998-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5661437A (en) | Negative feedback variable gain amplifier circuit | |
JP3574546B2 (ja) | 高周波可変利得増幅器 | |
WO2009009652A2 (en) | Segmented power amplifier | |
US7525468B2 (en) | Variable passive components with high resolution value selection and control | |
US9369112B2 (en) | Variable attenuator | |
US4677392A (en) | Cascaded internal impedance dependent amplifier with accurate variable gain control | |
EP1790074B1 (en) | A linear transconductance cell with wide tuning range | |
JP3354589B2 (ja) | 可制御増幅回路 | |
JP3371350B2 (ja) | 負帰還可変利得増幅回路 | |
JP3565667B2 (ja) | 利得可変半導体回路 | |
JPH11205055A (ja) | 可変利得差動増幅回路 | |
JPH03258008A (ja) | 位相温度補償型高周波増幅器 | |
JP2000223960A (ja) | 歪み補償器 | |
JP2001057511A (ja) | 線形増幅回路 | |
JPH0669754A (ja) | 可変減衰器 | |
KR100209934B1 (ko) | 광대역 주파수 제어 발진 장치 | |
JP3147597B2 (ja) | モノリシック集積回路 | |
JPH0630413B2 (ja) | 広帯域負帰還増幅回路 | |
JP3302643B2 (ja) | 歪補償回路 | |
KR200277049Y1 (ko) | 고주파 증폭기의 이득 제어 회로 | |
JPH0472403B2 (ja) | ||
JPS6019844B2 (ja) | 電圧制御形抵抗可変回路 | |
JPH07221596A (ja) | 減衰回路 | |
JP3176793B2 (ja) | 増幅回路 | |
JPH11195932A (ja) | 温度補償機能付き増幅器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040406 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040525 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040629 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040702 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080709 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080709 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090709 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |