JP3553222B2 - 光変調器モジュール - Google Patents

光変調器モジュール Download PDF

Info

Publication number
JP3553222B2
JP3553222B2 JP24201495A JP24201495A JP3553222B2 JP 3553222 B2 JP3553222 B2 JP 3553222B2 JP 24201495 A JP24201495 A JP 24201495A JP 24201495 A JP24201495 A JP 24201495A JP 3553222 B2 JP3553222 B2 JP 3553222B2
Authority
JP
Japan
Prior art keywords
optical modulator
wire
terminating resistor
strip line
inductance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24201495A
Other languages
English (en)
Other versions
JPH0990302A (ja
Inventor
栄太郎 石村
泰典 宮崎
実 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP24201495A priority Critical patent/JP3553222B2/ja
Priority to US08/615,162 priority patent/US5602672A/en
Priority to FR9604009A priority patent/FR2738926B1/fr
Priority to KR1019960022089A priority patent/KR100215232B1/ko
Priority to GB9612959A priority patent/GB2305511B/en
Publication of JPH0990302A publication Critical patent/JPH0990302A/ja
Application granted granted Critical
Publication of JP3553222B2 publication Critical patent/JP3553222B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0121Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • G02F1/0356Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure controlled by a high-frequency electromagnetic wave component in an electric waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/025Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction in an optical waveguide structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/02345Wire-bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0265Intensity modulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0427Electrical excitation ; Circuits therefor for applying modulation to the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06226Modulation at ultra-high frequencies

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は光変調器モジュールに関し、特に光変調器モジュールにおける半導体光変調器への配線法に関するものである。
【0002】
【従来の技術】
図10(a) は、従来の光変調器モジュールにおける半導体光変調器への配線法を模式的に示した上面図であり、図において、25は光変調器集積型レーザチップであり、該光変調器集積型レーザチップ25に半導体レーザ2,及び該半導体レーザ2に光結合された半導体光変調器1が形成されており、該半導体光変調器1は、さらにレンズ(図示せず)に光結合されている。光変調器集積型レーザチップ25はサブマウント9上に載置され、該サブマウント9上の端部には第1のボンディングパッド21,及びレーザ用ボンディングパッド22が設置され、サブマウント9は導体からなるキャリア20上に配設されている。
【0003】
また、キャリア20上には、上記サブマウント9に沿うように所定の厚みを有する帯状のアルミナ誘電体23が配設され、該アルミナ誘電体23の上面の中央部に所定の幅を有するストリップ導体24が配設されており、これらの,導体からなるキャリア20、アルミナ誘電体23、及びストリップ導体24が平行平板線路の一種であるストリップライン3を構成している。該ストリップライン3は、例えば、ストリップ導体24の幅が250μm、アルミナ誘電体23の厚みが250μm、その特性インピーダンスZが50Ωのものが用いられる。上記アルミナ誘電体23の終端部の上面には薄膜抵抗からなる終端抵抗5が形成され、該終端抵抗5の一方の端子は上記ストリップ導体24の終端に接続され、他方の端子は接地されたスルーホール6に接続されている。終端抵抗5の抵抗値は、上記ストリップライン3を整合線路とするため、該ストリップライン3の上記特性インピーダンスZに等価な50Ωとなっている。ストリップ導体24の始端は信号源8に接続されている。そして、半導体光変調器1の信号入力端子は、第1のボンディングパッド21を経由して第1のワイヤ4でストリップ導体24の終端に接続されている。第1のワイヤとして、例えば、φ25μmの金線が用いられる。なお、7は、半導体レーザ2に電力を供給するための給電ワイヤ、22は該給電ワイヤ7を中継するためのレーザ用ボンディングパッドである。
【0004】
図10(b) は、信号源8から入力される高周波電気信号が半導体光変調器1に伝わるまでの等価回路を示す回路図である。この等価回路において、L1 は第1のワイヤ4が有するインダクタンス、Cは半導体光変調器1が有する容量、Rは終端抵抗5の抵抗、Zはストリップライン3の特性インピーダンスであり、信号源8に特性インピーダンスZのストリップライン3が接続され、該ストリップライン3に、インダクタンスL1 と容量Cからなる直列回路と、抵抗Rとが並列に接続されている。第1のワイヤ4のインダクタンスL1 はその長さに比例する。
【0005】
次に、この従来の光変調器モジュールの動作を説明する。半導体レーザ2はレーザ光を出射し、この出射されたレーザ光は半導体光変調器1に入射する。半導体光変調器1の信号入力端子には、信号源8から高周波電気信号がストリップライン3,及び第1のワイヤ4を介して入力され、この高周波電気信号に基づき上記入射光を変調し、レンズに出射する。この高周波電気信号の周波数は約2〜10GHzである。
【0006】
【発明が解決しようとする課題】
ところで、上記のように半導体光変調器1を高周波電気信号で変調動作させる場合、信号源8から見た回路のインピーダンスと、該回路から見た信号源8のインピーダンスとが等しくないときは、信号源8から入力される高周波電気信号のうちのいくらかが半導体光変調器1に達せず、信号源8の方へ戻ってくる。これは高周波の反射又はリターンロスS11と呼ばれ、次式で定義される。
リターンロスS11=10log (反射パワー/入力パワー)
このリターンロスS11は、図10(b) からわかるように、信号源8から見た回路のインピーダンスが、第1のワイヤ4のインダクタンスL1 に依存するため、半導体光変調器1の実装法に大きく左右される。そして、このリターンロスS11が大きいと、上記高周波電気信号の波形に乱れが生じるため、リターンロスS11はできるだけ小さいほうがよい。
【0007】
しかるに、上述の従来の光変調器モジュールでは、例えば2.5GHzでのリターンロスS11は−5dB程度あり、これを−10dB程度まで低減する必要があった。
【0008】
本発明は、かかる問題点を解決するためになされたもので、終端抵抗を、ワイヤを介してストリップラインの終端に接続することにより、リターンロスを少なくすることができる光変調器モジュールを提供することを目的としている。
【0009】
【課題を解決するための手段】
本発明(請求項1)に係る光変調器モジュールは、サブマント上に設置された,半導体レーザから出力されるレーザ光を高周波電気信号に基づき変調する半導体光変調器と、信号源から入力される上記高周波電気信号を伝送するためのストリップラインと、その一方の端子がアースされた,上記ストリップラインを終端させるための終端抵抗と、上記半導体光変調器の信号入力端子と上記ストリップラインの終端との間を接続する第1のワイヤと、上記終端抵抗の非アース側の端子と上記半導体光変調器の信号入力端子との間を接続する第2のワイヤとを備え、上記ストリップラインの終端と上記終端抵抗の非アース側の端子とが、上記半導体変調器の信号入力端子をはさむ位置に設けられているものである。
【0010】
本発明(請求項2)に係る光変調器モジュールは、上記の光変調器モジュール(請求項1)に記載の光変調器モジュールにおいて、上記終端抵抗を上記サブマウント上に設けたものである。
【0011】
本発明(請求項3)に係る光変調器モジュールは、上記の光変調器モジュール(請求項1)に記載の光変調器モジュールにおいて、上記サブマウントに、上記第2のワイヤを中継するボンディングパッドを設置したものである。
【0025】
【発明の実施の形態】
実施の形態1.
構成1.
本発明の実施の形態1における光変調器モジュールは、図1,図7〜9に示されるように、サブマント9上に設置された,半導体レーザ2から出力されるレーザ光を高周波電気信号に基づき変調する半導体光変調器1と、信号源8から入力される上記高周波電気信号を伝送するためのストリップライン3と、その一方の端子がアースされた,上記ストリップライン3を終端させるための終端抵抗5と、上記半導体光変調器1の信号入力端子と上記ストリップライン3の終端との間を接続する第1のワイヤ4と、上記終端抵抗5の非アース側の端子と上記半導体光変調器1の信号入力端子との間を接続する第2のワイヤ10とを備えたものである。これにより、信号源8と終端抵抗5との間に、第2のワイヤ10によるインダクタンスL2 と第1のワイヤ4によるインダクタンスL1 とが存在することとなり、周波数が高くなると、終端抵抗5を流れる電流が減少し、半導体光変調器1を流れる電流の増加分が補償され、トータルの電流の周波数依存性が小さくなる。その結果、信号源8から見た回路のインピーダンスの所定値からのずれが小さくなり、リターンロスS11が小さくなる。
【0026】
構成2.
本発明の実施の形態1における光変調器モジュールは、図8に示されるように、上記の構成1の光変調器モジュールにおいて、上記終端抵抗5を上記サブマウント9上に設けてなるものである。これにより、サブマウント9の空きスペースを有効に利用することができ、光変調器モジュールのスペースを節約することができる。
【0027】
構成3.
本発明の実施の形態1における光変調器モジュールは、図9に示されるように、上記の構成1の光変調器モジュールにおいて、上記終端抵抗5が、その設置場所を変えることができる抵抗からなるものである。これにより、終端抵抗5の設置場所を変えて第2のワイヤの長さを変えることができ、該第2のワイヤ10のインダクタンスが最適値となるようその長さを調整して、リターンロスS11を最小とすることができる。
【0028】
構成4.
本発明の実施の形態1における光変調器モジュールは、図7に示されるように、上記の構成1の光変調器モジュールにおいて、上記サブマウントに、上記第2のワイヤを中継するボンディングパッドを設置したものである。これにより、第2のワイヤ10は、半導体光変調器1とボンディングパッド11との間を接続する部分10a,及びボンディングパッド11と終端抵抗5との間を接続する部分10bに分割され、それぞれの長さが短くなるため、該第2のワイヤ10の強度が向上する。
【0029】
構成5.
本発明の実施の形態1における光変調器モジュールは、図6に示されるように、サブマント9上に設置された,半導体レーザ2から出力されるレーザ光を高周波電気信号に基づき変調する半導体光変調器1と、信号源8から入力される上記高周波電気信号を伝送するためのストリップライン3と、その一方の端子がアースされた,上記ストリップラインを終端させるための終端抵抗5と、上記半導体光変調器1の信号入力端子と上記ストリップライン3の終端との間を接続する第1のワイヤ4と、上記終端抵抗5の非アース側の端子と上記第1のワイヤ4の中間部との間を接続する第2のワイヤ10とを備えたものである。これにより、信号源8と終端抵抗5との間に、第2のワイヤ10によるインダクタンスL2 と第1のワイヤ4の一部によるインダクタンスとが存在することとなり、周波数が高くなると、終端抵抗5を流れる電流が減少し、半導体光変調器1を流れる電流の増加分が補償され、トータルの電流の周波数依存性が小さくなる。その結果、信号源8から見た回路のインピーダンスの所定値からのずれが小さくなり、信号源8から見た回路のインピーダンスの所定値からのずれが小さくなり、リターンロスS11が小さくなる。
【0030】
構成6.
本発明の実施の形態1における光変調器モジュールは、図6に示されるように、上記の構成1又は5の光変調器モジュールにおいて、上記終端抵抗5を上記ストリップライン3の終端に隣接するよう配置したものである。これにより、ストリップライン3の設置スペースを利用して終端抵抗を設置することができ、光変調器モジュールのスペースを節約することができる。
【0031】
構成7.
本発明の実施の形態1における光変調器モジュールは、図1,5に示されるように、上記の構成1又は5の光変調器モジュールにおいて、上記第2のワイヤ10のインダクタンスをL(nH)、上記半導体光変調器1の容量をC(pF)とするとき、上記インダクタンスLを、式
L(nH)=C(pF)×m(m=0.7〜2.5nH/pF)
に基づいて設定するものである。これにより、第2のワイヤ10のインダクンスLが、上記半導体光変調器1の容量Cに応じた最適な値に設定される。
【0032】
実施の形態2.
構成1.
本発明の実施の形態2における光変調器モジュールの製造方法は、図1,図6〜9に示されるように、半導体レーザ2から出力されるレーザ光を高周波電気信号に基づき変調する半導体光変調器1がマウントされたサブマウント9をキャリア20上に配置し、信号源8から入力される上記高周波電気信号を伝送するためのストリップライン3をキャリア20上に配置し、その一方の端子がアースされた,上記ストリップライン3を終端させるための終端抵抗5をキャリア20上に配置し、上記半導体光変調器1の信号入力端子と上記ストリップライン3の終端との間を第1のワイヤ4で接続し、上記終端抵抗5の非アース側の端子と上記半導体光変調器1の信号入力端子との間を第2のワイヤ10で接続するようにしたものである。これにより、信号源8と終端抵抗5との間に、第2のワイヤ10によるインダクタンスL2 と第1のワイヤ4によるインダクタンスL1 とが存在することとなり、周波数が高くなると、終端抵抗5を流れる電流が減少し、半導体光変調器1を流れる電流の増加分が補償され、トータルの電流の周波数依存性が小さくなる。その結果、信号源8から見た回路のインピーダンスの所定値からのずれが小さくなり、リターンロスS11が小さくなる。
【0033】
構成2.
本発明の実施の形態2における光変調器モジュールの製造方法は、図8に示されるように、上記の構成1の光変調器モジュールの製造方法において、上記終端抵抗5を上記サブマウント9上に設けるようにしたものである。これにより、サブマウント9の空きスペースを有効に利用することができ、光変調器モジュールのスペースを節約することができる。
【0034】
構成3.
本発明の実施の形態2における光変調器モジュールの製造方法は、図9に示されるように、上記の構成1の光変調器モジュールの製造方法において、上記終端抵抗5を配置する位置を変えて上記第2のワイヤ10の長さを調整するようにしたものである。これにより、該第2のワイヤ10のインダクタンスが最適値となるようその長さを調整して、リターンロスS11を最小とすることができる。
【0035】
構成4.
本発明の実施の形態2における光変調器モジュールの製造方法は、図7に示されるように、上記の構成1の光変調器モジュールの製造方法において、上記サブマウント9に、上記第2のワイヤ10を中継するボンディングパッド11を設置するようにしたものである。これにより、第2のワイヤ10が、半導体光変調器1とボンディングパッド11との間を接続する部分10a,及びボンディングパッド11と終端抵抗5との間を接続する部分10bに分割され、それぞれの長さが短くなり、該第2のワイヤ10の強度が向上する。
【0036】
構成5.
本発明の実施の形態2における光変調器モジュールの製造方法は、図6に示されるように、半導体レーザ2から出力されるレーザ光を高周波電気信号に基づき変調する半導体光変調器1がマウントされたサブマウント9をキャリア20上に配置し、信号源8から入力される上記高周波電気信号を伝送するためのストリップライン3をキャリア20上に配置し、その一方の端子がアースされた,上記ストリップライン3を終端させるための終端抵抗5をキャリア20上に配置し、上記半導体光変調器1の信号入力端子と上記ストリップライン3の終端との間を第1のワイヤ4で接続し、上記終端抵抗5の非アース側の端子と上記第1のワイヤの中間部との間を第2のワイヤ10で接続するようにしたものである。これにより、信号源8と終端抵抗5との間に、第2のワイヤ10によるインダクタンスL2 と第1のワイヤ4の一部によるインダクタンスとが存在することとなり、周波数が高くなると、終端抵抗5を流れる電流が減少し、半導体光変調器1を流れる電流の増加分が補償され、トータルの電流の周波数依存性が小さくなる。その結果、信号源8から見た回路のインピーダンスの所定値からのずれが小さくなり、リターンロスS11が小さくなる。
【0037】
構成6.
本発明の実施の形態2における光変調器モジュールの製造方法は、図6に示されるように、上記の構成1又は5の光変調器モジュールの製造方法において、上記終端抵抗5を上記ストリップライン3の終端に隣接して配置するようにしたものである。これにより、ストリップライン3の設置スペースを利用して終端抵抗を設置することができ、光変調器モジュールのスペースを節約することができる。
【0038】
構成7.
本発明の実施の形態2における光変調器モジュールの製造方法は、図5に示されるように、上記の構成1又は5の光変調器モジュールの製造方法において、上記第2のワイヤ10のインダクタンスをL(nH)、上記半導体光変調器1の容量をC(pF)とするとき、上記インダクタンスLを、式
L(nH)=C(pF)×m(m=0.7〜2.5nH/pF)
に基づいて設定するようにしたものである。これにより、第2のワイヤ10のインダクンスLが、上記半導体光変調器1の容量Cに応じた最適な値に設定される。
【0039】
実施例1.
本発明の実施の形態1,2における一実施例について説明する。
図1(a) は本実施例1による光変調器モジュールにおける半導体光変調器への配線法を模式的に示した上面図であり、図において、25は光変調器集積型レーザチップであり、該光変調器集積型レーザチップ25に半導体レーザ,及び該半導体レーザに光結合された半導体光変調器が形成されており、該半導体光変調器は、さらにレンズ(図示せず)に光結合されている。光変調器集積型レーザチップ25はサブマウント9上に載置され、該サブマウント9上の端部には第1のボンディングパッド21,及びレーザ用ボンディングパッド22が設置され、サブマウント9は導体からなるキャリア20上に配設されている。
【0040】
また、該キャリア20上には上記サブマウント9の両側に、該サブマウント9に隣接してストリップライン3と終端抵抗5とが配設されている。すなわち、サブマウント9の図面右側に、該サブマウント9に沿うように、所定の厚みを有する帯状のアルミナ誘電体23が配設され、該アルミナ誘電体23の上面の中央部に所定の幅を有するストリップ導体24が配設されており、これらのキャリア20、アルミナ誘電体23、及びストリップ導体24が平行平板線路の一種であるストリップライン3を構成している。該ストリップライン3は、例えば、ストリップ導体24の幅が250μm、アルミナ誘電体23の厚みが250μm、その特性インピーダンスZ0 が50Ωのものが用いられる。そして、ストリップライン3は、そのストリップ導体24の終端部を、第1のワイヤ4で半導体光変調器1の信号入力端子に接続され、そのストリップ導体24の始端を信号8に接続されている。該第1のワイヤ4は、第1のボンディングパッド21で中継されている。これは、半導体光変調器1への配線を行う前に、サブマウント9をサブアッセンブリしておくためである。また、第1のワイヤとして、例えばφ25μmの金線が用いられる。
【0041】
また、サブマウント9の図面左側にアルミナ基板26が配設され、該アルミナ基板26上に薄膜抵抗からなる終端抵抗5が形成されている。該終端抵抗5は、その一方の端子を、半導体光変調器1の信号入力端子に第2のワイヤ10で接続され、他方の端子を、接地されたスルーホール6に接続されている。終端抵抗5の抵抗値は、上記ストリップライン3を整合線路とするため、該ストリップライン3の上記特性インピーダンスZに等価な50Ωとされる。また、第2のワイヤは、上記第1のワイヤと同じものが用いられる。なお、7は、半導体レーザ2に電力を供給するための給電ワイヤ、22は該給電ワイヤ7を中継するためのレーザ用ボンディングパッドである。
【0042】
図1(b) は、信号源8から入力される高周波電気信号が半導体光変調器1に伝わるまでの等価回路を示す回路図である。この等価回路において、L1 は第1のワイヤ4が有するインダクタンス、L2 は台第2のワイヤ10が有するインダクタンス、Cは半導体光変調器1が有する容量、Rは終端抵抗5の抵抗、Zはストリップライン3の特性インピーダンスであり、信号源8に特性インピーダンスZのストリップライン3が接続され、該ストリップライン3にインダクタンスL1 が接続され、該インダクタンスL1 に、インダクタンスL2 と抵抗Rとからなる直列回路と、容量Cとが並列に接続されている。
【0043】
従来例では、終端抵抗5はストリップライン3と直接接続されていたが、本実施例1では、終端抵抗5は第2のワイヤ10及び第1のワイヤ4を介してストリップライン3と接続されているから、高周波電気信号のリターンロスS11が、従来例より少なくなる。例えば、図10(b) の従来例の等価回路と図1(b) の本実施例1の等価回路において、半導体光変調器1の容量Cを0.8pF、第1のワイア4のインダクタンスL1 を0.5nH、第2のワイア10のインダクタンスL2 を1.2nH、終端抵抗5の抵抗Rを50Ωとして、リターンロスS11を計算すると、図2のようになる。図2は周波数(GHz)とリターンロスS11(dB)との関係を示す図であり、図に示されるように、本実施例1及び従来例におけるリターンロスS11は、共に、使用周波数範囲である2〜10GHzの範囲では、ほぼ周波数の増加に伴い増加する。そして、例えば、2.5GHzで両者を比較すると、本実施例1におけるリターンロスS11は、従来例におけるリターンロスS11より約10dB低減されている。すなわち約1/10に低減されている。
【0044】
本実施例1の作用は、次のように、定性的に説明される。リターンロスS11は、信号源8からみて、該信号源8に接続されている回路のインピーダンスが、ストリップライン3の特性インピーダンス値の50Ωに等しいとき最低になる。しかるに、従来例の場合は、図3(a) からわかるように、周波数が高くなっても、終端抵抗の抵抗R=50Ωを流れる電流IR は一定である。一方、この終端抵抗と並列に接続されている,第1のワイヤによるインダクタンスL1 と半導体光変調器の容量Cからなる直列回路においては、使用周波数範囲である2〜10GHzの範囲では、周波数が高くなると、容量Cのリアクタンスが、インダクタンスL1 のリアクタンスの増加を上回って減少するため、半導体光変調器の容量Cを流れる電流IC は、周波数が高くなると増加する。このため、入力端子からみた回路のトータルのインピーダンスが50Ωより小さくなり、リターンロスS11が増加する。ところが、本実施例1の場合は、図3(b) からわかるように、終端抵抗5の抵抗Rと入力端子との間に第1のワイヤ4によるインダクタンスL1 と第2のワイヤ10によるインダクタンスL2 があるため、周波数が高くなると、終端抵抗5の抵抗Rを流れる電流IR が減少する。その結果、半導体光変調器1の容量Cを流れる電流IC の増加分を補償することとなり、トータルの電流IR +IC の周波数依存性が小さくなる。つまり、信号源8から見た回路のインピーダンスの50Ωからのずれが小さくなるために、本実施例1ではリターンロスS11が従来例よりも小さくなる。
【0045】
次に、第2のワイヤ10によるインダクタンスL2 の最適な大きさを検討する。第1のワイヤ4のインダクタンスL1 は通常0.5nH程度(φ25μmの金線ワイアの長さに換算して500μm程度)であり、半導体光変調器1の容量Cは0.4〜0.8pFである。容量Cをそれぞれ0.4、0.6、0.8、1.0pFとした4つの場合についてリターンロスS11を計算すると図4のようになる。図4は2.5GHzにおけるリターンロスS11のインダクタンスL2 に対する依存性を示す図である。図に示されるように、リターンロスS11が最も小さくなるインダクタンスL2 の最適値は容量Cの値によって変化するが、この最適なインダクタンスL2 は、おおよそ、式
L2 (nH)=C(pF)×m(nH/pF) (1)
で表すことができる。ここで、mは比例定数であり、m=0.7〜2.5程度である。
【0046】
例えば、容量C=0.4pFのとき、最適なインダクタンスL2 は図4より約0.5nHであるから、この場合のmを(1) 式より求めるとm=1.25となる。
【0047】
このようにして求めた容量Cと最適なインダクタンスL2 との関係を図5示す。図において、○印と●印はそれぞれ2.5GHzと10GHzにおける最適なインダクタンスL2 の値を示している。この図から、図中の全てのプロットがm=0.7から2.5の間の値をとり、(1) 式が妥当であることがわかる。
【0048】
上記の図4,及び図5の結果は第1のワイヤ4のインダクタンスL1 が0.5nHである場合について検討した結果であるが、インダクタンスL1 が0.5nH以外である場合も、(1) 式のm=0.7〜2.5という条件を満たし、これらの場合にも(1) 式を適用することができる。その検討は、上記と同様に行うことができる。
【0049】
以上のように、本実施例1においては、終端抵抗5を、第2のワイヤ10を介して半導体光変調器1の信号入力端子に接続するから、信号源8と終端抵抗5との間に、第2のワイヤ10によるインダクタンスL2 と第1のワイヤ4によるインダクタンスL1 とが存在することとなり、周波数が高くなった場合、終端抵抗5を流れる電流が減少し、周波数が高くなった場合における,半導体光変調器1を流れる電流の増加が補償されるから、リターンロスS11を小さくすることができる。
【0050】
また、第2のワイヤ10によるインダクタンスL2 を、上記の(1) 式に基づいて設定するから、該インダクタンスL2 が、半導体光変調器1の容量Cに応じた最適な値に設定される。
【0051】
実施例2.
本発明の実施の形態1,2における他の実施例について説明する。
図6は本実施例2による光変調器モジュールにおける半導体光変調器の実装法を模式的に示した上面図であり、図において、図1と同一符号は同一又は相当する部分を示しており、図1と異なる点は、終端抵抗5がストリップライン3の終端に隣接して配置され、かつ該終端抵抗5が第2のワイヤ10で第1のボンディングパッド21に接続されている点である。すなわち、ストリップライン3の延長上に、該ストリップライン3の終端に隣接してアルミナ基板26が配設され、該アルミナ基板26上に、終端抵抗5が、ストリップライン3の幅方向に延在するよう設置されている。そして、終端抵抗5は、その一方の端子が、接地されたスルーホール6に接続され、その他方の端子が第2のワイヤ10で第1のボンディングパッド21に接続されている。すなわち、終端抵抗5の非アース側の端子は、第2のワイヤ10と第1のワイヤ4の一部を介してストリップライン3の終端に接続されている。
【0052】
本実施例2においては、このように、終端抵抗5がストリップライン3の終端に隣接して配置されているから、ストリップライン3の設置スペースを利用して終端抵抗を設置することができ、これにより光変調器モジュールのスペースを節約することができる。
【0053】
また、本実施例2においては、図1の場合と異なり、終端抵抗5が第2のワイヤ10で第1のワイヤ4の中間部に接続されているが、かかる場合においても、信号源8と終端抵抗5との間に、第2のワイヤ10によるインダクタンスL2 と第1のワイヤ4の一部によるインダクタンスL1 とが存在することとなり、周波数が高くなった場合、終端抵抗5を流れる電流が減少し、周波数が高くなった場合における,半導体光変調器1を流れる電流の増加が補償されるから、図1の場合と同様にリターンロスS11を小さくすることができる。
【0054】
実施例3.
本発明の実施の形態1,2における他の実施例について説明する。
図7は本実施例3による光変調器モジュールにおける半導体光変調器の実装法を模式的に示した上面図であり、図において、図1と同一符号は同一又は相当する部分を示しており、11はサブマウント9上の,終端抵抗5と半導体光変調器1とを結ぶ中間の部分に設置された,第2のワイヤ10を中継するための第2のボンディングパッドである。
【0055】
本実施例3においては、サブマウント9上に第2のワイヤ10を中継する第2のボンディングパッド11が設置されているから、該第2のワイヤ10、半導体光変調器1と第2のボンディングパッド11との間を接続する部分10a,及び第2のボンディングパッド11と終端抵抗5との間を接続する部分10bに分割され、それぞれの長さが短くなり、該第2のワイヤ10の強度が向上する。
【0056】
実施例4.
本発明の実施の形態1,2における他の実施例について説明する。
図8は本実施例4による光変調器モジュールにおける半導体光変調器への配線法を模式的に示した上面図であり、図において、図1と同一符号は同一又は相当する部分を示しており、図1と異なる点は、終端抵抗5がサブマウント9上に設置されている点である。すなわち、終端抵抗5は、サブマウント9の図面左側端部に、空きスペースを利用して設置され、その一方の端子は、第2のワイヤ10で半導体光変調器1に接続された,第2のボンディングパッド11に直接接続され、その他方の端子は第3のワイヤ27で接地されている[(図示せず)]。
【0057】
本実施例4においては、終端抵抗5がサブマウント9上に設置されているから、サブマウント9の空きスペースを有効に利用することができ、光変調器モジュールのスペースを節約することができる。
【0058】
実施例5.
本発明の実施の形態1,2における他の実施例について説明する。
図9は本実施例5による光変調器モジュールにおける半導体光変調器への配線法を模式的に示した上面図であり、図において、図7と同一符号は同一又は相当する部分を示しており、図7と異なる点は、終端抵抗5が、その設置場所を変えることができる抵抗からなる点である。すなわち、終端抵抗5は、例えば、チップ抵抗からなり、アルミナ基板26上に固定されている。該アルミナ基板26は、光変調器モジュールを組立てる際にハンダ付け等でキャリア20の所定の位置に固定するようになっている。終端抵抗5は、その一方の端子を、第2のワイヤ10で第2のボンディングパッド11を経由して半導体光変調器1に接続し、その他方の端子を、第3のワイヤ27で接地するようになっている。このように、終端抵抗5の他方の端子を,図7のようにスルーホールで接地するのではなく、第3のワイヤ27で接地するようにしているので、アルミナ基板26は、キャリア20に固定する前は移動可能である。
【0059】
これにより、例えば、光変調器モジュールを組立後、検査工程で光変調器モジュールのリターンロスS11が大きいため不良となった場合に、アルミナ基板26を移動させて、リターンロスS11が最小となるような長さとなる位置に変更し、該光変調器モジュールを良品化することができる。また、例えば、光変調器モジュールを組立てる際に、予め半導体光変調器1の容量Cを測定してランク付けし、終端抵抗5を、第2のワイヤ10の長さが各ランクの容量Cに応じた最適な長さとなるような位置に設置することにより、量産における光変調器モジュールのリターンロスS11を低減することができる。
【0060】
以上のように本実施例5においては、終端抵抗5が、その設置場所を変えることができる抵抗からなるから、該第2のワイヤ10のインダクタンスが最適値となるようその長さを調整して、リターンロスS11を最小とすることができる。
【0061】
なお、上記の実施例においては、終端抵抗を、第2のワイヤで半導体光変調器の信号入力端子又は第1のワイヤの中間部に接続する場合を説明したが、終端抵抗を第2のワイヤでストリップラインの終端に直接接続してもかまわない。かかる場合にも、信号源と終端抵抗との間に、第2のワイヤによるインダクタンスが存在することとなり、周波数が高くなった場合、終端抵抗を流れる電流が減少し、周波数が高くなった場合における,半導体光変調器を流れる電流の増加が補償され、これにより、リターンロスS11が小さくなる効果が得られる。
【図面の簡単な説明】
【図1】本発明の実施例1による光変調器モジュールを模式的に示す上面図(a) ,及びその等価回路を示す回路図(b) である。
【図2】本発明の実施例1の効果を示す,周波数とリターンロスの関係を表すグラフ図である。
【図3】本発明の実施例1の作用を説明するための回路図である。
【図4】本発明の実施例1における,第2のワイヤのインダクタンスとリターンロスの関係を示すグラフ図である。
【図5】本発明の実施例1における,第2のワイヤの最適なインダクタンスと半導体光変調器の容量の関係を示すグラフ図である。
【図6】本発明の実施例2による光変調器モジュールを模式的に示す上面図である。
【図7】本発明の実施例3による光変調器モジュールを模式的に示す上面図である。
【図8】本発明の実施例4による光変調器モジュールを模式的に示す上面図である。
【図9】本発明の実施例5による光変調器モジュールを模式的に示す上面図である。
【図10】従来の光変調器モジュールを模式的に示す上面図(a) ,及びその等価回路を示す回路図(b) である。
【符号の説明】
1 半導体光変調器、2 半導体レーザ、3 ストリップライン、4 第1のワイヤ、5 終端抵抗、8 信号源、9 サブマウント、10 第2のワイヤ、11 第2のボンディングパッド、20 キャリア、21 第1のボンディングパッド。

Claims (3)

  1. サブマント上に設置された,半導体レーザから出力されるレーザ光を高周波電気信号に基づき変調する半導体光変調器と、
    信号源から入力される上記高周波電気信号を伝送するためのストリップラインと、
    その一方の端子がアースされた,上記ストリップラインを終端させるための終端抵抗と、
    上記半導体光変調器の信号入力端子と上記ストリップラインの終端との間を接続する第1のワイヤと、
    上記終端抵抗の非アース側の端子と上記半導体光変調器の信号入力端子との間を接続する第2のワイヤとを備え
    上記ストリップラインの終端と上記終端抵抗の非アース側の端子とが、上記半導体変調器の信号入力端子をはさむ位置に設けられていることを特徴とする光変調器モジュール。
  2. 請求項1に記載の光変調器モジュールにおいて、
    上記終端抵抗を上記サブマウント上に設けたことを特徴とする光変調器モジュール。
  3. 請求項1に記載の光変調器モジュールにおいて、
    上記サブマウントに、上記第2のワイヤを中継するボンディングパッドを設置したことを特徴とする光変調器モジュール。
JP24201495A 1995-09-20 1995-09-20 光変調器モジュール Expired - Lifetime JP3553222B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP24201495A JP3553222B2 (ja) 1995-09-20 1995-09-20 光変調器モジュール
US08/615,162 US5602672A (en) 1995-09-20 1996-03-12 Light modulator module and method for fabricating light modulator module
FR9604009A FR2738926B1 (fr) 1995-09-20 1996-03-29 Module modulateur de lumiere et procede pour fabriquer un tel module
KR1019960022089A KR100215232B1 (ko) 1995-09-20 1996-06-18 광변조기모듈 및 광변조기모듈의 제조방법
GB9612959A GB2305511B (en) 1995-09-20 1996-06-20 Light modulator module and method for fabricating light modulator module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24201495A JP3553222B2 (ja) 1995-09-20 1995-09-20 光変調器モジュール

Publications (2)

Publication Number Publication Date
JPH0990302A JPH0990302A (ja) 1997-04-04
JP3553222B2 true JP3553222B2 (ja) 2004-08-11

Family

ID=17082989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24201495A Expired - Lifetime JP3553222B2 (ja) 1995-09-20 1995-09-20 光変調器モジュール

Country Status (5)

Country Link
US (1) US5602672A (ja)
JP (1) JP3553222B2 (ja)
KR (1) KR100215232B1 (ja)
FR (1) FR2738926B1 (ja)
GB (1) GB2305511B (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1051069A (ja) * 1996-07-29 1998-02-20 Mitsubishi Electric Corp 光半導体装置
DE19719853A1 (de) * 1997-05-12 1998-11-19 Bosch Gmbh Robert Hochfrequenz-Halbleitermodul
US5987196A (en) * 1997-11-06 1999-11-16 Micron Technology, Inc. Semiconductor structure having an optical signal path in a substrate and method for forming the same
DE59901985D1 (de) 1998-05-26 2002-08-14 Infineon Technologies Ag Hochfrequenz-Lasermodul und Verfahren zur Herstellung desselben
US6057954A (en) * 1998-09-18 2000-05-02 Lucent Technologies Inc. Asymmetric inductive peaking for optoelectronic devices
US20010053165A1 (en) * 2000-03-09 2001-12-20 Xiaolu Wang Apparatuses and methods for generating optical signals
JP4199901B2 (ja) * 2000-03-10 2008-12-24 日本オプネクスト株式会社 光送信モジュール
JP4290314B2 (ja) * 2000-04-26 2009-07-01 Necエレクトロニクス株式会社 高周波回路及びそれを実装したモジュール、通信機
JP3975786B2 (ja) * 2002-03-12 2007-09-12 日本電気株式会社 光変調器励振回路
JP2004325495A (ja) * 2003-04-21 2004-11-18 Nec Compound Semiconductor Devices Ltd 光半導体装置、これを備える光通信用ボード及び光通信用モジュール
US6873449B1 (en) * 2003-09-05 2005-03-29 The Furukawa Electric Co., Ltd. Signal transmission line for an optical modulator
JP4762487B2 (ja) * 2003-09-12 2011-08-31 古河電気工業株式会社 光モジュール
KR100594063B1 (ko) 2004-01-15 2006-06-30 삼성전자주식회사 반도체 광소자와 그를 이용한 반도체 광패키지
US7144788B2 (en) * 2004-02-19 2006-12-05 Sumitomo Electric Industries, Ltd. Method for manufacturing a transmitting optical sub-assembly with a thermo-electric cooler therein
US7228014B2 (en) * 2004-03-11 2007-06-05 Avanex Corporation System for reducing the electrical return loss of a lithium niobate traveling wave optical modulator with low characteristic impedance
KR101122858B1 (ko) * 2004-05-14 2012-03-21 씨8 메디센서스, 인크. 가변 열 임피던스를 사용한 반도체 레이저의 파장 온도튜닝
JP2005338678A (ja) 2004-05-31 2005-12-08 Opnext Japan Inc 光変調器モジュール
JP4578164B2 (ja) * 2004-07-12 2010-11-10 日本オプネクスト株式会社 光モジュール
US7294904B1 (en) 2005-02-10 2007-11-13 Xilinx, Inc. Integrated circuit package with improved return loss
JP5381074B2 (ja) * 2008-12-16 2014-01-08 三菱電機株式会社 光変調装置および光変調装置の製造方法
JP6303481B2 (ja) * 2013-12-20 2018-04-04 セイコーエプソン株式会社 発光素子モジュール、量子干渉装置、原子発振器、電子機器および移動体
JP6497980B2 (ja) * 2015-03-04 2019-04-10 日本オクラロ株式会社 光送信モジュール及び光送受信モジュール
JP6218087B2 (ja) * 2015-12-25 2017-10-25 住友電工デバイス・イノベーション株式会社 光変調装置
CN106785886A (zh) * 2016-12-21 2017-05-31 武汉市观达科技有限责任公司 一种高速微带线装置
WO2020056662A1 (zh) * 2018-09-20 2020-03-26 华为技术有限公司 一种光电子组件及其制造方法
US10547158B1 (en) * 2018-10-31 2020-01-28 Avago Technologies International Sales Pte. Limited Optical communication device and system

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623534A (ja) * 1985-06-28 1987-01-09 Sharp Corp 光変調装置
US4761788A (en) * 1985-10-28 1988-08-02 American Telephone And Telegraph Company Stripline mount for semiconductor lasers
JP2917333B2 (ja) * 1989-11-30 1999-07-12 日本電気株式会社 光送信方法及び光送信装置
JPH04101484A (ja) * 1990-08-21 1992-04-02 Mitsubishi Electric Corp レーザ・ダイオード・パッケージ
EP0472221B1 (en) * 1990-08-24 1995-12-20 Nec Corporation Method for fabricating an optical semiconductor device
JP3008608B2 (ja) * 1991-10-31 2000-02-14 富士通株式会社 電界吸収型光変調器駆動方法
US5394260A (en) * 1992-02-03 1995-02-28 Kokusai Denshin Denwa Kabushiki Kaisha Optical pulse generator
JPH05327111A (ja) * 1992-05-20 1993-12-10 Fujitsu Ltd 半導体レーザ装置及びその製造方法
US5367530A (en) * 1992-05-29 1994-11-22 Sanyo Electric Co., Ltd. Semiconductor laser apparatus
JPH06230328A (ja) * 1993-02-04 1994-08-19 Nippon Telegr & Teleph Corp <Ntt> 電界吸収型光変調器の実装方法
KR950002137A (ko) * 1993-06-30 1995-01-04 세끼사와 다까시 모듈레이터 직접 분포형 귀환 레이저 다이오드 모듈 및 이를 사용한 장치
GB2292011B (en) * 1993-07-20 1997-11-05 Mitsubishi Electric Corp Semiconductor optical devices and methods for fabricating semiconductor optical devices
JPH07234390A (ja) * 1994-02-25 1995-09-05 Hitachi Ltd 高速光素子の実装法
EP0984534B1 (en) * 1994-03-18 2003-06-04 Fujitsu Limited Drive circuit of a semiconductor optical modulator

Also Published As

Publication number Publication date
FR2738926A1 (fr) 1997-03-21
GB9612959D0 (en) 1996-08-21
GB2305511B (en) 1997-09-24
GB2305511A (en) 1997-04-09
JPH0990302A (ja) 1997-04-04
US5602672A (en) 1997-02-11
FR2738926B1 (fr) 1998-10-23
KR100215232B1 (ko) 1999-08-16

Similar Documents

Publication Publication Date Title
JP3553222B2 (ja) 光変調器モジュール
US7366215B2 (en) Optical module
US10411432B2 (en) Optical transmitter providing coplanar line on carrier
US8218973B2 (en) Optical transmitter device and optical transmitter module
US6437899B1 (en) Opto-electric conversion semiconductor device
EP1617279B1 (en) Optical module
WO2016152152A1 (ja) 高周波伝送線路および光回路
US6823145B1 (en) Optical transmitter module
US20030156608A1 (en) Laser-diode module, optical transceiver and fiber transmission system
US6567439B1 (en) Radio-frequency laser module and a method for producing it
JPH10275957A (ja) 光半導体チップキャリア
KR0181896B1 (ko) 고속 광 모듈의 광대역화 장치
US20020105395A1 (en) DC block circuit and communication equipment
JP3823102B2 (ja) 光伝送モジュール
US6552365B2 (en) Photoelectric converting semiconductor device
US6856442B2 (en) Transmission line, optical module using the same and manufacturing method of optical module
US7196909B2 (en) AC coupling circuit having a large capacitance and a good frequency response
JPS62124780A (ja) 光半導体モジユ−ル
GB2260225A (en) High-frequency semiconductor hybrid integrated circuit device
US6788447B2 (en) Off-chip matching circuit for electroabsorption optical modulator
JP2002368325A (ja) 発光モジュール、光半導体素子、および、受光モジュール
JP2002350792A (ja) Ea変調器モジュール
US20210359761A1 (en) Optical semiconductor device, optical transmission module, and optical transceiver
JP4601161B2 (ja) 光電変換半導体装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

EXPY Cancellation because of completion of term