JP3551494B2 - データ記録方法及びその装置、データ再生方法及びその装置、データ記録再生方法並びに記録媒体 - Google Patents

データ記録方法及びその装置、データ再生方法及びその装置、データ記録再生方法並びに記録媒体 Download PDF

Info

Publication number
JP3551494B2
JP3551494B2 JP25843194A JP25843194A JP3551494B2 JP 3551494 B2 JP3551494 B2 JP 3551494B2 JP 25843194 A JP25843194 A JP 25843194A JP 25843194 A JP25843194 A JP 25843194A JP 3551494 B2 JP3551494 B2 JP 3551494B2
Authority
JP
Japan
Prior art keywords
data
parity
error
sector
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25843194A
Other languages
English (en)
Other versions
JPH08124318A (ja
Inventor
曜一郎 佐古
保 山上
学史 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP25843194A priority Critical patent/JP3551494B2/ja
Publication of JPH08124318A publication Critical patent/JPH08124318A/ja
Application granted granted Critical
Publication of JP3551494B2 publication Critical patent/JP3551494B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、例えば光ディスクドライブ等に適用して好適なデータ記録方法及びその装置、データ再生方法及びその装置、データ記録再生方法並びに記録媒体に関する。
【0002】
【従来の技術】
従来、光ディスクとしては、光磁気ディスク、相変化メディアとしての光ディスク、ライトワンスディスク、CD−ROM等が提案されている。これらの光ディスクは、書き込みが可能なディスクと、読み出し専用のディスクに大別することができる。
【0003】
読み出し専用ディスクとしてのCD−ROMは、光ディスクドライブでデータが記録されることはなく、周知のように、CD−ROMの製造時にデータが記録され、出荷後に光ディスクドライブで使用する際は、製造時に記録されたデータの読み出しだけである。
【0004】
また、上記光磁気ディスクに対して光ディスクドライブでデータを記録する場合や、上記CD−ROMに対して製造時にデータを記録する場合には、データに夫々エラー訂正用のパリティやエラーチェック用のCRC等のパリティが付加されている。従って、再生時においては、光磁気ディスクでもCD−ROMでも再生されたデータに対して、パリティにより、エラーチェックやエラー訂正処理が施される。
【0005】
このパリティとしては、リード・ソロモン符号を構成するためのパリティが知られている。リード・ソロモン符号は、通常、1シンボルを8ビット、データをkシンボルとしたとき、このkシンボルのデータにパリティが付加されて合計nシンボルの符号とされるものである。このとき、この誤り訂正用の符号の訂正能力を表す言葉としては、最小距離という言葉がある。
【0006】
例えば1シンボルが1ビットの場合においては、上記nシンボルは、nビットで表されるので、nシンボルがとり得る2進数のデータ列は2通りあることになる。一方、パリティを除くデータは2通りだけ必要となるので、上記2通りのデータ列から2通りのデータ列を取り出し、任意の取り出した2つのデータ列の間でdビットの異なるビットがあったとき、このdについて距離という。そして、上記2通りのデータ列について全て同様に距離を求めたときの最小値を最小距離と称している。この「最小距離」はディスタンスと呼ばれ、ディスタンスが大きく設定されて構成されたリード・ソロモン符号を、ディスタンスdが比較的大きいという意味で、(n、k、d)のLDC(ロング・ディスタンス・コード)と称している。
【0007】
一方、書き込み可能なディスクとしての光磁気ディスクは、製造時に行われるディスクサーティファイにおいてディフェクト(欠陥)セクタが検出された場合には、その欠陥セクタの隣のセクタを交替セクタとし、この情報を光磁気ディスクの所定のエリアに記録しておき、光磁気ディスクの再生時には、欠陥セクタの交替セクタを用いる。そして、出荷後にユーザがデータを記録したり記録したデータを再生するために、光磁気ディスクを使用する際、新たにディフェクトセクタが発生した場合には、欠陥セクタの交替セクタ専用の領域にその欠陥セクタの交替セクタを設定し、その交替セクタに本来欠陥セクタに記録すべきデータを記録すると共に、その情報を光磁気ディスクの所定のエリアに記録するようにされている。
【0008】
そして、更に上記バーストエラーに対処するために、パリティセクタと称されるセクタを1トラック(32セクタ)毎、或いは32トラック(32×32セクタ)毎に1箇所設け、1トラック或いは32トラック分のデータについて排他的論理和演算処理を行い、その結果得られたデータをパリティデータとし、このパリティデータを上記パリティセクタに記録しておき、再生時にバーストエラーが発生した場合、上記パリティセクタから読み出したパリティデータとバーストエラーの発生したセクタのデータとで排他的論理和演算処理を行うことによって、エラーとなったセクタのデータを回復する方法も採用されている。
【0009】
【発明が解決しようとする課題】
ところで、上述の説明から分かるように、例えばディスタンスdが17の場合は、エラー訂正可能な個数は最大で8個である。従って、9個以上連続してエラーとなるバーストエラーが発生した場合には、エラー訂正ができなくなり、誤ったデータのまま用いられてしまうという問題がある。そこで、ディスタンスを大きくするためにパリティを増加させれば良いが、その場合は記録データの冗長度が増し、結果としてディスクの記録容量が小さくなると共に、訂正処理に費やされる時間が増大するといった問題が生じる。
【0010】
光磁気ディスクやパーシャルディスクの書き込み可能領域については、上述した交替処理を行う方法を採用したり、或いは上記パリティセクタを用いる方法を採用することで上記問題を回避することができる。
【0011】
しかしながら、光磁気ディスクやパーシャルディスクの書き込み可能領域について上記パリティセクタを用いる方法を採用した場合、バーストエラーが発生した場合には、エラーの発生したセクタのデータに関連するパリティセクタのデータを読み込み、エラーの発生したセクタのデータと読み込んだパリティセクタのデータとで排他的論理和演算を行わなければならないので、バーストエラーが発生した場合にエラーの発生した1トラックまたは32トラックのデータについて生成されたパリティの記録されているパリティセクタを読み込むためにいわゆる1或いは2回転待ちを行わなければならず、結果としてエラーの処理に費やされる時間が長くなるという問題が生じる。
【0012】
更に、1トラックまたは32トラックにつき1つのパリティセクタを設けるようにしているので、記録するデータの大きさによってはパリティセクタが設けられない場合が生じる。例えば記録データの全データ量が1トラックに満たない場合にはパリティセクタは設けられず、また、記録データの全データ量が32トラック分+1トラック未満の場合には、この1トラック未満分のデータに対してのみパリティセクタが設けられず、結果としてパリティセクタが設けられなかったデータにバーストエラー等が生じた場合はエラー訂正不能となってしまうといった問題が生じる。
【0013】
一方、CD−ROMやパーシャルディスクの読み出し専用領域については上記交替処理を行う方法を採用することが殆ど不可能である。
【0014】
そこで、上記パリティセクタを用いる方法を採用することも考えられるが、バーストエラーが発生した場合には、やはり光磁気ディスクやパーシャルディスクの書き込み可能領域の場合にと同様に、エラーの処理に費やされる時間の増大とパリティセクタが設けられないデータにバーストエラーが発生したときにエラー訂正不能となる等の問題が生じる。
【0015】
本発明はこのような点を考慮してなされたもので、検出訂正ができないバーストエラーが発生した場合においても、効率良く訂正処理を行い、データの記録容量を減らすことなく、記録データに確実にバーストエラーを訂正することのできるパリティを付与して高速なアクセスとエラー訂正能力の向上と良好なデータの再生を実現することのできるデータ記録方法及びその装置、データ再生方法及びその装置、データ記録再生方法並びに記録媒体を提案しようとするものである。
【0016】
【課題を解決するための手段】
【0038】
この発明は、複数の所定単位からなる一連の記録データを用いてエラー検出若しくはエラー訂正用のパリティ生成用の演算が行われ、上記演算によってエラー検出若しくはエラー訂正用のパリティが生成され、上記一連の記録データが上記エラー検出若しくはエラー訂正用のパリティと共に所定単位毎に記録された記録媒体を再生するデータ再生装置であって、上記記録媒体から一連の記録データを所定単位毎に再生する再生手段と、上記再生手段からの所定単位毎の再生データを保持する第1の保持手段と、上記第1の保持手段に保持された上記再生手段からの所定単位毎の再生データにエラーが発生した場合、上記一連の記録データについて生成され記録されている上記エラー訂正用パリティのうち上記エラーが発生した範囲に対応したパリティを全て再生するようなされた第1の制御手段と、上記再生されたパリティを保持する第2の保持手段と、上記エラーが発生した範囲の記録データを再度再生するようなされた第2の制御手段と、上記第2の保持手段に保持された上記パリティと上記再生された記録データとを順次演算することにより上記エラーとなったデータを回復するエラー訂正手段と、上記エラー訂正手段によって回復されたデータを再生データとして出力する出力手段とを有することを特徴とするデータ再生装置である。
【0039】
この発明は、複数の所定単位からなる一連の記録データをN個の所定単位毎、且つ、N個に満たない端数分の所定単位があった場合にはその端数分の所定単位でエラー検出若しくはエラー訂正用のパリティ生成用の演算が行われ、上記演算によってエラー検出若しくはエラー訂正用のパリティが生成され、上記一連の記録データが上記エラー検出若しくはエラー訂正用のパリティと共に所定単位毎に記録された記録媒体を再生するデータ再生装置であって、上記記録媒体から一連の記録データを所定単位毎に再生する再生手段と、上記再生手段からの所定単位毎の再生データを保持する第1の保持手段と、上記第1の保持手段に保持された上記再生手段からの所定単位毎の再生データにエラーが発生した場合、当該所定単位の属する上記N個の所定単位若しくは上記N個に満たない端数分の所定単位について記録時に生成されているパリティのうち上記エラーが発生した範囲に対応したパリティを全て再生するようなされた第1の制御手段と、上記再生されたパリティを保持する第2の保持手段と、上記エラーが発生した範囲の記録データを再度再生するようなされた第2の制御手段と、上記第2の保持手段に保持された上記パリティと上記再生された記録データを用いて上記エラーとなった所定単位のデータを回復するエラー訂正手段と、上記エラー訂正手段によって回復されたデータを再生データとして出力する出力手段とを有することを特徴とするデータ再生装置である。
【0040】
この発明は、一連の記録データに対し、所定単位毎にエラー検出訂正用の第1のパリティが付加され、上記一連の記録データを用いてN個の所定単位のデータ毎に演算が行われて、エラー検出若しくはエラー訂正用の第2のパリティが生成され、演算を行うべき上記一連の記録データの所定単位の数がN個に満たない場合は、この端数分の所定単位のデータについて演算が行われて、エラー検出若しくはエラー訂正用の第2のパリティが生成され、上記一連の記録データに対し、所定単位毎にエラー検出用の第1のパリティが付加され、更にN個若しくはN個に満たない所定単位毎のデータに上記第2のパリティが付加されて記録された記録媒体を再生する再生装置であって、上記記録媒体から一連の記録データを所定単位毎に再生する再生手段と、上記再生手段からの所定単位毎の再生データを保持する第1の保持手段と、上記第1の保持手段に保持された上記記録媒体から所定単位毎にデータを再生したときにエラーとなったデータを上記第1のパリティを用いて訂正する第1のエラー訂正手段と、上記第1のエラー訂正手段において訂正不能となった場合に、少なくとも、エラーの発生した所定単位のデータの属する上記N個の所定単位若しくは上記N個に満たない端数分の所定単位について記録時に生成されているパリティのうち上記エラーが発生した範囲に対応した第2のパリティを全て再生するようなされた第1の制御手段と、上記再生されたパリティを保持する第2の保持手段と、上記エラーが発生した範囲の記録データを再度再生するようなされた第2の制御手段と、上記第2の保持手段に保持された上記パリティと上記再生された記録データを用いて上記エラーとなった所定単位のデータを回復する第2のエラー訂正手段と、上記第1若しくは第2のエラー訂正手段によって回復されたデータを再生データとして出力する出力手段とを有することを特徴とするデータ再生装置である。
【0049】
【作用】
【0071】
上述せる第23の発明によれば、複数の所定単位からなる一連の記録データを用いてエラー検出若しくはエラー訂正用のパリティ生成用の演算が行われ、上記演算によってエラー検出若しくはエラー訂正用のパリティが生成され、上記一連の記録データが上記エラー検出若しくはエラー訂正用のパリティと共に所定単位毎に記録された記録媒体104を再生するデータ再生装置であって、再生手段100、200により、上記記録媒体104から一連の記録データを所定単位毎に再生し、上記再生手段100、200からの所定単位毎の再生データにエラーが発生した場合、エラー訂正手段167、168により、上記一連の記録データについて生成され記録されているパリティと上記一連の記録データとの演算によって上記エラーとなったデータを回復し、上記エラー訂正手段167、168によって回復されたデータを出力手段160、161、162、163、164、171、172により再生データとして出力する。これによって、再生時においてエラーが発生したときには、複数の所定単位からなる一連の記録データを用いて生成され記録されたエラー検出若しくはエラー訂正用のパリティを用いてエラー訂正を行うことができる。
【0072】
上述せる第24の発明によれば、複数の所定単位からなる一連の記録データをN個の所定単位毎、且つ、N個に満たない端数分の所定単位があった場合にはその端数分の所定単位でエラー検出若しくはエラー訂正用のパリティ生成用の演算が行われ、上記演算によってエラー検出若しくはエラー訂正用のパリティが生成され、上記一連の記録データが上記エラー検出若しくはエラー訂正用のパリティと共に所定単位毎に記録された記録媒体104を再生するデータ再生装置であって、再生手段100、200により、上記記録媒体104から一連の記録データを所定単位毎に再生し、上記再生手段100、200からの所定単位毎の再生データにエラーが発生した場合、エラー訂正手段167、168により当該所定単位の属する上記N個の所定単位若しくは上記N個に満たない端数分の所定単位について記録時に生成されているパリティを用いて上記エラーとなった所定単位のデータを回復し、上記エラー訂正手段167、168によって回復されたデータを再生データとして出力手段160、161、162、163、164、171、172により出力する。これによって、再生時において、少なくとも再生時に行う制御に関連した情報を用いて各種制御を行い、複数の所定単位からなる一連の記録データの内のN個の所定単位、若しくはN個に満たない端数分の所定単位においてエラーが発生したときには、N個の所定単位、若しくはN個に満たない端数分の所定単位に対応するパリティを用いてエラー訂正を行うことができる。
【0073】
上述せる第25の発明によれば、一連の記録データに対し、所定単位毎にエラー検出訂正用の第1のパリティが付加され、上記一連の記録データを用いてN個の所定単位のデータ毎に演算が行われて、エラー検出若しくはエラー訂正用の第2のパリティが生成され、演算を行うべき上記一連の記録データの所定単位の数がN個に満たない場合は、この端数分の所定単位のデータについて演算が行われて、エラー検出若しくはエラー訂正用の第2のパリティが生成され、上記一連の記録データに対し、所定単位毎にエラー検出用の第1のパリティが付加され、更にN個若しくはN個に満たない所定単位毎のデータに上記第2のパリティが付加されて記録された記録媒体104を再生する再生装置であって、再生手段100、200により、上記記録媒体104から一連の記録データを所定単位毎に再生し、上記記録媒体104から所定単位毎にデータを再生したときに第1のエラー訂正手段167によってエラーとなったデータを上記第1のパリティを用いて訂正し、上記第1のエラー訂正手段167において訂正不能となった場合に、第2のエラー訂正手段168により、エラーの発生した所定単位のデータの属する上記N個の所定単位若しくは上記N個に満たない端数分の所定単位について記録時に生成されている第2のパリティを用いて上記エラーとなった所定単位のデータを回復し、上記第1若しくは第2のエラー訂正手段167若しくは168によって回復されたデータを再生データとして出力手段160、161、162、163、164、171、172により出力する。これによって、再生時において、エラーが発生したときに先ず第1のパリティを用いてエラー訂正を行い、その結果訂正不能となった場合には、複数の所定単位からなる一連の記録データの内のN個若しくはN個に満たない所定単位のデータを用いて生成され記録されたエラー検出若しくはエラー訂正用の第2のパリティを用いてエラー訂正を行うことができる。
【0082】
【実施例】
以下に、図を順次参照して本発明誤り訂正方法の一実施例について詳細に説明する。
【0083】
本発明誤り訂正方法の一実施例の説明は、次に示す項目説明を各項目の先頭に記載し、各項目について次に示す順序で説明する。
【0084】
*第1実施例
A.本発明データ記録方法及びその装置、データ記録再生方法が適用される光ディスクのスタンパを作成するための記録システムの構成及びその動作説明(図1参照)
B.データの記録フォーマットの一例の説明(図2参照)
C.図1に示した記録システムの動作説明(図3及び図4参照)
D.光ディスクのフォーマットの説明(図5参照)
E.図5に示した光ディスクの各領域の大きさと各領域に用いられるデータクロックの周波数の一例の説明(図6参照)
F.図5に示した光ディスクのセクタフォーマットの一例の説明(図7及び図8参照)
G.本発明データ記録方法及びその装置、データ再生方法及びその装置、データ記録再生方法並びに記録媒体が適用される光ディスクドライブの構成及びその動作説明(図9参照)
H.図9に示した光ディスクドライブのドライブコントローラの構成及びその動作説明(図10参照)
I.図10に示したドライブコントローラのコントローラの構成及びその動作説明(図11参照)
J.本発明データ再生方法及びその装置、データ記録再生方法の一実施例による再生時の動作説明(図12、図13及び図14参照)
K.本発明データ再生方法及びその装置、データ記録再生方法の一実施例による再生時にバーストエラーが発生した場合の動作説明(図15参照)
*第2実施例
L.パリティセクタデータの生成元のデータ量の説明
*第3実施例
M.LDCのパリティを含めてパリティセクタデータを生成する場合の説明
*第4実施例
N.図1に示した記録システムにおいてLDCのパリティの付加、パリティセクタデータの付加を行った後にそのままレーザー駆動装置16に供給する場合の説明
【0085】
[第1実施例]
【0086】
A.本発明データ記録方法及びその装置、データ記録再生方法が適用される光ディスクのスタンパを作成するための記録システムの構成及びその動作説明(図1参照)
【0087】
図1は本発明データ記録及び及びその装置、データ記録再生方法が適用される光ディスク、特に、CD−ROMやパーシャルディスク(読み出し専用領域のみ)を製造するためのスタンパを作成に必要な記録システムの構成例を示す構成図である。
【0088】
〔接続及び構成〕
図において、1はCPU、2はこのCPU5のバス(アドレス、データ及びコントロールバスからなる)、3は図2及び図3を用いて説明するスタンパ作成時における処理を行うためのプログラムデータ、ディスクオペレーティングシステムのプログラムデータ、記録すべきデータを処理するためのプログラムデータ(例えば音声データの処理プログラムや映像データの処理プログラム等)やパラメータデータ等が記憶されているROM、4はROM3に記憶されているプログラムデータ等のワーク用のエリアとして用いられるRAM、5はキーボードインターフェースとしてインターフェース回路、6は一般にパーソナルコンピュータやワークステーション等で用いられるいわゆるフルキーボード(但し、トラックボールが装備されているものとする)、7はディスプレイインターフェースとしてのインターフェース回路、8はディスプレイ(例えば液晶ディスプレイ等)、9は入出力ポートである。これらROM3、RAM4、インターフェース回路5及びキーボード6、インターフェース回路7及びディスプレイ8並びに入出力ポート9を、バス2を介してCPU1に接続する。
【0089】
10は例えばVTR、ハードディスクレコーダ、アンプ等信号源としての各種機器が接続される入力端子である。また、13はスイッチで、このスイッチ13の一方の固定接点aを入出力ポート9の記録すべきデータの出力端に接続し、このスイッチ13の他方の固定接点bを後述するパリティセクタ生成回路18のパリティデータ出力端に接続し、このスイッチ13の可動接点cを後述するLDC/ECCエンコーダ14の入力端に接続する。
【0090】
このLDC/ECCエンコーダ14のエンコード後のデータ出力端を入出力ポート9の入力端及びパリティセクタ生成回路18の入力端に接続する。また、入出力ポートの制御信号出力用の出力端を夫々LDC/ECCエンコーダ14及びパリティセクタ生成回路18の各制御信号入力用の入力端に接続する。
【0091】
また、入出力ポート9の記録用データの出力端をバッファ15の入力端に接続し、このバッファ15の出力端をレーザー駆動装置16の入力端に接続し、このレーザー駆動装置の入出力端(CPU5からの制御信号、CPU5に対する状態報知信号の入出力用)と入出力ポート9の入出力端を接続し、このレーザー駆動装置16の駆動信号の出力端をレーザー出力器17の入力端に接続する。
【0092】
ここで、レーザー駆動装置16はバッファ15を介して供給される記録用のデータに基いた駆動信号を生成し、レーザー出力器17に供給する。また、レーザー出力器17は、レーザー駆動装置16からの駆動信号に基いて、例えばガラス板上に形成されたレジスト層にレーザー光の照射を行ってレジスト層を溶融することにより、“1”または“0”の情報をレジスト層に記録する。このようにしてレジスト層にデータの記録が行われた後、この原盤は、そのレジスト層の表面にニッケル等でメッキ処理が施され、更に、このニッケルの層が原盤から離されていわゆるスタンパとされる。一般的には、このスタンパにポリカーボメート等の樹脂を圧着した後、スタンパから樹脂を剥し、この剥した樹脂にアルミ等の材料を蒸着し、この蒸着により形成されたアルミ層上に保護膜を形成して1枚のディスクが製造される。
【0093】
11は例えばSCSI(Small Computer Systems Interface)等のインターフェース回路で、このインターフェース回路11を介して入出力ポート9とハードディスクドライブ12を接続する。ここでこのハードディスクドライブ12は例えば少なくともディスクの1枚分の記録容量を越える記録容量を有し、上記スタンパを制作する際に記録するデータを保持するものである。
【0094】
LDC/ECCエンコーダ14は、図に示すように、少なくとも2セクタ(本例においては1セクタを2352バイトとしている)分の記憶容量を有するRAM14aと、このRAM14aに書き込んだ入力データを制御することにより、パリティの生成及びCRCのパリティの生成、これらのパリティの付加を行うRAMコントローラ14bで構成する。
【0095】
パリティセクタ生成回路18は、LDC/ECCエンコーダ14からの記録すべきデータを記憶するためのRAM18aと、このRAM18aに対するアクセス並びに排他的論理和演算を行う演算回路18bで構成する。
【0096】
ここで、演算回路18bは、一連のデータについて1000セクタ毎に排他的論理和演算処理を行い、この結果得られたデータを当該1000セクタ分のデータのパリティセクタデータとして得、一連のデータが1000セクタ分に満たない場合や、一連のデータを1000セクタ毎に分けた場合の最後のデータが1000セクタに満たない場合には、1000セクタに満たないデータについて排他的論理和演算処理が終了した時点に得られる結果をその1000セクタに満たないデータのパリティセクタデータとして得る。
【0097】
本例においては、一連のデータを1つのファイルとして定義する。また、ここでいうファイルとは、例えばDOS(ディスクオペレーティングシステム)等におけるファイルの概念と同様のもので、DOS或いはDOSを用いた各種プログラムによってアクセスする最小単位であり、本例では、プログラムファイル、静止画像データファイル、動画像データファイル、音声ファイル等を扱うものとする。
【0098】
例えば1つのファイルが9800セクタ分のデータで構成されている場合、1000セクタ毎に当該1000セクタの排他的論理和演算によって得られたパリティセクタデータがパリティデータとして付加されるが、端数となる800セクタ分のデータについても排他的論理和演算が行われ、この800セクタ分のデータについて排他的論理和演算が行われて得られたパリティセクタデータが、この800セクタ分のデータのパリティデータとして付加される。
【0099】
〔動作〕
上記記録システムを用いてスタンパを制作する場合、先ずROM7に記憶されているディスクオペレーティングシステムのプログラムデータがRAM8のメインメモリにロードされ、この後、記録するデータの処理用のプログラムがロードされる。記録するデータの処理用のプログラムがロードされると、入力端子10を介して上記信号源からの記録すべきデータが供給される。
【0100】
オペレータがディスプレイ上に表示された処理プログラムによる画像上で例えばハードディスクレコーディングの開始を上記キーボード6のトラックボールの操作等によって指示すると、上記信号源から入力端子10を介して供給されるデータが入出力ポート9及びインターフェース回路11を介してハードディスクドライブ12に供給され、このハードディスクドライブ12のハードディスクの記録面上にファイル毎に記録される。
【0101】
そして、この後、オペレータがディスプレイ上に表示された処理プログラムによる画像上において、記録すべきファイルデータに対する各種処理を施す旨の指示をキーボード6或いはこのキーボード6のトラックボール等で行い、最終的に製品としての光ディスクの記録データを得るのである。このようにして記録データすべきファイルデータを得た後は、再びハードディスクドライブ12のハードディスク12にファイル毎に記録される。
【0102】
以上の前処理が行われた後は、記録すべきファイルのセクタデータに対してLDCのパリティを付加する処理、続いて、ファイルのセクタデータの排他的論理和演算を行って得られたデータをパリティセクタ用のパリティセクタデータとし、このパリティセクタデータを上記LDCのパリティの付加されたファイル毎のデータの最後尾に付加する処理が行われ、この全ての処理の済んだ最終的なファイルデータがハードディスクドライブ12のハードディスク上に製品としての光ディスクと同様のフォーマットで記録され、この後、ハードディスクからこの記録データがファイル毎に順次読み出され、最終的にレーザー出力器から駆動信号として出力されることによって、スタンパを作成するための原盤のレジスト上に記録されることになる。以下、以上簡単に説明した動作について詳述する。
【0103】
ハードディスクドライブ12のハードディスク上に記録された編集処理等の済んだ各ファイルのセクタデータに対するLDCのパリティの付加及びパリティセクタデータの付加のモードとなると、CPU1は入出力ポート9を介してスイッチ13にスイッチング制御信号を供給し、スイッチ13の可動接点cを固定接点aに接続させる。続いてハードディスクドライブ12のハードディスクからデータが読み出され、読み出されたデータがインターフェース回路11、入出力ポート9及びLDC/ECCエンコーダ14に供給される。
【0104】
LDC/ECCエンコーダ14は入力されたデータに対してセクタ毎に順次LDCのパリティの生成と生成したパリティの付加を行い、パリティの付加を終了したデータを順次入出力ポート9及びパリティセクタ生成回路18に夫々供給する。CPU1はLDC/ECCエンコーダ14から入出力ポート9を介して供給されるデータをインターフェース回路11を介してハードディスクドライブ12に供給する。ハードディスクドライブ12に供給されたデータはハードディスクドライブ12のハードディスク上に記録される。
【0105】
一方、パリティセクタ生成回路18はLDC/ECCエンコーダ14から供給されるデータの内、パリティを除いたセクタデータをRAM18aに書き込む。尚、最初の書き込みのみ、演算回路18bによる演算処理は行われない。この演算回路18bは少なくとも2つ以上のセクタデータを用いて排他的論理和演算を行う回路なので、最初のセクタデータをRAM18aに書き込んだときには次のセクタデータが供給されていないため、演算を行うことができないからである。
【0106】
さて、2番目のセクタデータについても上述と同様にLDCのパリティが生成され、このパリティが付加された後にハードディスク上に記録される。一方、この2番目のセクタデータはパリティセクタ生成回路18にも供給される。このとき、既にRAM18aには最初のセクタデータが記憶されているので、演算回路18bはRAM18aから最初のセクタデータを読み出し、読み出した最初のセクタデータと、LDC/ECCエンコーダ14から供給された2番目のセクタデータとで排他的論理和演算を行い、その結果得られたデータをパリティセクタデータとしてRAM18aに書き込む。このとき、演算回路18bは、排他的論理和演算を行って得られたデータを、RAM18aの前のデータ(この場合は最初のセクタデータ)の記憶領域に上書きする。排他的論理和演算を行って新たな演算結果が得られた場合、RAM18aに記憶されているデータは不要となるからである。
【0107】
3番目のセクタデータについても上述と同様にLDCのパリティが生成され、このパリティが付加された後にハードディスク上に記録される。一方、この3番目のセクタデータはパリティセクタ生成回路18にも供給される。このとき、既にRAM18aには最初のセクタデータと2番目のセクタデータとの排他的論理和演算結果としてのパリティセクタデータが記憶されているので、演算回路18bはRAM18aからパリティセクタデータを読み出し、読み出したパリティセクタデータと、LDC/ECCエンコーダ14から供給された3番目のセクタデータとで排他的論理和演算を行い、その結果得られたデータをパリティセクタデータとしてRAM18aに書き込む。このとき、演算回路18bは、排他的論理和演算を行って得られたデータを、RAM18aの前のデータ(この場合は最初のセクタデータと2番目のセクタデータとの排他的論理和演算によって得られたパリティセクタデータ)の記憶領域に上書きする。
【0108】
以下同様に、1000セクタ分のデータが全てハードディスク12のハードディスク上に記録され、RAM18aにその全てのセクタデータの排他的論理和演算結果としてのパリティセクタデータが記憶される時点まで上述と同様の処理が行われる。CPU1は処理中のファイルの全セクタ数を予め認識しているので、1000セクタ目のセクタデータをLDC/ECCエンコーダ14に供給するときに、この1000セクタ目のデータが1000セクタ目であることを示す制御信号をLDC/ECCエンコーダ14並びにパリティセクタ生成回路18に夫々供給する。
【0109】
CPU1は、当該ファイルの1000セクタ目のセクタデータのLDC/ECCエンコーダ14及びパリティセクタ生成回路18への送出が終了した時点で、スイッチ13にスイッチング制御信号を供給し、スイッチ13の可動接点cを他方の固定接点bに接続させる。一方、パリティセクタ生成回路18は、1000セクタ目のセクタデータとRAM18aに記憶されているパリティセクタデータ(999セクタ目のセクタデータまでの全セクタデータの排他的論理和演算結果)との排他的論理和演算を行って、1000セクタ分の全セクタデータの排他的論理和演算結果としてのパリティセクタデータを得ると、このパリティセクタデータをスイッチ13を介してLDC/ECCエンコーダ14に供給する。
【0110】
CPU1はパリティセクタ生成回路18からLDC/ECCエンコーダ14へのパリティセクタデータの転送が終了した時点に再びスイッチ13にスイッチング制御信号を供給し、スイッチ13の可動接点cを一方の固定接点aに接続させる。
【0111】
LDC/ECCエンコーダ14はパリティセクタ生成回路18から供給されたパリティセクタデータに基いてLDCのパリティを生成し、このパリティをパリティセクタデータに付加した後、このパリティを付加したパリティセクタデータを入出力ポート9に供給する。
【0112】
CPU1は入出力ポート9に供給された当該ファイルのパリティセクタデータをこのパリティセクタデータに付加されたLDCのパリティと共に、インターフェース回路11を介してハードディスクドライブ12に供給する。ハードディスクドライブ12に供給されたデータはハードディスクドライブ12のハードディスク上の1000セクタ目のセクタデータの次の位置に記録される。そして、以下同様にして、1つのファイルのデータについて、1000セクタ毎にパリティセクタデータが付加されて記録され、最後の1000セクタに満たない数の端数のセクタデータについても上述と同様にパリティセクタデータが付加されて記録される。
【0113】
以上説明したようにして、1枚の光ディスク上に記録すべきファイルデータが順次ハードディスク上に記録され、最終的に、ハードディスク上には、製品として得られる光ディスク上におけるデータ記録フォーマットと略同様のフォーマットで多数のファイルデータが記録される。そして、続いて、スタンパの制作のための処理が行われる。
【0114】
スタンパの制作のための処理は比較的容易である。スタンパの制作自体は既に周知であり、多くの方法が採用されている。オペレータがディスプレイ8上に表示されたスタンパの制作のための画像上において、キーボード6のトラックボール等を操作することにより、ハードディスクドライブ12のハードディスク上からファイル毎に記録すべきデータが読み出される。ハードディスクドライブ12のハードディスクから読み出されたデータはインターフェース回路11及び入出力ポート9を介してバッファ15に一旦蓄えられた後に、レーザー駆動装置16に供給されて駆動信号とされた後にレーザー出力器17に供給され、データの“1”、”0”に基いてレーザー出力器17からレーザー光として出力され、レジスト上に記録される。全てのデータがレジスト上に記録された後は、上述したように、スタンパが制作され、更にこのスタンパによって同じデータの記録された多数の光ディスクが製造される。
【0115】
B.データの記録フォーマットの一例の説明(図2参照)
【0116】
図2は本発明データ記録方法及びその装置、データ記録再生方法の一実施例の説明に供するデータの記録フォーマットの一例を説明するための説明図である。
【0117】
この図においては、記録すべきファイルが3つ有り、図各ファイルのセクタ数が夫々異なる場合を示している。図においてFILE1、FILE2、FILE3は夫々ファイルを示し、Sa1〜Sa20は夫々ファイルFILE1のセクタデータDa1〜Da20並びにこれらセクタデータDa1〜Da20に夫々付加されたLDCのパリティLDCa1〜LDCa20からなるセクタ、SapはファイルFILE1のセクタSa1〜Sa20の全データの排他的論理和演算によって得られたパリティセクタデータPDaとこのパリティセクタデータPDaに付加されたLDCのパリティLDCaPからなるセクタである。
【0118】
また、Sb1〜Sb100は夫々ファイルFILE2のセクタデータDb1〜Db100並びにこれらセクタデータDb1〜Db100に夫々付加されたLDCのパリティLDCb1〜LDCb100からなるセクタ、SbpはファイルFILE2のセクタSb1〜Sb100の全データの排他的論理和演算によって得られたパリティセクタデータPDbとこのパリティセクタデータPDbに付加されたLDCのパリティLDCbPからなるセクタである。
【0119】
また、Sc1〜Sc1500は夫々ファイルFILE3のセクタデータDc1〜Dc1500並びにこれらセクタデータDc1〜Dc1500に夫々付加されたLDCのパリティLDCc1〜LDCc1500からなるセクタ、Scp1はファイルFILE3のセクタSc1〜Sc1000の全データの排他的論理和演算によって得られたパリティセクタデータPDc1とこのパリティセクタデータPDc1に付加されたLDCのパリティLDCcP1からなるセクタ、Scp2はファイルFILE3のセクタSc1001〜Sc1500の全データの排他的論理和演算によって得られたパリティセクタデータPDc2とこのパリティセクタデータPDc2に付加されたLDCのパリティLDCcP2からなるセクタである。
【0120】
上述したように、本例においては、記録すべきファイルデータについて1000セクタ分のセクタデータ毎にパリティセクタデータを生成し、このパリティセクタデータを生成元の1000セクタ分のセクタデータに付加するようにし、端数のセクタデータについても同様にパリティセクタデータを生成してこのパリティセクタデータを生成元の端数のセクタデータに付加するようにする。
【0121】
FILE1は全セクタが20個であるから、端数となる。この場合においては、セクタSa1〜セクタSa20の各セクタデータDa1〜Da20の排他的論理和演算が行われ、その結果得られたパリティセクタデータPDaと、このパリティセクタデータPDaで生成されたLDCのパリティデータLDCaPからなるパリティセクタSapがファイルFILE1のセクタSa1〜Sa20に付与される。
【0122】
この場合の演算式は次の(式1)で表すことができる。
【0123】
Da1(Sa1) XOR Da2(Sa2) XOR・・・・XOR Da20(Sa20)=PDa(Sap)・・・(式1)
但し、XORは排他的論理和
【0124】
FILE2は全セクタが100個であるから、端数となる。この場合においては、セクタSb1〜セクタSb100の各セクタデータDb1〜Db100の排他的論理和演算が行われ、その結果得られたパリティセクタデータPDbと、このパリティセクタデータPDbで生成されたLDCのパリティデータLDCbPからなるパリティセクタSbpがファイルFILE2のセクタSb1〜Sb100に付与される。
【0125】
この場合の演算式は次の(式2)で表すことができる。
【0126】
Db1(Sb1) XOR Db2(Sb2) XOR・・・・XOR Db100(Sb100)=PDb(Sbp)・・・(式2)
但し、XORは排他的論理和
【0127】
FILE3は全セクタが1500個であるから、1000セクタと端数(500セクタ)となる。この場合においては、セクタSc1〜セクタSc1000の各セクタデータDc1〜Dc1000の排他的論理和演算が行われ、その結果得られたパリティセクタデータPDc1と、このパリティセクタデータPDc1で生成されたLDCのパリティデータLDCcP1からなるパリティセクタScp1がファイルFILE3のセクタSc1〜Sc1000に付与され、続いて、セクタSc1001〜セクタSc1500の各セクタデータDc1001〜Dc1500の排他的論理和演算が行われ、その結果得られたパリティセクタデータPDc2と、このパリティセクタデータPDc2で生成されたLDCのパリティデータLDCcP2からなるパリティセクタScp2がファイルFILE3のセクタSc1001〜Sc15000に付与される。
【0128】
この場合の演算式は次の(式3)及び(式4)で表すことができる。
【0129】
Dc1(Sc1) XOR Dc2(Sc2) XOR・・・・XOR Dc1000(Sc1000)=PDc1(Scp1)・・・(式3)
Dc1001(Sc1001) XOR Dc1002(Sc2002)XOR・・・・XOR Dc1500(Sc1500)=PDc2(Scp2)・・・(式4)
但し、「XOR」は排他的論理和
【0130】
C.図1に示した記録システムの動作説明(図3及び図4参照)
【0131】
図3及び図4は本発明データ記録方法及びその装置、データ記録再生方法の一実施例の説明に供する記録時の動作を説明するためのフローチャートである。
【0132】
ステップS1ではnに“1”を代入する。そしてステップS2に移行する。
【0133】
ステップS2ではセクタnの割り当てデータをリードする。そしてステップS3に移行する。このステップS2ではハードディスクドライブ11のハードディスク上に記録されているファイルのセクタデータが読み出される。
【0134】
ステップS3ではセクタnの割り当てデータにECCを付加し、記録用のデータとする。そしてステップS4に移行する。このステップS3ではLDC/ECCエンコーダ14がセクタデータからLDCのパリティを生成し、このパリティをセクタデータに付加する。
【0135】
ステップS4ではハードディスクに記録する。そしてステップS5に移行する。
【0136】
ステップS5ではn≧2か否かを判断し、「YES」であればステップS8に移行し、「NO」であればステップS6に移行する。このステップS5においてn≧2を判断するのは、ファイルの最初のセクタデータを図1に示したRAM18aに書き込んだ時点においては排他的論理和演算を行えないので、2番目以降のセクタデータと処理を分けるためである。
【0137】
ステップS6ではn=n+1とする。つまり、nを“1”だけインクリメントする。そしてステップS7に移行する。
【0138】
ステップS7ではRAMに記録データを書き込む。そして再びステップS2に移行する。ここでいうRAMは図1に示したRAM18aである。
【0139】
ステップS5において「YES」の場合とは、nが“2”以上となった場合であり、この場合には、ステップS8に移行する。そしてステップS8ではRAMに記憶されている記録用データと現在の記録用データの排他的論理和演算を行う。そしてステップS9に移行する。このステップS8では、図1に示したRAM18aに記憶されている先頭のセクタデータ若しくはパリティセクタデータとの排他的論理和演算が演算回路18bによって行われる。
【0140】
ステップS9では演算の結果をRAMに書き込む。そして図4に示すフローチャートのステップS10に移行する。このステップS9では、ステップS8において得られた排他的論理和演算の結果としてのデータがRAM18aに書き込まれる。
【0141】
ステップS10ではn=n+1を行う、そしてステップS11に移行する。
【0142】
ステップS11ではn=1001か否かを判断し、「YES」であればステップS13に移行し、「NO」であればステップS12に移行する。このステップS11でnが“1001”か否かを判断するのは、上述したように、1000セクタ毎にパリティセクタデータを付加するためである。
【0143】
ステップS12では終了か否かを判断し、「YES」であればステップS13に移行し、「NO」であれば再びステップS2に移行する。このステップS12において終了か否かを判断するのは、パリティセクタデータを付加すべきファイルの最後のデータが1000セクタに満たない場合にも対応するためである。
【0144】
ステップS13ではRAMに記憶されている排他的論理和演算の結果のデータをパリティセクタのパリティデータとしてセットする。そしてステップS14に移行する。このステップS13ではパリティセクタ生成回路18のRAM18aに記憶されているデータをパリティセクタのパリティセクタデータとし、このパリティデータを1000セクタ目のセクタデータ若しくは1000セクタに満たない最終データに付加する。
【0145】
ステップS14ではパリティデータにECCを付加し記録用のデータとする。そしてステップS15に移行する。このステップS14ではステップS13においてパリティセクタのパリティセクタデータとされたデータに基いて、図1に示したLDC/ECCエンコーダ14においてLDCのパリティを生成し、生成したLDCのパリティをパリティセクタデータに付加して記録用のデータとする。
【0146】
ステップS15ではハードディスクに記録する。そしてステップS16に移行する。
【0147】
ステップS16では全ファイル終了か否かを判断し、「YES」であれば終了し、「NO」であれば再び図3に示したフローチャートのステップS1に移行する。このステップS16ではスタンパを制作する際に必要なファイル全てについて上記処理、即ち、LDCのパリティの付加及びパリティセクタデータの付加が終了したか否かを判断する。
【0148】
D.光ディスクのフォーマットの説明(図5参照)
【0149】
図5は本発明データ記録方法及びその装置、データ再生方法及びその装置、データ記録再生方法並びに記録媒体の一実施例の説明に供する光ディスクのフォーマットの一例を示す説明図である。
【0150】
図に示すように、光ディスク4上に光ディスク4の最外周から最内周に向かって、GCP(グレー・コード・パート)バンド、CTL(コントロール)領域、TEST(テスト)領域、BAND(バンド)0、BAND1、・・・・BAND15、TESTエリア、CTL領域、GCPバンドが設定される。尚、GCPはディスクの種類を示す付加情報やアドレス情報が記録される領域で、ピットパターンがグレーコードで形成された領域であり、光学ブロック8が光ディスク4上のトラックを横切ったときにおいても読みとりができるようにされた領域である。また、CTL領域はメディアタイプを示す情報が記録される領域、TEST領域は試し書きを行うための領域である。
【0151】
E.図5に示した光ディスクの各領域の大きさと各領域に用いられるデータクロックの周波数の一例の説明(図6参照)
【0152】
図6は図5に示した光ディスクの具体的フォーマットの一例を示す説明図である。図において、一番上の欄のGCPが図5に示した光ディスク4の最外周のGCPに対応し、以下順に上の欄から下の欄までが、図5に示した光ディスク4の最外周から最内周の各領域に夫々対応する。
【0153】
尚、本例においては、ゾーンCAVを用いた場合を例にとり説明するので、図に示すように、データクロックはゾーン毎に異なり、各領域の初めの半径と終わりの半径に対応した周波数が選定されている。
【0154】
F.図5に示した光ディスクのセクタフォーマットの一例の説明(図7及び図8参照)
【0155】
図7及び図8は、セクタフォーマットの一例を示す説明図である。既に説明したように、光ディスク4が光磁気ディスクやライトワンスディスクの場合や、パーシャルディスク(書き込み可能領域のみ)の場合においては、以下に示すセクタフォーマットを構成する各データは図9を参照して後に説明する光ディスクドライブによって記録され、光ディスク4がCD−ROMの場合やパーシャルディスク(読み出し専用領域のみ)の場合においては、以下に示すセクタフォーマットを構成する各データは項目Aから項目Cにおいて説明したように、ディスクの製造時に記録される。
【0156】
図7及び図8において、iはコードワード(図においては「行」)を示し、jは夫々バイトを示し、実線の矢印は書き込み方向を示し、先頭にDのついている符号はデータを示し、UDはアンディファインド(以下、未定義領域と記述する)を示し、CRC1〜CRC8はデータD0〜D2047及び未定義領域UDのデータのエラーチェック用のパリティを示す。
【0157】
また、先頭にEのついている符号はデータD0〜D2047、未定義領域UD及びCRC1〜8の縦方向に対するリード・ソロモン符号のパリティである。即ち、パリティ(E1、1)、(E1、2)、・・・・、(E1、16)は、データD0、D16、D32、D48、・・・・D2032、i=2〜0且つj=0の未定義領域UDに対するパリティ、パリティ(E2、1)、(E2、2)、・・・・、(E2、16)は、データD1、D17、D33、D49、・・・・D2033、i=2〜0且つj=1の未定義領域UDに対するパリティ、・・・・パリティ(E9、1)、(E9、2)、・・・・、(E9、16)は、データD8、D24、D40、D56、・・・・D2040、i=2〜1且つj=8の未定義領域UD及びパリティCRC1に対するパリティ、・・・・パリティ(E16、1)、(E16、2)、(E16、2)、・・・・(E16、16)は、データD15、D31、D47、D63、・・・・D2047、i=2〜1且つj=15の未定義領域UD及びパリティCRC8に対するパリティである。
【0158】
ここで、パリティ(E1、1)〜パリティ(E16、16)は、各縦方向の長さが147バイト、パリティを生成するためのデータの各縦方向の長さが131バイト、パリティの縦方向の長さが16バイトであるからディスタンスは17となり、従って(147、131、17)のリード・ソロモン符号となる。
【0159】
各データ、未定義領域UD、パリティ全てのバイト数は、iが130〜−16、jが0〜15であるから、16バイト×147=2352バイトとなる。
【0160】
G.本発明データ記録方法及びその装置、データ再生方法及びその装置、データ記録再生方法並びに記録媒体が適用される光ディスクドライブの構成及びその動作説明(図9参照)
【0161】
図9は本発明誤り訂正方法が適用される光ディスクドライブの構成例を示す構成図である。この光ディスクドライブは、光磁気ディスク及びライトワンスディスクに対するデータの記録及びデータの再生、CD−ROMからのデータの読み出し、書き込み読み出し可能領域と読み出し専用領域からなるいわゆるパーシャルROMの書き込み読み出し可能領域に対するデータの書き込み及び読み出し、並びに読み出し専用領域からのデータの読み出しを行うことができるものである。尚、CD−ROMやパーシャルディスク等の読み出し専用ディスクや読み出し専用領域を有するディスクの場合は、これらの読み出し専用領域はディスクの製造時に記録される。
【0162】
〔接続及び構成〕
図において、100は光ディスク104に対するデータの記録、光ディスク104からのデータの再生を行うためのドライブ、200はこのドライブ100を制御するドライブコントローラ、300はこのドライブコントローラ200のSCSI(Small Computer Systems Interface)専用の入出力端子io1を介して接続され、ドライブコントローラ200を介して光ディスク104に対するアクセスを行うホストコンピュータである。
【0163】
ここで、上記光ディスク104としては、光磁気ディスク、相変化メディアとしての光ディスク、ライトワンスディスク、書き込み可能領域(RAM)と読み出し専用領域(ROM)を有するパーシャルディスク、CD−ROM等が使用可能である。
【0164】
ドライブ100は、光ディスク104をローディングするためのローディング機構105、ローディング機構105によりローディングされた光ディスク104を回転させるためのスピンドルモータ106、このスピンドルモータ106を駆動するドライバ107、光学ブロック108、この光学ブロック108のレーザーダイオード113を駆動するドライバ114、この光学ブロック108からの再生信号等をI−V(電流/電圧)変換し、その電圧を複数の系に供給するI−V/マトリクスアンプ116、光ディスク104に磁界を与えるための磁気ヘッド117及びこの磁気ヘッド117を駆動するためのドライバ118で構成される。
【0165】
光学ブロック108は、光ディスク104にレーザーダイオード113からのレーザー光を照射するための対物レンズ109、光学ブロック108を光ディスク104の径方向に移動させるためのスライドモータ110、トラッキング用のガルバノモータ111、フォーカス用のフォーカスアクチュエータ112、レーザーダイオード113で構成される。
【0166】
磁気ヘッド117の駆動用のドライバ118は入力端子1i1を介してドライブコントローラ200の出力端子2o1に接続され、レーザーダイオード113の駆動用のドライバ114は入力端子1i2及び1i3を夫々介してドライブコントローラ200の出力端子2o2及び2o3に接続され、I−V/マトリクスアンプ116は出力端子1o1、1o2、1o3、1o4、1o5を夫々介してドライブコントローラ200の入力端子2i1、2i2、2i3、2i4、2i5に接続され、フォーカスアクチュエータ112は入力端子1i4を介してドライブコントローラ200の出力端子2o4に接続され、ガルバノモータ111は入力端子1i5を介してドライブコントローラ200の出力端子2o5に接続され、スライドモータ110は入力端子1i6を介してドライブコントローラ200の出力端子2o6に接続され、スピンドルモータ106のドライバ107は入出力端子1ioを介してドライブコントローラ200の入出力端子2ioに接続され、ローディング機構105は入力端子1i7を介してドライブコントローラ200の出力端子2o7に接続される。
【0167】
〔動作〕
コマンド及びデータの授受のための処理はドライブコントローラ200により行われる。ドライブコントローラ200は、記録時にはホストコンピュータ300からのデータに対してCRCやエラー訂正コード等を付加してドライブ100に渡し、再生時にはドライブ100からのデータに対してエラー訂正処理を施し、ユーザデータ部分のみをホストコンピュータ300に転送する。上記データの記録時、並びにデータの再生時においては、ドライブ100のサーボ系及び各ブロックに対する指令はドライブコントローラ200によって行われる。
【0168】
H.図9に示した光ディスクドライブのドライブコントローラの構成及びその動作説明(図10参照)
【0169】
図10は図1に示したドライブコントローラ200の構成例を示す構成図である。
【0170】
〔接続及び構成〕
図において、131はバス143を介してディジタル信号処理回路153から供給されるレーザーダイオード113のバイアスデータをD−Aコンバータ132及び出力端子2o2を介して図9に示したドライバ118に供給するための入出力回路、133は入力端子2i1及び2i2を夫々介して図9に示したI−V/マトリクスアンプ116から供給される出力を後述するサーボ系タイミングジェネレータ140からのタイミング信号に基いて選択し、選択出力をクランプするセレクタ/クランプ回路、134はセレクタ141からの選択されたサーボ系クロック信号またはデータ系クロック信号に基いて、セレクタ/クランプ回路133からの出力をディジタルデータに変換するA−Dコンバータ、135はサーボ系クロック生成回路139からのサーボ系クロック信号に基いてデータ系クロック信号を生成するデータ系クロック生成回路、136はデータ系クロック信号に基いてデータ系タイミング信号を発生するデータ系タイミングジェネレータ、137はA−Dコンバータ134からの再生データ中から抽出した位相の基準データに基いて、データ系クロック発生回路135からのデータ系クロック信号の位相を制御して読み出し/書き込み回路138に読み出し時のクロックとして供給し、読み出し/書き込み回路138からの書き込み位置制御信号の位相を制御して出力端子2o1を介して出力するデータ位相制御回路である。
【0171】
138は読み出し/書き込み回路である。この読み出し/書き込み回路138は、再生時においては、コントローラ144からのリクエスト信号により、データ系クロック生成回路135からのデータ系クロック信号、データ系タイミングジェネレータ136からのデータ系タイミング信号に基いて、A−Dコンバータ134の出力をコントローラ144に供給し、アック信号を出力し、記録時においては、コントローラ144からのデータを出力端子2o1及び図9に示した入力端子1i1を介してドライバ118に供給する。
【0172】
サーボ系クロック生成回路139は、A−Dコンバータ134の出力からサーボ系クロック信号を生成し、このサーボ系クロック信号をサーボ系タイミングジェネレータ140、セレクタ141及びアドレスデコーダ142に夫々供給する。サーボ系タイミングジェネレータ140は、サーボ系クロック生成回路139からのサーボ系クロック信号に基いてサーボ系タイミング信号を生成し、このサーボ系タイミング信号をセレクタ141、アドレスデコーダ142、セレクタ/クランプ回路133に夫々供給する他、出力端子2o3及び図1に示した入力端子1i3を介してレーザーダイオード113のドライバ114に供給する。
【0173】
145は図9に示したI−V/マトリクスアンプ116から入力端子2i3、2i4及び2i5を夫々介して供給されるフロントAPC信号、フォーカスエラー信号及びプルイン信号をA−Dコンバータに供給するためのマルチプレクサ、147はA−Dコンバータ146の出力をバス143を介してディジタル信号処理回路153に供給する入出力回路、148はディジタル信号処理回路153からバス143を介して供給される光学ブロック108の駆動用のデータを変調するPWM(パルス幅変調)回路である。149は図9に示したフォーカスアクチュエータ112を駆動するためのドライバ、150は図9に示したガルバノモータ110を駆動するためのドライバ、151は図9に示したスライドモータ111を駆動するためのドライバである。ドライバ149は、出力端子2o4及び図9に示した入力端子1i4を介してフォーカスアクチュエータ112に接続され、ドライバ150は、出力端子2o5及び図9に示した入力端子1i5を介してガルバノモータ111に接続され、ドライバ151は、出力端子2o6及び図9に示した入力端子1i6を介してスライドモータ110に接続される。
【0174】
152はディジタル信号処理回路53からの駆動信号を入出力端子2io及び図9に示したドライバ107を介してスピンドルモータ6に供給する入出力回路である。ディジタル信号処理回路153は、バス143を介して上記各ブロックの制御や駆動処理を行うと共に、太い実線で示すバスを介してコントローラ144と接続される。
【0175】
〔動作〕
ディジタル信号処理回路153は、光ディスク104がローディング機構105によりスピンドルモータ106に装着された状態でホストコンピュータ300からの要求に応じて、あるいは自動スピンアップモードが設定されている場合に光ディスク104がローディング機構105によりローディングされると、入出力回路152を介してドライバ107にスピンドルモータ106を回転駆動するよう指示を出す。
【0176】
ドライバ107は、スピンドルモータ106が所定の回転数になるとロック信号を出力し、ディジタル信号処理回路153に対し、スピンドルモータ106の回転が安定したことを通知する。この間、ディジタル信号処理回路153は、PWM回路148を介してドライバ150によりレーザーダイオード113からのレーザービームを光ディスク104のユーザエリア外に位置させるようにすると共に、ドライバ151により光学ブロック108を光ディスク104の外周又は内周側に移動させる。
【0177】
ユーザエリアでフォーカスの引き込みを行うと、感度の高いディスクのデータを誤って消去してしまう可能性があるが、ユーザエリア外に光学ブロック108を移動させ、そのユーザエリア外でフォーカスの引き込みを行うことにより、このような誤消去を防止することができる。
【0178】
スピンドルモータ106が一定回転になり、光学ブロック108が例えば外周側に移動すると、ディジタル信号処理回路153は、入出力回路131及びD−Aコンバータ132を介してドライバ114に対し、光学ブロック108に設けられているレーザーダイオード113のバイアス電流を設定し、レーザーダイオード113のオン、オフを制御するサーボ系タイミングジェネレータ140にレーザーを発光するようコマンドを出力する。
【0179】
レーザーダイオード113から出射されたレーザービームは、光学ブロック108に設けられているフォトディテクタ115に入射し、このフォトディテクタ115により電気信号に変換され、検出出力としてI−V/マトリクスアンプ116に供給されて電圧に変換され、フロントAPC信号としてマルチプレクサ145に供給される。
【0180】
このフロントAPC信号は、上記マルチプレクサ145により時分割的に選択された信号としてA−Dコンバータ146によりディジタル化され、入出力回路147及びバス143を介してディジタル信号処理回路153に供給される。ディジタル信号処理回路153は、ディジタル化されたフロントAPC信号によりレーザーダイオード113から出射されるレーザービームの光量を認識し、図示しないディジタルフィルタにより計算される光量制御データを上記入出力回路131及びD−Aコンバータ132を介してドライバ114に帰還することにより、レーザーダイオード113のパワーが一定となるよう制御する。
【0181】
次に、ディジタル信号処理回路153は、PWM回路148からドライバ149に電流を流すことにより、光学ブロック108のフォーカスアクチュエータ112を上下方向に駆動してフォーカスアクチュエータ112をフォーカスサーチ状態にする。このとき光ディスク104で反射されたレーザービームはフォトディテクタ115の受光面に入射する。フォトディテクタ115で受光されたレーザービームは電気信号に変換され、検出出力としてI−V/マトリクスアンプ116に供給され、このI−V/マトリクスアンプ116により電圧に変換され増幅された後にフォーカスエラー信号として出力され、マルチプレクサ145に供給される。
【0182】
このフォーカスエラー信号は、フロントAPC信号と同様にマルチプレクサ145により時分割的に選択された信号としてA−Dコンバータ146によりディジタル化され、入出力回路147及びバス143を介してディジタル信号処理回路153に供給される。ディジタル信号処理回路153は、ディジタル化されたフォーカスエラー信号に対してディジタル的にフィルタ処理を施して得られるフォーカス制御データをPWM回路148からドライバ149に帰還することによって、フォーカス制御用のサーボループを構成する。フォーカス制御が安定すると、フォトディテクタ115から出力され、I−V/マトリクスアンプ116を経て得られるRF信号は、その振幅がある程度一定になり、セレクタ/クランプ回路133によって所定の電位にクランプされた後、A−Dコンバータ134によってディジタル化される。
【0183】
このときのクロックはサーボ系クロック生成回路139のフリーラン状態の周波数となる。クランプを行うためのタイミングパルスもこのフリーランの周波数を所定の値で分周した信号が用いられる。
【0184】
サーボ系クロック生成回路139は、A−Dコンバータ134でディジタル化されたRF信号の振幅差を見ることによって光ディスク4上に形成されたピットのパターンをチェックし、サーボエリアのピット列と同じパターンを探す。パターンが見つかると、次のパターンが現れるべき位置にウインドウを開くよう、クロックセレクタ141を制御し、そこで再びパターンが一致するか否かを確認する。
【0185】
この動作がある一定の回数連続して確認できると、サーボ系クロック生成回路139は、光ディスク104のピットのパターンにロックしたものと見なす。位相情報はサーボエリア内のウォブルピットの両肩の振幅差を取ることで得る。更に2個のウォブルピットの両方から得られた位相情報を加算することで、トラッキング位置による振幅変化から生じるゲイン変動を吸収している。
【0186】
サーボ系クロック生成回路139がロックするとセグメント単位の位置が明確になり、光ディスク104上に形成されたセグメントマークピットの位置も認識できるようになり、セグメントマークピット、アドレスマークピット、セクタフラグ1ピット及びセクタフラグ2ピットに対して所定の複数の位置Ar1、Ar2、Ar3及びAr4でサンプリングされたRF信号の内で最大振幅となる位置を探す。
【0187】
その結果がAr1であるときにアドレスマークであって、このセグメントがアドレスセグメントであり、フレームの先頭を認識することができるので、フレームカウンタをクリアすることでフレーム同期をとることができる。1フレームが14セグメントで構成されている場合は14セグメント毎にウインドウを開くようにクロックセレクタ141を制御してアドレスマークとして連続して認識できるときにフレーム同期がロックしたものと判断する。
【0188】
フレーム同期がかかると、光ディスク104上のアドレスの記録されている位置が認識できるので、アドレスデコーダ142によりトラックアドレス及びフレームコードのデコードを行う。このアドレスデコーダ142では、4ビットずつグレーコード化されているパターンをグレーコードテーブルとの一致を見ることにより行われる。但し、4ビットのみではなく、全体でグレーコード化されているので、単純に一致を見るのではなく、上位4ビットの内のLSBが「1」か「0」かによって反転したテーブルとの比較を行う。
【0189】
ここで、最初にデコードされたフレームコードをフレームカウンタにロードして、このフレームカウンタをフレーム毎にインクリメントして得られる数値と実際に再生されたフレームコードとを比較して連続して一致することを確認したときに、回転同期がかかったものとする。これ以降、フレームカウンタにより得られる数値をフレームコードとしてディジタル信号処理回路153に返すことによって、ディフェクト等が多少あってもフレーム位置を誤認識しないようにしている。
【0190】
また、ディジタル信号処理回路153は、先のグレーコード化されたトラックアドレスを読みながら光学ブロック108の速度を演算し、PWM回路148からドライバ151を介して光学ブロック108のスライドモータ110を制御することにより、光学ブロック108を光ディスク104上の目的のトラックに移動する。
【0191】
そして、光学ブロック108の位置が目的のトラックの位置となると、トラッキング動作に入る。上述のようにトラッキングエラー信号はサーボエリアにある2つのウォブルピットに対するRF信号の振幅値の差分を取ることで得られる、ディジタル信号処理回路153は、この値をディジタル的にフィルタ処理を施して得られるトラッキング制御データを、PWM回路148からドライバを介して光学ブロック108のガルバノモータ111を制御することにより、低周波数成分の変動を制御し、更に、レーザーダイオード113からのレーザービームのスポットが、光ディスク104のトラックの中心に位置するようトラッキング制御を行う。
【0192】
このようにトラッキングをかけた状態で目的のセクタの先頭位置を検出する。上述のように、各セクタの先頭となるセグメントとその1つ前のセグメントにはセクタマークがあり、各セクタマークは、上記4つの位置Ar1、Ar2、Ar3及びAr4にウインドウを開くようにセレクタ141を制御し、この4つの位置Ar1、Ar2、Ar3及びAr4でサンプリングされたRF信号のなかで最大振幅となる位置が位置Ar2であるときにセクタの先頭セグメントであることを示し、位置Ar3であるときにセクタの先頭の1つ前のセグメントであることを示す。基本的にセクタの先頭となるセグメントはホストコンピュータ300により与えられるセクタアドレスに対して物理セクタに変換してそのセクタがどのトラックの何番目のセグメントであるかを演算することによって決定されるが、上記2種類のセクタマークが同時にディフェクトになる確率は非常に少なく、これによる不良セクタの発生確率は極めて小さい。
【0193】
また、データ系クロック生成回路135は、サーボ系クロック生成回路139から得られるフレーム同期のかかったサーボクロックをM/N倍したデータクロックを生成し、このデータクロックをデータ系タイミングジェネレータ136及び読み出し/書き込み回路138に夫々与える。
【0194】
読み出し/書き込み回路138は、記録動作モード時にはコントローラ144を介してホストコンピュータ300から記録データが供給される。そして、読み出し/書き込み回路138は、記録データに対し、例えば127周期の乱数を加算(排他的論理和)することによりY=Xの7乗+Xにしたがってスクランブル処理をセクタ単位で行い、スクランブルされた記録データをデータクロックに同期したNRZI系列のデータに変調する。このとき、各セグメント毎に初期値を「0」とし、その変調信号をドライバ118を介して磁気ヘッド117に供給する。
【0195】
磁気ヘッド117は、変調信号に応じた磁界を発生し、この磁界をレーザーダイオード113が出射するレーザービームによりキュリー温度まで加熱された光ディスク104のデータエリアに印加することにより、NRZI系列のデータを記録する。
【0196】
また、再生動作モード時には、フォトディテクタ115による検出出力からI−V/マトリクスアンプ116により得られる再生信号が、セレクタ/クランプ回路133によって所定の電位にクランプされた後、A−Dコンバータ134によってディジタル化されて読み出し/書き込み回路138に供給される。そして、読み出し/書き込み回路138は、A−Dコンバータ134によりディジタル化された再生信号について、パーシャルレスポンスに合わせるディジタルフィルタ処理を施してからビダビ復号によりNRZI系列のデータを再生する。そして、このNRZI系列のデータをセグメント単位にNRZ系に変換後、セクタ単位でデ・スクランブルしてから再生データに変換し、この再生データをコントローラ144を介してホストコンピュータ300に転送する。
【0197】
I.図10に示したドライブコントローラのコントローラの構成及びその動作説明(図11参照)
【0198】
図11は図10に示したコントローラ44の構成例を示す構成図である。
【0199】
〔接続及び構成〕
【0200】
図において、160はCPU、161はこのCPU160のバス(アドレス、データ及びコントロールバスからなる)、162は再生動作時における処理を行うための各種プログラムデータやパラメータデータ等が記憶されているROM、163はROM162に記憶されているプログラムデータ等のワーク用のエリアとして用いられるRAM、164は入出力ポートである。これらROM162、RAM163、入出力ポート164をバス161を介してCPU160に接続する。
【0201】
165は図10に示した読み出し/書き込み回路138に接続される入出力端子であり、この入出力端子165はスイッチ166の可動接点dに接続される。このスイッチ166の固定接点aはLDC/ECCデコーダ67の入力端子に接続され、スイッチ166の固定接点bはLDC/ECC/パリティセクタエンコーダ169の出力端子に接続され、スイッチ166の固定接点dはパリティセクタデコーダ168の入力端子に接続される。
【0202】
また、LDC/ECCデコーダ167のデータ用の出力端子はスイッチ170の一方の固定接点a及び後述するパリティセクタデコーダ168の入力端子に夫々接続され、LDC/ECC/パリティセクタエンコーダ168の入力端子はスイッチ170の他方の固定接点bに接続され、このスイッチ170の可動接点cはバッファ171の入出力端子に接続される。また、バッファ171の入出力端子はインターフェース回路172の入出力端子に接続され、このインターフェース回路172の入出力端子は入出力端子io1を介して図9に示したホストコンピュータ300の入出力端子に接続される。
【0203】
ここで、LDC/ECCデコーダ167は、スイッチ166を介して供給される再生データに対し、エラー検出及びエラー訂正処理を施す。図に示すように、このLDC/ECCデコーダ167は、例えば2セクタ(本例においては1セクタを2352バイトとする)分の容量のRAM167aと、このRAM167aに書き込まれた再生データに対するLDCによるエラー訂正処理及びCRCによるエラーチェックをRAM67aに対する制御により行うRAMコントローラ167bで構成する。このLDC/ECCデコーダ167の出力はスイッチ170を介してバッファ171に供給される。
【0204】
パリティセクタデコーダ168は、LDC/ECCデコーダ167から供給される上述したパリティセクタデータを保持するためのRAM168aと、LDC/ECCデコーダ167で訂正することのできないバーストエラーが発生したときに、そのバーストエラーの発生したセクタデータの属する範囲(上記1000セクタ若しくは1000セクタに満たない端数のセクタ)に対応するパリティセクタデータをRAM168aから読み出し、このパリティセクタデータと上記範囲のセクタデータとで排他的論理和演算を行って元のデータを回復する演算回路168bとで構成する。このパリティセクタデコーダ168によって回復されたデータはスイッチ170を介してバッファ171に供給される。
【0205】
LDC/ECC/パリティセクタエンコーダ169は、図に示すように、2セクタ(本例においては1セクタを2352バイトとしている)分の記憶容量を有するRAM169aと、このRAM169aに書き込んだ入力データを制御することにより、LDCのパリティの生成、CRCのパリティの生成、上記パリティセクタデータの生成、これらのパリティの付加を行う。このLDC/ECC/パリティセクタエンコーダ169は、光磁気ディスク、ライトワンスディスク、パーシャルディスク(書き込み可能領域のみ)専用となる。
【0206】
そして、LDC/ECC/パリティセクタエンコーダ169は、ホストコンピュータ300から転送され、インターフェース回路172を介してバッファ171に一旦書き込まれ、更にこのバッファ171から読み出された後にスイッチ170を介して供給される記録すべきデータに対し、LDCのパリティ、CRCのパリティ、パリティセクタデータを夫々付加する
【0207】
入出力ポート164に接続される入出力端子173は図10に示したディジタル信号処理回路153のバス143に接続され、出力端子174は図10に示した読み出し/書き込み回路138のリクエスト信号用の入力端子に接続され、入力端子175は図10に示した読み出し/書き込み回路138のアック信号用の出力端子に接続される。
【0208】
〔動作〕
先ず、光磁気ディスクの書き込み可能領域やパーシャルディスクの書き込み可能領域に対してホストコンピュータ300から転送されたデータを記録する場合について説明する。尚、パリティセクタデータの生成とその付加処理については、上記項目AからCにおいて十分に説明しているので、記録媒体の種類が異なるとはいえ、構成、処理も上記項目AからCの説明から明かであるので、ここでは簡単に説明する。
【0209】
この場合、CPU160は、入出力ポート164を介してスイッチ166及び170にスイッチング制御信号を供給し、スイッチ166の可動接点dを固定接点bに接続させ、スイッチ170の可動接点cを固定接点bに接続させる。これによって、ホストコンピュータ300から転送される記録すべきデータは、バッファ171から読み出された後にスイッチ170を介してLDC/ECC/パリティセクタエンコーダ169に供給され、このLDC/ECC/パリティセクタエンコーダ169によって上記LDCのパリティ、CRCのパリティ、パリティセクタデータが付加された後に、スイッチ166及び出力端子165を介して図10に示した読み出し/書き込み回路138に供給され、図9及び図10を参照して説明したように、光ディスク104のユーザエリアに記録される。
【0210】
このとき、LDC/ECC/パリティセクタエンコーダ169は、RAM169aに記憶された2セクタ分のデータの内、一方のセクタのデータに対してパリティの付加を行い、記録のための処理が終了した時点で、そのセクタのデータを出力すると共に、その旨を示す信号を入出力ポート164及びバス161を介してCPU160に供給する。これにより、CPU160は図10に示した読み出し/書き込み回路138に対して記録を行うよう指示すると共に、次の入力データを受け入れるためにバッファ171及びインターフェース回路172を制御する。これによって、上記セクタの全データはドライブ100に供給され、光ディスク104に記録され、一方、次の入力データがRAM169aに書き込まれる。
【0211】
光ディスク104に記録されているデータを再生する場合においては、CPU160は入出力ポート164を介してスイッチ166及び170に夫々スイッチング制御信号を供給し、スイッチ166の可動接点dを固定接点aに接続させ、スイッチ170の可動接点cを固定接点aに接続させる。これによって、光ディスク104から読み出され、読み出し/書き込み回路138、入出力端子165及びスイッチ166を介して供給される再生データは、LDC/ECCデコーダ167に供給され、このLDC/ECCデコーダ167において、エラー検出、エラー訂正処理が施され、スイッチ170、バッファ171、インターフェース回路172及び入出力端子io1を介して図9に示したホストコンピュータ300に再生データとして供給される。
【0212】
このとき、LDC/ECCデコーダ167は、RAM167aに記憶された2セクタ分のデータの内、一方のセクタのデータに対してパリティによるエラー訂正、CRCのパリティによるエラーチェックを行ってそのセクタのデータを得、これらの再生処理が終了した時点で、そのセクタのデータを出力すると共に、その旨を示す信号を入出力ポート164及びバス161を介してCPU160に供給する。これにより、CPU160は図10に示した読み出し/書き込み回路138に対して次のセクタの再生を行うよう指示し、これによって、上記セクタの全データはバッファ171に供給され、この後、光ディスク104から読み出された次のセクタの再生データがRAM167aに供給される。
【0213】
また、LDC/ECCデコーダ167は、訂正不能のバーストエラーが発生したときに、その旨を入出力ポート164を介してCPU160に供給する。このとき、パリティセクタデコーダ168のRAM168aにはバーストエラーの発生した範囲に対応したパリティセクタのパリティセクタデータが書き込まれる。
【0214】
CPU160は、バーストエラーの発生した範囲(上記1000セクタ分若しくは1000セクタに満たない端数分)について再度読み出しを行うために、出力端子174を介して図10に示した読み出し/書き込み回路138にアック信号を供給する。また、CPU160はスイッチ166にスイッチング制御信号を供給し、スイッチ166の可動接点dを固定接点cに接続させる。
【0215】
これによって、上記範囲について再度読み出しが行われ、読み出された再生セクタデータが順次入力端子165、スイッチ166を介してパリティセクタデコーダ168に供給される。そして、パリティセクタデコーダ168はパリティを除いたセクタデータをRAM168aに書き込む。尚、最初の書き込みのみ、演算回路168bによる演算処理は行われない。この演算回路168bは少なくとも2つ以上のセクタデータを用いて排他的論理和演算を行う回路なので、最初のセクタデータをRAM168aに書き込んだときには次のセクタデータが供給されていないため、演算を行うことができないからである。
【0216】
続いて、2番目の再生セクタデータがパリティセクタ生成回路168に供給される。このとき、既にRAM168aには最初の再生セクタデータが記憶されているので、演算回路168bはRAM168aから最初の再生セクタデータを読み出し、読み出した最初の再生セクタデータと、入力された2番目の再生セクタデータとで排他的論理和演算を行い、その結果得られたデータをRAM168aに書き込む。このとき、演算回路168bは、排他的論理和演算を行って得られたデータを、RAM168aの前のデータ(この場合は最初のセクタデータ)の記憶領域に上書きする。排他的論理和演算を行って新たな演算結果が得られた場合、RAM168aに記憶されているデータは不要となるからである。
【0217】
続いて3番目の再生セクタデータがパリティセクタ生成回路168に供給される。このとき、既にRAM168aには最初の再生セクタデータと2番目の再生セクタデータとの排他的論理和演算結果としてのデータが記憶されているので、演算回路168bはRAM168aから前の排他的論理和演算結果としてのデータを読み出し、読み出したデータと、入力された3番目の再生セクタデータとで排他的論理和演算を行い、その結果得られたデータをRAM168aに書き込む。このとき、演算回路168bは、排他的論理和演算を行って得られたデータを、RAM168aの前のデータ(この場合は最初の再生セクタデータと2番目の再生セクタデータとの排他的論理和演算によって得られたデータ)の記憶領域に上書きする。
【0218】
以下同様に、1000セクタ分若しくは端数分の再生セクタデータについて排他的論理和演算処理が行われ、RAM168aにその全ての再生セクタデータの排他的論理和演算結果としてのデータが記憶される時点まで上述と同様の処理が行われる。CPU160は1000セクタ番目若しくは端数分のセクタ番目の再生セクタデータがパリティセクタデコーダ168に供給されるときに、この1000セクタ目の再生セクタデータが1000セクタ目であることを示す制御信号をパリティセクタデコーダ168に供給する。
【0219】
CPU160から最終のセクタデータであることが通知されたとき、パリティセクタデコーダ168は、最終的に得られた1000セクタ分若しくは端数分のセクタデータ全てについて排他的論理和演算を行った結果としてのデータを保持していることになる。そして、パリティセクタデコーダ168はそのデータと、RAM168aに記憶されている1000セクタ分若しくは端数分の範囲に対応するパリティセクタデータとで排他的論理和演算を行い、その結果、バーストエラーとなったデータを回復し、回復したデータをスイッチ170、バッファ171、インターフェース回路172及び入出力端子io1を介して再生データとして出力する。
【0220】
J.本発明データ再生方法及びその装置、データ記録再生方法の一実施例による再生時の動作説明(図12、図13及び図14参照)
【0221】
図12〜図14は、図9〜図11を参照して説明した光ディスクドライブを用い、光磁気ディスク、ライトワンスディスク、CD−ROM、パーシャルディスク等のフォーマットの異なる光ディスクを用いる場合の動作を説明するためのフローチャートである。
【0222】
ステップS21ではディスクローディングを行う。即ち、使用者によって光ディスク104が光ディスクドライブにセットされると、図9に示したドライブコントローラ200からの制御信号により、ローディング機構105が光ディスク104をローディングする。そしてステップS22に移行する。
【0223】
ステップS22では各部駆動及びサーボ処理を行う。即ち、ドライブコントローラ200がドライバ107を介してスピンドルモータ106を駆動し、スライドモータ110、ガルバノモータ111及びフォーカスアクチュエータ112を夫々駆動すると共に、フォトディテクタ115からI/Vマトリクスアンプ116を介して供給される検出信号に基いて上記スピンドルモータ106、スライドモータ110、ガルバノモータ111及びフォーカスアクチュエータ112に対してサーボ処理を行う。そしてステップS23に移行する。
【0224】
ステップS23ではコントロールトラックを読む。即ち、スライドモータ110を制御することにより、光学ブロック108を移動させ、更に、ガルバノモータ111によりトラッキングを行うことにより、レーザーダイオード113から出射され、対物レンズ109で集光されたレーザービームのビームスポットを、図5に示したコントロールトラックCTLに位置させ、コントロールトラックCTLの情報(メディアの種類を示す情報やアドレス情報等)を読みとらせる。そしてステップS24に移行する。
【0225】
尚、コントロールトラックの情報を読み込んだ場合、パーシャルディスクであることを認識したときには、CPU160は、RAM163上に、書き込み可能領域としてのRAMゾーン、読み出し専用領域としてのROMゾーンが夫々どのアドレスからどのアドレスまでかを示すテーブルを生成する。
【0226】
ステップS24ではROMか否かを判断し、「YES」であればステップS25に移行し、「NO」であればステップS27に移行する。ここでいうROMとは、上述したように、CD−ROM等の読み出し専用ディスクを意味する。
【0227】
ステップS25ではROMフラグを生成し、記憶する。即ち、図11に示したドライブコントローラ200のコントローラ144のCPU160が、RAM163の所定エリアに光ディスク104の種類がROMであることを示すフラグを記憶する。そしてステップS26に移行する。
【0228】
ステップS26ではアクセスがあるか否かを判断し、「YES」であれば図13のフローチャートのステップS32に移行する。
【0229】
ステップS27ではRAMか否かを判断し、「YES」であればステップS28に移行し、「NO」であればステップS29に移行する。ここでいうRAMとは、上述したように、光磁気ディスクやライトワンスディスク等の書き込み可能ディスクを意味する。
【0230】
ステップS28ではRAMフラグを生成し、記憶する。即ち、図11に示したドライブコントローラ200のコントローラ144のCPU160が、RAM163の所定エリアに光ディスク104の種類がRAMであることを示すフラグを記憶する。そしてステップS26に移行する。
【0231】
ステップS29ではパーシャルか否かを判断し、「YES」であればステップS30に移行し、「NO」であればステップS31に移行する。ここでいうパーシャルとは、上述したように、パーシャルディスク(パーシャルROMともいう)等の書き込み可能領域と読み出し専用領域の両方の領域を有するディスクを意味する。
【0232】
ステップS30ではパーシャルフラグを生成し、記憶する。即ち、図11に示したドライブコントローラ200のコントローラ144のCPU160が、RAM163の所定エリアに光ディスク104の種類がパーシャルであることを示すフラグを記憶する。そしてステップS26に移行する。
【0233】
ステップS31ではエラーメッセージを出力する。即ち、図11に示したCPU160が、バス161、入出力ポート164、インターフェース回路172及び入出力端子io1を介してホストコンピュータ300にエラーメッセージデータを供給する。このエラーメッセージデータがホストコンピュータ300に供給されると、このホストコンピュータ300のテレビジョンモニタの管面上に例えば「ディスクタイプ読みとりエラー 再度ディスクを挿入するか、他のディスクを使用して下さい」等のエラーメッセージが表示される。そして終了する。
【0234】
尚、図5に示したように、コントロールトラックCTLは2カ所あるので、再度、他のコントロールトラックCTLの位置にシークさせ、その情報を読みとらせるようにしても良い。
【0235】
ステップS32ではフラグを読む。即ち、CPU160が、インターフェース回路172を介してホストコンピュータ300からアクセスがコマンドが供給された場合に、RAM163に記憶しているフラグを読む。そしてステップS33に移行する。
【0236】
ステップS33では、ROMか否かを判断し、「YES」であればステップS34に移行し、「NO」であればステップS36に移行する。ここでいうROMとは、上述したように、CD−ROM等の読み出し専用ディスクを意味する。
【0237】
ステップS100ではROMセクタ処理を行う。そしてステップS35に移行する。このステップS100(サブルーチン)の処理については、項目Kにおいて図15を参照して詳述する。
【0238】
ステップS35では全処理が終了か否かを判断し、「YES」であれば再び図12に示すフローチャートのステップS26に移行する。
【0239】
ステップS36ではRAMか否かを判断し、「YES」であればステップS37に移行し、「NO」であれば図15に示すフローチャートのステップS39に移行する。ここでいうRAMとは、上述したように、光磁気ディスクやライトワンスディスク等の書き込み可能ディスクを意味する。
【0240】
ステップS37ではRAMセクタ処理を行う。そしてステップS38に移行する。
【0241】
ステップS38では全処理が終了か否かを判断し、「YES」であれば再び図12に示すフローチャートのステップS26に移行する。
【0242】
ステップS39ではパーシャルか否かを判断し、「YES」であればステップS40に移行し、「NO」であれば図12に示すフローチャートのステップS31に移行する。ここでいうパーシャルとは、上述したように、パーシャルディスク等のように、書き込み可能領域と読み出し専用領域の両方の領域を有するディスクを意味する。
【0243】
ステップS40ではROMゾーンか否かを判断し、「YES」であれば図13に示したステップS34に移行し、「NO」であれば再び図12に示したステップS31に移行する。このステップS40では、CPU160がRAM163に記憶されているどのゾーンがRAMでどのゾーンがROMかを示すテーブルに基いて、現在アクセスしているセクタのアドレスがROMゾーンのアドレスか否かを判断するのである。
【0244】
ステップS41ではRAMゾーンか否かを判断し、「YES」であれば図13に示したステップS37に移行し、「NO」であれば再び図12に示したステップS31に移行する。このステップS41では、CPU160がRAM163に記憶されているどのゾーンがRAMでどのゾーンがROMかを示すテーブルに基いて、現在アクセスしているセクタのアドレスがRAMゾーンのアドレスか否かを判断するのである。
【0245】
K.本発明データ再生方法及びその装置、データ記録再生方法の一実施例による再生時にバーストエラーが発生した場合の動作説明(図15参照)
【0246】
図15は本発明データ再生方法及びその装置、データ記録再生方法の一実施例のよる再生時にバーストエラーが発生したときの動作を説明するためのフローチャートである。
【0247】
図13に示したフローチャートのステップS33において「YES」と判断された場合はステップS100に移行し、このステップS100を詳述したこの図13に示すフローチャートのステップS101においてセクタをリードする。そしてステップS102に移行する。
【0248】
ステップS102ではOKか否かを判断し、「YES」であればこのサブルーチンを抜け、図13に示したフローチャートのステップS35に移行し、「NO」であればステップS103に移行する。
【0249】
ステップS103ではCRCによるチェックを行う。そしてステップS104に移行する。ここでいうCRCによるチェックは、図11に示したLDC/ECCデコーダ167での処理である。
【0250】
ステップS104ではOKか否かを判断し、「YES」であればステップS105に移行し、「NO」であればステップS107に移行する。
【0251】
ステップS105ではLDCによる訂正を行う。そしてステップS106に移行する。ここでいうLDCの訂正は、図11に示したLDC/ECCデコーダ167での処理である。
【0252】
ステップS106ではOKか否かを判断し、「YES」であればこのサブルーチンを抜け、図13に示したフローチャートのステップS35に移行し、「NO」であればステップS107に移行する。
【0253】
ステップS107では一連のデータをパリティセクタを含めて再生し、再生したデータ全てで排他的論理和演算を行う。そしてステップS107に移行する。このステップS107における処理は、図11に示したパリティセクタデコーダ168での処理である。
【0254】
ステップS108では排他的論理和演算の結果得られた値と、エラーとなった範囲に対応するパリティセクタデータとで排他的論理和演算を行う。そしてこのサブルーチンを抜け、図13に示したフローチャートのステップS35に移行する。
【0255】
以上説明したように、本実施例においては、光ディスクがCD−ROM、パーシャルディスク(読み出し専用領域)の場合においては、図1に示した記録システムにより、記録しようとするデータを1000セクタ若しくは端数分毎に排他的論理和演算を行い、この結果得られたデータをパリティセクタデータとして記録し、光ディスクが光磁気ディスク、ライトワンス、パーシャルディスク(書き込み専用領域)の場合においては、図9〜図11に示した光ディスクドライブのLDC/ECC/パリティセクタエンコーダ169により記録しようとするデータを1000セクタ若しくは端数分毎に排他的論理和演算を行い、この結果得られたデータをパリティセクタデータとして記録し、再生時においては、光ディスクの種類を判別し、その判別結果に基いた処理を行い、LDC/ECCデコーダ167において訂正不能のデータ(バーストエラー等)が生じた場合は、バーストエラー等の生じた範囲(記録時にパリティセクタデータの与えられた1000セクタ若しくは端数分)のパリティセクタデータと、この範囲のセクタデータを全て再生し、この範囲のセクタデータ全ての排他的論理和演算を行って得られたデータと、パリティセクタデータとで排他的論理和演算を行ってバーストエラーとなったデータを回復し、元のデータを得、これを再生データとして出力するようにしたので、検出訂正ができないバーストエラーが発生した場合においても、効率良く訂正処理を行い、データの記録容量を減らすことなく、記録データに確実にバーストエラーを訂正することのできるパリティを付与して高速なアクセスとエラー訂正能力の向上と良好なデータの再生を実現することができる。
【0256】
また、記録しようとするデータに対して1000セクタ毎にパリティセクタデータを生成し、生成したパリティセクタデータを付加し、セクタ数が1000に満たない場合でもパリティセクタデータを生成し付加するようにしたので、例えばファイルデータを記録する際にそのファイルデータのセクタ数に端数(1000に満たないセクタ数)が出た場合や、ファイルデータ全体のセクタ数が1000セクタに満たない場合であっても、確実にパリティセクタデータを付加することができ、結果的に良好な再生を行うことができる。
【0257】
また、上述から明かなように、図1に示した記録システムではCD−ROM、パーシャルディスク(読み出し専用領域)等の読み出し専用領域のみの光ディスクや読み出し専用領域を有する光ディスクを製造するためのスタンパに上述した処理によって得られたデータを記録することができ、図11に示した光ディスクドライブでは光磁気ディスク、ライトワンスディスク、相変化メディアとしての光ディスク、パーシャルディスク(書き込み可能領域)等の記録再生可能領域のみの光ディスクや書き込み可能領域を有する光ディスクに上述した処理によって得られたデータを記録することができるので、上記何れの光ディスクにおいても同様の効果を得ることができる。また、光磁気ディスク等においては交替処理を採用し、且つ、本例によるパリティセクタを用いるようにすれば、エラーの訂正能力は格段に向上する。
【0258】
〔変形例〕
尚、上述の例においては、光ディスクの場合で説明したが、例えばハードディスク、シリコンディスク、磁気テープを用いる装置等にも採用可能である。
【0259】
[第2実施例]
【0260】
L.パリティセクタデータの生成元のデータ量の説明
【0261】
上記第1実施例においては、1000セクタにつきパリティセクタデータを付与する場合について説明したが、この数に限定されず、例えば500セクタでも良い。またセクタ単位とせずに、シリンダ単位、クラスタ単位、トラック単位としても良く、更に、パリティセクタデータを付与するセクタ数等を自由に設定できるようにしても良い。その場合は、様々なオペレーティングシステムに対応させることができるといったメリットがある。
【0262】
[第3実施例]
【0263】
M.LDCのパリティを含めてパリティセクタデータを生成する場合の説明
【0264】
上記第1実施例においては、パリティセクタデータを生成する際に、LDCのパリティを除いて行った場合について説明したが、LDCのパリティをも含めて排他的論理和演算を行ってパリティセクタデータを得るようにしても良い。
【0265】
[第4実施例]
【0266】
N.図1に示した記録システムにおいてLDCのパリティの付加、パリティセクタデータの付加を行った後にそのままレーザー駆動装置16に供給する場合の説明
【0267】
上記第1実施例においては、図1に示した記録システムにおいて、最終的に得られる記録データを一旦ハードディスクドライブ12のハードディスクに記録し、ハードディスクに記録したデータを再び再生し、この再生データをバッファ15、レーザー駆動装置16を介してレーザー出力器17に供給する場合について説明したが、ハードディスクに記録しないで、LDC/ECCエンコーダ14においてLDCのパリティ等を付加し、更にパリティセクタ生成回路18においてパリティセクタデータを生成した後、そのままバッファ15、レーザー駆動装置16を介してレーザー出力器17に供給するようにしても良い。この場合は、図3に示したフローチャートのステップS4と図4に示したフローチャートのステップS15が共に「nセクタの記録データに基いてレジストを溶融させて記録を行う」に代わる。
【0268】
このようにした場合は、失敗が許されなくなるものの、ハードディスクに記録すべきデータを一旦記録しなくても済むので、その分スタンパを作成する時間が短縮されるといったメリットがある。
【0269】
【発明の効果】
【0291】
上述せる第23の発明によれば、複数の所定単位からなる一連の記録データを用いてエラー検出若しくはエラー訂正用のパリティ生成用の演算が行われ、上記演算によってエラー検出若しくはエラー訂正用のパリティが生成され、上記一連の記録データが上記エラー検出若しくはエラー訂正用のパリティと共に所定単位毎に記録された記録媒体を再生するデータ再生装置であって、再生手段により、上記記録媒体から一連の記録データを所定単位毎に再生し、上記再生手段からの所定単位毎の再生データにエラーが発生した場合、エラー訂正手段により、上記一連の記録データについて生成され記録されているパリティと上記一連の記録データとの演算によって上記エラーとなったデータを回復し、上記エラー訂正手段によって回復されたデータを出力手段により再生データとして出力するようにしたので、再生時においてエラーが発生したときには、複数の所定単位からなる一連の記録データを用いて生成され記録されたエラー検出若しくはエラー訂正用のパリティを用いてエラー訂正を行うことができ、これによって、検出訂正ができないバーストエラーが発生した場合においても、効率良く訂正処理を行い、再生時において高速なアクセスとエラー訂正能力の向上と良好なデータの再生を実現することができるという効果がある。
【0292】
上述せる第24の発明によれば、複数の所定単位からなる一連の記録データをN個の所定単位毎、且つ、N個に満たない端数分の所定単位があった場合にはその端数分の所定単位でエラー検出若しくはエラー訂正用のパリティ生成用の演算が行われ、上記演算によってエラー検出若しくはエラー訂正用のパリティが生成され、上記一連の記録データが上記エラー検出若しくはエラー訂正用のパリティと共に所定単位毎に記録された記録媒体を再生するデータ再生装置であって、再生手段により、上記記録媒体から一連の記録データを所定単位毎に再生し、上記再生手段からの所定単位毎の再生データにエラーが発生した場合、エラー訂正手段により当該所定単位の属する上記N個の所定単位若しくは上記N個に満たない端数分の所定単位について記録時に生成されているパリティを用いて上記エラーとなった所定単位のデータを回復し、上記エラー訂正手段によって回復されたデータを再生データとして出力手段により出力するようにしたので、再生時において、少なくとも再生時に行う制御に関連した情報を用いて各種制御を行い、複数の所定単位からなる一連の記録データの内のN個の所定単位、若しくはN個に満たない端数分の所定単位においてエラーが発生したときには、N個の所定単位、若しくはN個に満たない端数分の所定単位に対応するパリティを用いてエラー訂正を行うことができ、これによって、再生時にN個の所定単位、若しくはN個に満たない端数分の所定単位に発生したバーストエラーから確実にデータを回復することができ、効率良く訂正処理を行い、再生時において高速なアクセスとエラー訂正能力の向上と良好なデータの再生を実現することができるという効果がある。
【0293】
上述せる第25の発明によれば、一連の記録データに対し、所定単位毎にエラー検出訂正用の第1のパリティが付加され、上記一連の記録データを用いてN個の所定単位のデータ毎に演算が行われて、エラー検出若しくはエラー訂正用の第2のパリティが生成され、演算を行うべき上記一連の記録データの所定単位の数がN個に満たない場合は、この端数分の所定単位のデータについて演算が行われて、エラー検出若しくはエラー訂正用の第2のパリティが生成され、上記一連の記録データに対し、所定単位毎にエラー検出用の第1のパリティが付加され、更にN個若しくはN個に満たない所定単位毎のデータに上記第2のパリティが付加されて記録された記録媒体を再生する再生装置であって、再生手段により、上記記録媒体から一連の記録データを所定単位毎に再生し、上記記録媒体から所定単位毎にデータを再生したときに第1のエラー訂正手段によってエラーとなったデータを上記第1のパリティを用いて訂正し、上記第1のエラー訂正手段において訂正不能となった場合に、第2のエラー訂正手段により、エラーの発生した所定単位のデータの属する上記N個の所定単位若しくは上記N個に満たない端数分の所定単位について記録時に生成されている第2のパリティを用いて上記エラーとなった所定単位のデータを回復し、上記第1若しくは第2のエラー訂正手段によって回復されたデータを再生データとして出力手段により出力するようにしたので、再生時において、エラーが発生したときに先ず第1のパリティを用いてエラー訂正を行い、その結果訂正不能となった場合には、複数の所定単位からなる一連の記録データの内のN個若しくはN個に満たない所定単位のデータを用いて生成され記録されたエラー検出若しくはエラー訂正用の第2のパリティを用いてエラー訂正を行うことができ、これによって、再生時にN個の所定単位若しくは上記N個に満たない端数分の所定単位に発生したバーストエラーから確実にデータを回復することができ、しかも必要なときだけ第2のパリティを用いることにより効率良く訂正処理を行い、再生時において高速なアクセスとエラー訂正能力の向上と良好なデータの再生を実現することができるという効果がある。
【図面の簡単な説明】
【図1】本発明データ記録方法及びその装置、データ記録再生方法が適用される光ディスクのスタンパを作成するための記録システムの一例を示す構成図である。
【図2】本発明データ記録方法及びその装置、データ記録再生方法の一実施例の説明に供するデータの記録フォーマットの一例を説明するための説明図である。
【図3】本発明データ記録方法及びその装置、データ記録再生方法の一実施例の説明に供する記録時の動作を説明するためのフローチャートである。
【図4】本発明データ記録方法及びその装置、データ記録再生方法の一実施例の説明に供する記録時の動作を説明するためのフローチャートである。
【図5】本発明データ記録方法及びその装置、データ再生方法及びその装置、データ記録再生方法並びに記録媒体の一実施例の説明に供する光ディスクのフォーマットの一例を示す説明図である。
【図6】図5に示した光ディスクの各領域の大きさと各領域に用いられるデータクロックの周波数の一例を示す説明図である。
【図7】図5に示した光ディスクのセクタフォーマットの一例を示す説明図である。
【図8】図5に示した光ディスクのセクタフォーマットの一例を示す説明図である。
【図9】本発明データ記録方法及びその装置、データ再生方法及びその装置、データ記録再生方法が適用される光ディスクドライブの一例を示す構成図である。
【図10】図9に示した光ディスクドライブのドライブコントローラの内部構成例を示す構成図である。
【図11】図10に示したドライブコントローラで用いられるコントローラの内部構成例を示す構成図である。
【図12】本発明データ再生方法及びその装置、データ記録再生方法の一実施例の説明に供する再生時の動作を説明するためのフローチャートである。
【図13】本発明データ再生方法及びその装置、データ記録再生方法の一実施例の説明に供する再生時の動作を説明するためのフローチャートである。
【図14】本発明データ再生方法及びその装置、データ記録再生方法の一実施例の説明に供する再生時の動作を説明するためのフローチャートである。
【図15】本発明データ再生方法及びその装置、データ記録再生方法の一実施例の説明に供する再生時にバーストエラーが発生した場合の動作を説明するためのフローチャートである。
【符号の説明】
1、160 CPU
2、161 バス(アドレス、データ及びコントロールバス)
3、162 ROM
4、163 RAM
9、164 入出力ポート
11、172 インターフェース回路
12 ハードディスクドライブ
14 LDC/ECCエンコーダ
15、171 バッファ
16 レーザー駆動装置
17 レーザー出力器
18 パリティセクタ生成回路
100 ドライブ
104 光ディスク
167 LDC/ECCデコーダ
168 パリティセクタデコーダ
169 LDC/ECC/パリティセクタエンコーダ
200 ドライブコントローラ

Claims (3)

  1. 複数の所定単位からなる一連の記録データを用いてエラー検出若しくはエラー訂正用のパリティ生成用の演算が行われ、上記演算によってエラー検出若しくはエラー訂正用のパリティが生成され、上記一連の記録データが上記エラー検出若しくはエラー訂正用のパリティと共に所定単位毎に記録された記録媒体を再生するデータ再生装置であって、
    上記記録媒体から一連の記録データを所定単位毎に再生する再生手段と、
    上記再生手段からの所定単位毎の再生データを保持する第1の保持手段と、上記第1の保持手段に保持された上記再生手段からの所定単位毎の再生データにエラーが発生した場合、上記一連の記録データについて生成され記録されている上記エラー訂正用パリティのうち上記エラーが発生した範囲に対応したパリティを全て再生するようなされた第1の制御手段と、上記再生されたパリティを保持する第2の保持手段と、上記エラーが発生した範囲の記録データを再度再生するようなされた第2の制御手段と、上記第2の保持手段に保持された上記パリティと上記再生された記録データとを順次演算することにより上記エラーとなったデータを回復するエラー訂正手段と、
    上記エラー訂正手段によって回復されたデータを再生データとして出力する出力手段とを有することを特徴とするデータ再生装置。
  2. 複数の所定単位からなる一連の記録データをN個の所定単位毎、且つ、N個に満たない端数分の所定単位があった場合にはその端数分の所定単位でエラー検出若しくはエラー訂正用のパリティ生成用の演算が行われ、上記演算によってエラー検出若しくはエラー訂正用のパリティが生成され、上記一連の記録データが上記エラー検出若しくはエラー訂正用のパリティと共に所定単位毎に記録された記録媒体を再生するデータ再生装置であって、
    上記記録媒体から一連の記録データを所定単位毎に再生する再生手段と、
    上記再生手段からの所定単位毎の再生データを保持する第1の保持手段と、上記第1の保持手段に保持された上記再生手段からの所定単位毎の再生データにエラーが発生した場合、当該所定単位の属する上記N個の所定単位若しくは上記N個に満たない端数分の所定単位について記録時に生成されているパリティのうち上記エラーが発生した範囲に対応したパリティを全て再生するようなされた第1の制御手段と、上記再生されたパリティを保持する第2の保持手段と、上記エラーが発生した範囲の記録データを再度再生するようなされた第2の制御手段と、上記第2の保持手段に保持された上記パリティと上記再生された記録データを用いて上記エラーとなった所定単位のデータを回復するエラー訂正手段と、
    上記エラー訂正手段によって回復されたデータを再生データとして出力する出力手段とを有することを特徴とするデータ再生装置。
  3. 一連の記録データに対し、所定単位毎にエラー検出訂正用の第1のパリティが付加され、上記一連の記録データを用いてN個の所定単位のデータ毎に演算が行われて、エラー検出若しくはエラー訂正用の第2のパリティが生成され、演算を行うべき上記一連の記録データの所定単位の数がN個に満たない場合は、この端数分の所定単位のデータについて演算が行われて、エラー検出若しくはエラー訂正用の第2のパリティが生成され、上記一連の記録データに対し、所定単位毎にエラー検出用の第1のパリティが付加され、更にN個若しくはN個に満たない所定単位毎のデータに上記第2のパリティが付加されて記録された記録媒体を再生する再生装置であって、
    上記記録媒体から一連の記録データを所定単位毎に再生する再生手段と、
    上記再生手段からの所定単位毎の再生データを保持する第1の保持手段と、上記第1の保持手段に保持された上記記録媒体から所定単位毎にデータを再生したときにエラーとなったデータを上記第1のパリティを用いて訂正する第1のエラー訂正手段と、
    上記第1のエラー訂正手段において訂正不能となった場合に、少なくとも、エラーの発生した所定単位のデータの属する上記N個の所定単位若しくは上記N個に満たない端数分の所定単位について記録時に生成されているパリティのうち上記エラーが発生した範囲に 対応した第2のパリティを全て再生するようなされた第1の制御手段と、上記再生されたパリティを保持する第2の保持手段と、上記エラーが発生した範囲の記録データを再度再生するようなされた第2の制御手段と、上記第2の保持手段に保持された上記パリティと上記再生された記録データを用いて上記エラーとなった所定単位のデータを回復する第2のエラー訂正手段と、
    上記第1若しくは第2のエラー訂正手段によって回復されたデータを再生データとして出力する出力手段とを有することを特徴とするデータ再生装置。
JP25843194A 1994-10-24 1994-10-24 データ記録方法及びその装置、データ再生方法及びその装置、データ記録再生方法並びに記録媒体 Expired - Fee Related JP3551494B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25843194A JP3551494B2 (ja) 1994-10-24 1994-10-24 データ記録方法及びその装置、データ再生方法及びその装置、データ記録再生方法並びに記録媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25843194A JP3551494B2 (ja) 1994-10-24 1994-10-24 データ記録方法及びその装置、データ再生方法及びその装置、データ記録再生方法並びに記録媒体

Publications (2)

Publication Number Publication Date
JPH08124318A JPH08124318A (ja) 1996-05-17
JP3551494B2 true JP3551494B2 (ja) 2004-08-04

Family

ID=17320124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25843194A Expired - Fee Related JP3551494B2 (ja) 1994-10-24 1994-10-24 データ記録方法及びその装置、データ再生方法及びその装置、データ記録再生方法並びに記録媒体

Country Status (1)

Country Link
JP (1) JP3551494B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100417229B1 (ko) * 1996-05-21 2004-04-06 삼성전자주식회사 하드디스크드라이브의패러티섹터배치방법
JP2008077458A (ja) 2006-09-22 2008-04-03 Fujitsu Ltd 記憶データ処理装置、記憶装置、記憶データ処理プログラム
JP2010218590A (ja) * 2009-03-13 2010-09-30 Hitachi Ltd 情報の記録媒体、記録方法、記録装置、再生方法及び再生装置
JP2011060217A (ja) * 2009-09-14 2011-03-24 Toshiba Corp データ蓄積装置及びデータ書込み/読出し方法

Also Published As

Publication number Publication date
JPH08124318A (ja) 1996-05-17

Similar Documents

Publication Publication Date Title
KR100378249B1 (ko) 데이터기록재생방법및장치,데이터전송방법및장치
JP2590071B2 (ja) 情報処理装置
KR100385386B1 (ko) 데이타기록재생방법,데이터재생장치및기록매체
JP2002237140A (ja) 情報記録媒体、情報記録装置、情報記録方法、情報再生装置、及び情報再生方法
JP3480057B2 (ja) データ記録方法、データ再生方法及び記録媒体
US4821253A (en) Optical disk and optical disk apparatus with error correction
JPH11328681A (ja) 消去・書換え可能光ディスク
KR100221111B1 (ko) 데이타 기록재생 방법과 그에 대한 장치
US7554900B2 (en) Disc-shaped recording medium, method and apparatus for manufacturing same and data recording method
JP3551494B2 (ja) データ記録方法及びその装置、データ再生方法及びその装置、データ記録再生方法並びに記録媒体
JP2856072B2 (ja) 情報記録方法、情報再生方法および情報再生装置
JP3520576B2 (ja) 誤り訂正方法
JPH11232793A (ja) 光ディスクの記録/再生方法、光ディスク及び光ディスク装置
JP2774793B2 (ja) 情報記録再生方法
KR20020070316A (ko) 복수의 유니트로 정보를 기록하는 방법 및 장치
JP2746874B2 (ja) 情報処理装置
JP2746873B2 (ja) 情報処理装置
JP2771974B2 (ja) 情報記録媒体
JP3671470B2 (ja) データ記録再生方法及びその装置、並びにデータ伝送方法及びその装置
JP2000311449A (ja) 記録媒体、記録方法、記録装置、再生方法、再生装置
JP2686802B2 (ja) 光ディスクに対する記録方法
JP3367658B2 (ja) 情報記録媒体再生方法
JPH08195033A (ja) データ記録方法、データ再生方法、データ記録再生方法及びディスク状記録媒体
JPH10308080A (ja) 情報記録媒体
JP2002032966A (ja) 情報再生方法及び情報再生装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees