JP3548366B2 - Ceramic circuit board - Google Patents

Ceramic circuit board Download PDF

Info

Publication number
JP3548366B2
JP3548366B2 JP04367597A JP4367597A JP3548366B2 JP 3548366 B2 JP3548366 B2 JP 3548366B2 JP 04367597 A JP04367597 A JP 04367597A JP 4367597 A JP4367597 A JP 4367597A JP 3548366 B2 JP3548366 B2 JP 3548366B2
Authority
JP
Japan
Prior art keywords
glass
insulating film
weight
circuit board
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04367597A
Other languages
Japanese (ja)
Other versions
JPH10242623A (en
Inventor
泉太郎 山元
晃 井本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP04367597A priority Critical patent/JP3548366B2/en
Publication of JPH10242623A publication Critical patent/JPH10242623A/en
Application granted granted Critical
Publication of JP3548366B2 publication Critical patent/JP3548366B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はセラミック回路基板に関するものであり、特に、基板表面に形成された導体を絶縁膜により被覆したセラミック回路基板に関するものである。
【0002】
【従来技術】
従来においては、回路基板用の配線導体にAg、Cu、Au、W、Mo等の導体を使用した場合、基板の電気的絶縁性を保持するためや、基板の表面に形成された導体の保護、半田によるショート防止やマイグレーションの防止等のため、導体を絶縁膜により被覆していた。
【0003】
例えば、セラミック回路基板には、大別するとアルミナ等で形成されたセラミック基板上に上記導体をペースト化し、印刷、焼成して形成した回路パターン上に、アルミナ、ガラス等の絶縁性物質をペースト化し、印刷、焼成し絶縁膜を形成した厚膜回路基板と、内部配線になる導体膜をテープ化されたアルミナ等のセラミックで挟持、積層し、表層導体を絶縁膜で被覆した多層回路基板とがある。
【0004】
近年においては、低コスト化、高信頼性、高機能化の観点から、基板材料に低温で焼成可能なガラスセラミック材料、導体材料に大気中で焼成可能で、低い導体抵抗値を有するAg等の導体を内層、表層導体に用い、一体的に焼成してなる低温焼成多層基板が主流となっている。
【0005】
これらセラミック多層回路基板に用いられる絶縁膜には、▲1▼低温で焼結する絶縁膜であること、▲2▼電気的絶縁性が確保できる絶縁膜であること、▲3▼焼成後の基板の反り変形の原因にならない絶縁膜であること等が挙げられる。
【0006】
これらの特性は、絶縁膜の焼結性に起因し、焼結性が不良となれば、絶縁不良及び基板の反り変形を発生させるため、絶縁膜の焼結性は重要な要因である。
【0007】
従来の低温焼成多層基板に用いられるガラスセラミック材料として、重量百分率で、SiO 40〜65%、CaO 5〜15%、PbO 10〜25%、MgO 0.5〜10%、NaO 1〜10%、KO 1〜10%、Al 0〜20%、B 0〜10%、ZnO 0〜5%の組成を有するガラス粉末35〜60%と、アルミナ粉末40〜65%からなるものが知られている(特公平4−49497号公報参照)。
【0008】
そして、従来のセラミック回路基板は、ガラスセラミック材料を用いて基板用成形体を作製し、この成形体の表面に、表層導体となる導体ペーストを塗布し、この導体ペーストを、例えば上記したガラスセラミック材料からなるペーストにより被覆し、この後、基板用の成形体、表層導体となる導体ペースト、絶縁膜となるガラスセラミックペーストを一体焼成することにより作製されていた。
【0009】
【発明が解決しようとする課題】
しかしながら、上記ガラスセラミック材料を用いて絶縁膜を形成した場合、基板用の成形体、表層導体となる導体ペースト、絶縁膜となるガラスセラミックペーストを一体的に焼成すると、絶縁膜に焼成時の焼結バラツキが発生し、焼結不足による絶縁膜の電気的絶縁性の劣化、および基板の反り変形が大きくなるという問題があった。
【0010】
本発明のセラミック回路基板は、基板表面に形成された導体を被覆する絶縁膜の焼結性を向上し、絶縁膜の電気的絶縁性を向上し、基板の反り変形を抑制することを目的とする。
【0011】
【課題を解決するための手段】
本発明者等は、絶縁膜の焼結不良に起因する電気的絶縁性の劣化、および基板の反り変形について鋭意検討した結果、絶縁膜の組成を、SiO、PbO、CaO、NaOを含有するガラスに対して、微量のZrOを含有せしめることにより、ZrOが核となり、ガラスの結晶化を一定レベルまで促進するとともに、ガラスの溶融性を確保でき、これにより、絶縁膜の密度バラツキ、特に密度低下を解決し、絶縁性を向上し、基板の反り変形を抑制できることを見いだし、本発明に至った。
【0012】
即ち、本発明のセラミック回路基板は、基板表面に形成された導体を絶縁膜で被覆してなるセラミック回路基板において、前記絶縁膜が、少なくともSiO、PbO、CaO、NaOを含有するガラス成分を35〜60重量%、セラミックフィラー成分としてAlを40〜65重量%、前記ガラス成分100重量部に対してZrOを0.001〜0.02重量部の割合で添加してなる組成物を焼成してなり、結晶相として少なくともラブラドライトが存在するものである。
【0013】
【作用】
本発明のセラミック回路基板は、基板表面に形成された導体を絶縁膜で被覆してなるセラミック回路基板において、絶縁膜の少なくともSiO、PbO、CaO、NaOを含有するガラス成分に対して、ZrOを微量含有せしめることにより、低温においてZrOが核となりガラス成分のラブラドライトへの結晶化を促進するとともに、ZrO添加量を一定以下とすることにより、ガラス成分の過度のラブラドライトへの結晶化を抑制し、ガラス成分の溶融性を確保し、Al粒子との濡れ性を向上することが可能となる。
【0014】
これにより、1050℃以下で低温焼成した場合でも、絶縁膜の密度バラツキがなく、しかも高い焼成体密度を有する絶縁膜を得ることができ、これにより、絶縁膜の電気的絶縁性を向上し、絶縁膜が形成された基板の反り変形を抑制することができる。
【0015】
【発明の実施の形態】
本発明のセラミック回路基板の絶縁膜は、少なくともSiO、PbO、CaO、NaOを含有するガラス成分を35〜60重量%、セラミックフィラー成分としてAlを40〜65重量%、ガラス成分100重量部に対してZrOを0.001〜0.02重量部の割合で添加してなる組成物を焼成してなり、結晶相として少なくともラブラドライトが存在するものである。
【0016】
本発明のセラミック回路基板は、表面に例えば、Ag、Cu、Au等の導体が形成されており、この導体の一部または全部が絶縁膜により被覆されているものである。また、本発明のセラミック回路基板は、表面の導体を絶縁膜が被覆していれば良く、内部に内部配線、内部導体、内部電極を有する必要はない。従って、セラミック回路基板は、単層体または内部配線、内部導体、内部電極を有する積層体であっても良い。
【0017】
ここで、SiO、PbO、CaO、NaOを含有するガラス成分を35〜60重量%含有せしめたのは、ガラス成分が35重量%よりも少ない場合(Alが65重量%よりも多い場合)には、1050℃以下で低温焼成した場合に緻密な焼結体が得られず、60重量%よりも多い場合(Alが40重量%よりも少ない場合)には、緻密な焼結体が得られず、十分な材料強度が得られないからである。ガラス成分とアルミナとの比は、緻密な焼結体で十分な材料強度を得るという観点から、ガラス成分を44〜50重量%、Alを56〜60重量%含有することが望ましい。
【0018】
また、ガラス成分100重量部に対してZrOを0.001〜0.02重量部含有せしめたのは、ZrO量が0.001重量よりも少ない場合には、ガラスの結晶化が進まず、再焼成時の変形や焼成後にガラスが表面に浮く等の問題があり、0.02重量部よりも多い場合、ガラスの結晶化が進み過ぎ、緻密化に必要なガラスの流動性を阻害し、緻密な燒結体が得られないからである。ZrOは、適度に結晶化を促進し、緻密な焼結体を得るという観点から、ガラス成分100重量部に対して0.005〜0.015重量部含有せしめることが望ましい。このようなZrO量を得るためには、製造工程においてZrOが混入しないように厳密に制御する必要がある。
【0019】
本発明の絶縁膜においては、結晶相として、Alと、SiO、PbO、CaO、NaO、Alからなるラブラドライトが析出するものである。このラブラドライト相は、焼成時において、ZrOが核となることにより結晶化が促進される。しかしながら、添加されるZrO量を0.02重量部以下とすることにより、ラブラドライト相は、結晶化速度が適度に抑制され、ガラス成分の溶融性を確保してAl粒子を十分に濡らし、焼結性を向上して緻密化を促進する。そして、Al粒子間にラブラドライト相が析出し、ZrO粒子がラブラドライト相中に存在した焼結体が得られる。尚、少量のアモルファスが存在する場合もある。
【0020】
ラブラドライトはAb50An50〜Ab30An70(Ab:NaAlSi、An:CaAlSi)という化学式で表される。即ち、ラブラドライトはNaAlSiを30〜50モル%、CaAlSiを50〜70モル%からなるものである。
【0021】
また、本発明の絶縁膜は、ガラス成分としては、ガラス成分中において(ガラス成分を100とした時)重量比で、SiO40〜60重量%、Alを0〜20重量%、CaO、ZnO及びMgOが合計で5.5〜30重量%(CaOは必須成分)、PbOを10〜25重量%、NaO、KO及びBが合計で2〜30重量%(NaOは必須成分)からなる結晶化ガラスであることが望ましい。これは以下のような理由による。
【0022】
SiO量がガラス成分中40重量%以下の場合は、ガラスの析出結晶量が少なくなり、充分な強度の焼成体が得られないからである。一方、60重量%以上の場合は、ガラスの溶融性が悪くなる共に、軟化点が高くなり、1050℃以下での低温焼成が困難になる。
【0023】
また、ガラス成分としてAlを含有せしめることにより、焼成時にAlフィラーとの濡れ性を促進し、結晶性を向上することができるが、Al含有量が20重量%以上の場合は、ガラスの溶融性が困難になると共に、焼成時にガラスの軟化温度が高くなるからである。尚、ラブラドライトは、フィラー成分のAlとガラス成分のSiO、PbO、CaO、NaOと反応して生成する場合もある。
【0024】
ガラス成分中に、CaO、ZnO及びMgO(但し、CaOは必須成分)を含有せしめたのは、これらは、ガラスの粘性特性を調整できるからである。そして、その合計量を5.5〜30重量%としたのは、CaO、ZnO及びMgOの合計量が5.5重量%よりも少ない場合や30重量%よりも多い場合には、適度なガラスの粘性を得ることができず、ガラス化、結晶化が阻害され緻密な燒結体が得られないからである。
【0025】
ガラス成分中にPbOを10〜25重量%含有せしめたのは、その含有量が10重量%よりも少ない場合には、ガラスの結晶化が困難であり、25重量%よりも多い場合にはガラスの軟化点が低くなりすぎるからである。
【0026】
ガラス成分中にNaO、KO及びBを合計で2〜30重量%含有せしめたのは、2重量%よりも少ない場合や30重量%よりも多い場合には、ガラスの軟化点が高くなり、1050℃以下においてAl粒子を十分に濡らすことができなくなるからである。
【0027】
本発明の絶縁膜は以下のようにして得ることができる。
【0028】
先ず、SiO粉末、Al粉末、CaCO粉末、ZnO粉末、MgCO粉末、PbO粉末、NaCO粉末、KCO粉末及びB粉末を準備し、これらを上記したように所定量秤量し、これらを混合し、ルツボに入れ1500〜1600℃で2〜3時間溶融し、母ガラスを作製する。その母ガラスを所定の粒径になるまで粉砕する。
【0029】
そして、このガラス粉末と、Al粉末を混合するとともに、ガラス粉末に対して所定量ZrO粉末を添加混合する。ここでZrO粉末の平均粒径は、3μm以下であることが望ましい。これは、ZrO粉末が3μmよりも大きい場合には、ZrO粉末の表面活性力が小さいため、焼成時に核となりにくく、ラブラドライトへの結晶化を促進できないからである。尚、ZrOは、焼結体中においても平均結晶粒径が3μm以下として存在する。そのガラスセラミック粉末に有機バインダーと有機溶剤を添加し、3本ロールミルで混合し、ガラスセラミック粉末をペースト化する。そのガラスセラミックペーストをスクリーン印刷等の公知の印刷法により、目的とする表面の導体(表層に露出した配線も含む)上に印刷する。その後、大気中等の最適な焼成雰囲気中において、1050℃以下の焼成温度で1〜5時間焼成し、基板、表面導体、絶縁膜を同時に焼成する。
【0030】
図1に絶縁膜を用いたセラミック回路基板の断面図を示す。基板は複数のガラスセラミックス層が多層化された積層セラミック回路基板を例にした。
【0031】
図1において、符号10は低温焼成セラミック回路基板であり、この低温焼成セラミック回路基板10は、積層体(基板)1と表面に形成された表層導体2、内層導体3、ビアホール導体4及び絶縁膜5から構成されている、
積層体1は、例えば、7層のガラスセラミック層1a〜1gからなり、その層1a〜1g間には内層導体3が形成されている。また各ガラスセラミック層1a〜1gにはその厚み方向に内層導体3間を接続するため、また内層導体3と表層導体2とを接続するためのビヤホール導体4が形成されている。
【0032】
上記のセラミック回路基板10の製造方法を簡単に説明すると、まず、ガラスセラミック層となるグリーンシートを作製する。例えばグリーンシートは、所定のガラスセラミック粉末と有機バインダーと有機溶剤及び必要に応じて可塑剤とを混合し、スラリー化する。このスラリーをドクターブレード法などによりテープ成形を行い、所定寸法に切断しグリーンシートを作製する。
【0033】
次に、内層導体3間を接続したり、内層導体3と表層導体2とを接続するビアホール導体4となる貫通孔を、グリーンシートの所定の位置にパンチング等により作製する。
【0034】
導電性ペーストを、内部側のガラスセラミック層1a〜1fとなるグリーンシートの貫通孔に充填するとともに、そのグリーンシート上に所定形状の内層導体3となる導体膜を印刷形成する。
【0035】
次に導電性ペーストを用いて、表層のガラスセラミック層1a、1gとなるグリーンシート上に所定形状の表層導体2となる導体膜を印刷形成する。また、表面に露出する導体膜の一部を覆うように所定形状の絶縁膜5となるガラスセラミックペーストを印刷乾燥させる。
【0036】
このようにして得られたグリーンシートを積層順序に応じて積層し、積層成形体を形成して、一体的に焼成する。以上の製造工程によってセラミック回路基板10は製造される。
【0037】
【実施例】
先ず、純度99%以上のSiO粉末、Al粉末、CaCO粉末、ZnO粉末、MgCO粉末、PbO粉末、NaCO粉末、KCO粉末及びB粉末を準備し、これらを表1に示す酸化物換算で表1に示す組成となるように所定量秤量し、これらをAlボールを用いたボールミルにて混合し、白金ルツボに入れ1550℃で2時間溶融し、母ガラスを作製した。その母ガラスを所定の粒径になるまで、上記したボールミルにて粉砕した。
【0038】
そして、このガラス粉末と、Al粉末を混合するとともに、ガラス粉末に対して、平均粒径が表1に示すようなZrO粉末を、ガラス成分100重量部に対して表1に示す量だけ添加し、上記したボールミルにて混合した。得られたガラスセラミック粉末に有機バインダーとしてエチルセルロースと、有機溶剤として2・2・4−トリメチル−3・3−ペンタジオールモノイソブチレートを添加し、粉末及び有機バインダーの凝集体がなくなるまで3本ロールミルで混合し、ガラス粉末をペースト化し、絶縁膜用のガラスセラミックペーストを作製した。
【0039】
次に、セラミックフィラーとしてAlを、ガラス成分としてホウケイ酸鉛ガラスを用い、セラミックフィラーを55重量%、ガラス成分を45重量%の割合で含有するガラスセラミック材料に、上記した有機バインダー、有機溶剤を添加してなるペーストを、ドクターブレード法により薄層化し、基板用のグリーンシートを作製した。
【0040】
この後、ビアホール導体を作製するための貫通孔を、グリーンシートの所定の位置にパンチング等により作製し、Agからなる導電性ペーストを貫通孔に充填し、所定形状の内層導体となる導体膜を印刷形成した。
【0041】
一方、最上層、最下層となるグリーンシートに、表層導体となるAgからなる導電性ペーストを用いて所定形状の導体膜を印刷形成し、表面に露出する導体膜の一部を覆うように、上記絶縁膜用のガラスセラミックペーストを印刷し、乾燥させた。
【0042】
導電性ペーストが充填され、所定形状の導体膜が形成されたグリーンシートを複数積層するとともに、最上層および最下層に、表層導体となる導体膜の一部をガラスセラミックペーストで被覆したグリーンシートを積層し、積層成形体を作製した。
【0043】
この後、大気中400℃で脱バインダー処理し、さらに900℃で焼成し、図1に示すようなセラミック回路基板を作製した。尚、ガラスセラミック層1a〜1gの厚みは1.5mmであり、セラミック回路基板の大きさは、縦10mm、横10mm、厚み12mmであった。
【0044】
このセラミック回路基板の反りを、反りゲージを用い、セラミック回路基板表面を縦方向にずらしていき、反りの最大値を求めることにより評価した。その結果を表1に記載した。
【0045】
尚、上記絶縁膜を形成するガラスセラミックペーストをドクターブレード法により塗布し、約1mm厚の塗布膜を作製した。その塗布膜を乾燥し、金型プレス機により直径30mmに打ち抜き、大気中400℃で脱バインダー処理し、さらに900℃で焼成し、その焼成体密度をアルキメデス法により評価した。
【0046】
【表1】

Figure 0003548366
【0047】
この表1から、本発明の試料の絶縁膜の焼成体密度は3.17〜3.20g/cmと高い値を示し、安定しており、この結果、セラミック回路基板の反り変形が40μm以下と小さいことが判る。
【0048】
一方、試料No.13は、ZrO量が0.02重量部よりも多いため、過多のZrOが焼成時の結晶化の核となり緻密化を阻害するため、焼成体密度は本発明の試料と比較して3.10g/cmと低いことが判る。また、ZrO量が多くなる程焼成体密度が低下することが判る。
【0049】
さらに、平均粒径が3μm以上のZrO粉末を用いた試料No.6、8では、ガラスの結晶化が進まず焼成体密度が低いが、平均粒径が3μm以下のZrO粉末を用いた試料ではより焼成体密度が高くなることが判る。尚、本発明の試料の絶縁膜については、ラブラドライトが析出していることをX線回折により確認した。
【0050】
表1の試料No.3〜13、19について、ZrO量を横軸に、焼成体密度を縦軸に表したグラフを図2に示す。この図2および表1から、ZrO量を管理することにより、絶縁膜の焼成体密度のバラツキ、特に密度低下を解決でき、その絶縁膜を用いたセラミック回路基板の反り変形を抑制できることが判る。
【0051】
【発明の効果】
本発明のセラミック回路基板では、絶縁膜の組成を、少なくともSiO、PbO、CaO、NaOを含有するガラス成分に対して、微量のZrOを含有せしめることにより、低温においてZrOが核となりガラス成分のラブラドライトへの結晶化を促進するとともに、ZrOを一定量以下含有せしめることにより、ガラス成分の過度のラブラドライトへの結晶化を抑制し、ガラス成分の溶融性を確保し、Al粒子との濡れ性を向上することができる。これにより、絶縁膜の焼成後の密度バラツキ、特に密度低下を解決し、セラミック回路基板の反り変形を抑制し、安定なセラミック回路基板を提供できる。
【図面の簡単な説明】
【図1】本発明のセラミック回路基板の断面図を示す。
【図2】ZrO量を横軸に、焼成体密度を縦軸に表したグラフである。
【符号の説明】
1・・・積層体 2・・・表層導体
3・・・内層導体
4・・・ビアホール導体
5・・・絶縁膜 10・・・セラミック回路基板[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a ceramic circuit board, and more particularly to a ceramic circuit board in which a conductor formed on a substrate surface is covered with an insulating film.
[0002]
[Prior art]
Conventionally, when a conductor such as Ag, Cu, Au, W, or Mo is used as a wiring conductor for a circuit board, it is necessary to maintain electrical insulation of the board or to protect a conductor formed on the surface of the board. In addition, the conductor is covered with an insulating film in order to prevent a short circuit due to solder, migration, and the like.
[0003]
For example, on a ceramic circuit board, the above conductor is roughly pasted on a ceramic substrate formed of alumina or the like, and an insulating material such as alumina or glass is pasted on a circuit pattern formed by printing and firing. A thick-film circuit board on which an insulating film is formed by printing and baking, and a multi-layer circuit board in which a conductor film to be used as internal wiring is sandwiched and laminated by ceramics such as taped alumina, and a surface conductor is covered with an insulating film. is there.
[0004]
In recent years, from the viewpoint of cost reduction, high reliability, and high functionality, a glass ceramic material that can be fired at a low temperature as a substrate material, Ag that can be fired in air and a conductor having a low conductor resistance value, etc. A low-temperature fired multilayer substrate obtained by using a conductor for the inner layer and the surface layer conductor and integrally firing is mainly used.
[0005]
The insulating films used for these ceramic multilayer circuit boards are: (1) an insulating film that is sintered at a low temperature; (2) an insulating film that can ensure electrical insulation; and (3) a substrate after firing. And an insulating film that does not cause warpage of the film.
[0006]
These characteristics are caused by the sinterability of the insulating film. If the sinterability is poor, poor insulation and warpage of the substrate occur, so the sinterability of the insulating film is an important factor.
[0007]
As a glass ceramic material used for a conventional low-temperature fired multilayer substrate, 40 to 65% of SiO 2 , 5 to 15% of CaO, 10 to 25% of PbO, 0.5 to 10% of MgO, and 1 to 2 of Na 2 O 1 to 100% by weight. 10%, K 2 O 1~10% , Al 2 O 3 0~20%, B 2 O 3 0~10%, and 35% to 60% glass powder having a composition of 0 to 5% ZnO, alumina powder 40 A composition comprising 65% is known (see Japanese Patent Publication No. 4-49497).
[0008]
In the conventional ceramic circuit board, a molded body for a substrate is manufactured using a glass ceramic material, and a conductor paste serving as a surface conductor is applied to the surface of the molded body. It is manufactured by coating with a paste made of a material, and thereafter integrally firing a molded body for a substrate, a conductor paste serving as a surface conductor, and a glass ceramic paste serving as an insulating film.
[0009]
[Problems to be solved by the invention]
However, when an insulating film is formed using the above glass ceramic material, when a molded body for a substrate, a conductive paste serving as a surface conductor, and a glass ceramic paste serving as an insulating film are integrally fired, the firing during firing is performed on the insulating film. There is a problem in that tying variation occurs, electrical insulation of the insulating film deteriorates due to insufficient sintering, and warpage of the substrate increases.
[0010]
An object of the present invention is to improve the sinterability of an insulating film covering a conductor formed on the surface of a substrate, improve the electrical insulation of the insulating film, and suppress warpage of the substrate. I do.
[0011]
[Means for Solving the Problems]
The present inventors have conducted intensive studies on the deterioration of electrical insulation due to sintering failure of the insulating film and the warpage of the substrate. As a result, the composition of the insulating film was changed to SiO 2 , PbO, CaO, and Na 2 O. By adding a small amount of ZrO 2 to the glass to be contained, ZrO 2 becomes a nucleus, which promotes crystallization of the glass to a certain level, and secures the melting property of the glass, thereby increasing the density of the insulating film. The inventors have found that it is possible to solve the variation, particularly the decrease in density, to improve the insulating properties, and to suppress the warpage of the substrate, and have reached the present invention.
[0012]
That is, the ceramic circuit board of the present invention is a ceramic circuit board obtained by covering a conductor formed on a substrate surface with an insulating film, wherein the insulating film contains at least SiO 2 , PbO, CaO, and Na 2 O. the components 35 to 60 wt%, the Al 2 O 3 40 to 65% by weight ceramic filler component, with the addition of ZrO 2 in an amount of 0.001 to 0.02 parts by weight with respect to the glass component to 100 parts by weight Is obtained by calcining a composition comprising at least labradorite as a crystal phase.
[0013]
[Action]
The ceramic circuit board according to the present invention is a ceramic circuit board in which a conductor formed on a substrate surface is covered with an insulating film, and a glass component containing at least SiO 2 , PbO, CaO, and Na 2 O of the insulating film. by the ZrO 2 allowed to contain trace amounts, together with ZrO 2 promotes crystallization into labradorite of the glass component becomes the core at low temperatures, by the ZrO 2 amount and a constant or less, to excessive labradorite glass component Crystallization can be suppressed, the melting property of the glass component can be ensured, and the wettability with Al 2 O 3 particles can be improved.
[0014]
As a result, even when the film is fired at a low temperature of 1050 ° C. or less, an insulating film having no variation in the density of the insulating film and having a high fired body density can be obtained, thereby improving the electrical insulation of the insulating film. Warpage of the substrate on which the insulating film is formed can be suppressed.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
The insulating film of the ceramic circuit board of the present invention has a glass component containing at least SiO 2 , PbO, CaO, and Na 2 O in an amount of 35 to 60% by weight, a ceramic filler component of Al 2 O 3 in an amount of 40 to 65% by weight, A composition obtained by adding 0.001 to 0.02 parts by weight of ZrO 2 to 100 parts by weight of a component is fired, and at least labradorite is present as a crystal phase.
[0016]
In the ceramic circuit board of the present invention, a conductor such as, for example, Ag, Cu, or Au is formed on the surface, and a part or all of the conductor is covered with an insulating film. The ceramic circuit board of the present invention only needs to cover the conductor on the surface with an insulating film, and does not need to have internal wiring, internal conductors, and internal electrodes inside. Therefore, the ceramic circuit board may be a single-layer body or a laminate having internal wiring, internal conductors, and internal electrodes.
[0017]
The reason why the glass component containing SiO 2 , PbO, CaO, and Na 2 O is contained in an amount of 35 to 60% by weight is that the glass component is less than 35% by weight (Al 2 O 3 is less than 65% by weight). When the composition is fired at a low temperature of 1050 ° C. or less, a dense sintered body cannot be obtained. When the content is more than 60% by weight (when Al 2 O 3 is less than 40% by weight), This is because a dense sintered body cannot be obtained, and sufficient material strength cannot be obtained. The ratio of the glass component and alumina, from the viewpoint of obtaining sufficient material strength dense sintered body, a glass component 44 to 50 wt%, it is desirable that the Al 2 O 3 containing 56 to 60 wt%.
[0018]
Further, the reason that 0.001 to 0.02 parts by weight of ZrO 2 is contained with respect to 100 parts by weight of the glass component is that when the amount of ZrO 2 is less than 0.001 part by weight, crystallization of the glass does not proceed. However, there are problems such as deformation at the time of refiring and the glass floating on the surface after firing. If the content is more than 0.02 parts by weight, crystallization of the glass proceeds excessively, and the fluidity of the glass required for densification is hindered. This is because a dense sintered body cannot be obtained. From the viewpoint of appropriately promoting crystallization and obtaining a dense sintered body, ZrO 2 is desirably contained in an amount of 0.005 to 0.015 parts by weight based on 100 parts by weight of the glass component. In order to obtain such an amount of ZrO 2 , it is necessary to strictly control so that ZrO 2 is not mixed in the manufacturing process.
[0019]
In the insulating film of the present invention, Labradorite composed of Al 2 O 3 and SiO 2 , PbO, CaO, Na 2 O, and Al 2 O 3 is precipitated as a crystal phase. In the labradorite phase, crystallization is promoted by sintering ZrO 2 during firing. However, by setting the amount of ZrO 2 to be added to 0.02 parts by weight or less, the crystallization rate of the labradorite phase is appropriately suppressed, the melting property of the glass component is ensured, and the Al 2 O 3 particles are sufficiently reduced. Wetting, improving sinterability and promoting densification. Then, a Labradorite phase is precipitated between the Al 2 O 3 particles, and a sintered body in which ZrO 2 particles are present in the Labradorite phase is obtained. Incidentally, a small amount of amorphous may be present in some cases.
[0020]
Labradorite is Ab 50 An 50 ~Ab 30 An 70 (Ab: NaAlSi 3 O 8, An: CaAl 2 Si 2 O 8) represented by the chemical formula of. That is, labradorite is composed of 30 to 50 mol% of NaAlSi 3 O 8 and 50 to 70 mol% of CaAl 2 Si 2 O 8 .
[0021]
In the insulating film of the present invention, as the glass component, 40 to 60% by weight of SiO 2 and 0 to 20% by weight of Al 2 O 3 are contained in the glass component by weight (when the glass component is 100). CaO, 5.5 to 30 wt% ZnO and MgO are in total (CaO is an essential component), a PbO 10 to 25 wt%, Na 2 O, 2 to 30 wt% K 2 O and B 2 O 3 is total (Na 2 O is an essential component) and desirably is a crystallized glass. This is for the following reasons.
[0022]
If the SiO 2 content is 40% by weight or less in the glass component, the amount of precipitated crystals of the glass becomes small, and a fired body having sufficient strength cannot be obtained. On the other hand, when the content is 60% by weight or more, the melting property of the glass is deteriorated, the softening point is increased, and low-temperature firing at 1050 ° C. or less becomes difficult.
[0023]
In addition, by containing Al 2 O 3 as a glass component, wettability with an Al 2 O 3 filler can be promoted during firing and crystallinity can be improved, but the Al 2 O 3 content is 20% by weight. This is because in the above case, the melting property of the glass becomes difficult and the softening temperature of the glass during firing becomes high. Labradorite may be formed by reacting Al 2 O 3 as a filler component with SiO 2 , PbO, CaO, or Na 2 O as a glass component.
[0024]
CaO, ZnO and MgO (CaO is an essential component) are included in the glass component because they can adjust the viscosity characteristics of the glass. The reason why the total amount is set to 5.5 to 30% by weight is that when the total amount of CaO, ZnO and MgO is less than 5.5% by weight or more than 30% by weight, a suitable glass is used. Is not obtained, and vitrification and crystallization are inhibited, and a dense sintered body cannot be obtained.
[0025]
The reason that PbO is contained in the glass component in an amount of 10 to 25% by weight is that if the content is less than 10% by weight, it is difficult to crystallize the glass. Is too low.
[0026]
When Na 2 O, K 2 O and B 2 O 3 are contained in the glass component in a total amount of 2 to 30% by weight, when the content is less than 2% by weight or more than 30% by weight, This is because the softening point becomes high and the Al 2 O 3 particles cannot be sufficiently wet at 1050 ° C. or lower.
[0027]
The insulating film of the present invention can be obtained as follows.
[0028]
First, SiO 2 powder, Al 2 O 3 powder, CaCO 3 powder, ZnO powder, MgCO 3 powder, PbO powder, Na 2 CO 3 powder, K 2 CO 3 powder, and B 2 O 3 powder were prepared. As described above, a predetermined amount is weighed, mixed, put into a crucible and melted at 1500 to 1600 ° C. for 2 to 3 hours to prepare a mother glass. The mother glass is pulverized to a predetermined particle size.
[0029]
Then, this glass powder and Al 2 O 3 powder are mixed, and a predetermined amount of ZrO 2 powder is added to and mixed with the glass powder. Here, the average particle size of the ZrO 2 powder is desirably 3 μm or less. This is because when the ZrO 2 powder is larger than 3 μm, the surface activity of the ZrO 2 powder is small, so that the ZrO 2 powder does not easily become a nucleus during firing and cannot promote crystallization to labradorite. Note that ZrO 2 exists even in a sintered body with an average crystal grain size of 3 μm or less. An organic binder and an organic solvent are added to the glass ceramic powder and mixed with a three-roll mill to form the glass ceramic powder into a paste. The glass ceramic paste is printed on a target surface conductor (including a wiring exposed on the surface layer) by a known printing method such as screen printing. Thereafter, the substrate, the surface conductor, and the insulating film are simultaneously fired at a firing temperature of 1050 ° C. or less in an optimum firing atmosphere such as the air for 1 to 5 hours.
[0030]
FIG. 1 is a sectional view of a ceramic circuit board using an insulating film. The substrate is an example of a multilayer ceramic circuit board in which a plurality of glass ceramic layers are multilayered.
[0031]
In FIG. 1, reference numeral 10 denotes a low-temperature fired ceramic circuit board. The low-temperature fired ceramic circuit board 10 includes a laminated body (substrate) 1 and a surface conductor 2, an inner conductor 3, a via-hole conductor 4, and an insulating film formed on the surface. Consisting of five,
The laminate 1 includes, for example, seven glass ceramic layers 1a to 1g, and an inner conductor 3 is formed between the layers 1a to 1g. In each of the glass ceramic layers 1a to 1g, a via-hole conductor 4 for connecting the inner layer conductor 3 in the thickness direction thereof and connecting the inner layer conductor 3 and the surface layer conductor 2 is formed.
[0032]
The method of manufacturing the ceramic circuit board 10 will be briefly described. First, a green sheet to be a glass ceramic layer is manufactured. For example, a green sheet is formed into a slurry by mixing a predetermined glass ceramic powder, an organic binder, an organic solvent and, if necessary, a plasticizer. This slurry is formed into a tape by a doctor blade method or the like, and cut into a predetermined size to produce a green sheet.
[0033]
Next, through holes serving as via-hole conductors 4 for connecting the inner layer conductors 3 and connecting the inner layer conductors 3 and the surface layer conductors 2 are formed at predetermined positions of the green sheet by punching or the like.
[0034]
The conductive paste is filled into the through holes of the green sheets to be the glass ceramic layers 1a to 1f on the inner side, and a conductive film to be the inner conductor 3 having a predetermined shape is formed on the green sheets by printing.
[0035]
Next, using a conductive paste, a conductor film serving as a surface conductor 2 having a predetermined shape is formed by printing on green sheets serving as the surface glass ceramic layers 1a and 1g. In addition, a glass ceramic paste that becomes the insulating film 5 having a predetermined shape is printed and dried so as to cover a part of the conductor film exposed on the surface.
[0036]
The green sheets thus obtained are laminated in a laminating order to form a laminated molded body, which is integrally fired. The ceramic circuit board 10 is manufactured by the above manufacturing steps.
[0037]
【Example】
First, SiO 2 powder, Al 2 O 3 powder, CaCO 3 powder, ZnO powder, MgCO 3 powder, PbO powder, Na 2 CO 3 powder, K 2 CO 3 powder, and B 2 O 3 powder having a purity of 99% or more are prepared. These were weighed in a predetermined amount so as to have the composition shown in Table 1 in terms of oxides shown in Table 1, mixed with a ball mill using Al 2 O 3 balls, put in a platinum crucible and placed at 1550 ° C. for 2 hours. After melting for a time, a mother glass was produced. The mother glass was crushed by the above-mentioned ball mill until it reached a predetermined particle size.
[0038]
Then, this glass powder and Al 2 O 3 powder were mixed, and ZrO 2 powder having an average particle size shown in Table 1 was shown in Table 1 with respect to the glass powder with respect to 100 parts by weight of the glass component. The amount was added and mixed by the ball mill described above. Ethyl cellulose as an organic binder and 2,2.4-trimethyl-3,3-pentadiol monoisobutyrate as an organic solvent were added to the obtained glass ceramic powder, and three pieces were added until the aggregate of the powder and the organic binder disappeared. The mixture was mixed by a roll mill, and the glass powder was made into a paste to prepare a glass ceramic paste for an insulating film.
[0039]
Next, the above organic binder was added to a glass ceramic material containing Al 2 O 3 as a ceramic filler and lead borosilicate glass as a glass component, and containing 55% by weight of the ceramic filler and 45% by weight of the glass component. The paste obtained by adding the organic solvent was thinned by a doctor blade method to produce a green sheet for a substrate.
[0040]
Thereafter, a through-hole for producing a via-hole conductor is formed at a predetermined position of the green sheet by punching or the like, and a conductive paste made of Ag is filled in the through-hole, and a conductor film serving as an inner conductor having a predetermined shape is formed. Print formed.
[0041]
On the other hand, on the uppermost layer, the lowermost green sheet, a conductive film of a predetermined shape is formed by printing using a conductive paste made of Ag which becomes a surface conductor, so as to cover a part of the conductive film exposed on the surface. The glass ceramic paste for the insulating film was printed and dried.
[0042]
A green sheet in which a conductive paste is filled and a plurality of green sheets on which a conductive film of a predetermined shape is formed is laminated, and a green sheet in which a part of the conductive film serving as a surface conductor is covered with a glass ceramic paste on the uppermost layer and the lowermost layer. Lamination was performed to produce a laminated molded body.
[0043]
Thereafter, a binder removal treatment was performed at 400 ° C. in the air, and the resultant was baked at 900 ° C. to produce a ceramic circuit board as shown in FIG. The thickness of the glass ceramic layers 1a to 1g was 1.5 mm, and the size of the ceramic circuit board was 10 mm in length, 10 mm in width, and 12 mm in thickness.
[0044]
The warpage of the ceramic circuit board was evaluated by using a warp gauge, shifting the surface of the ceramic circuit board in the vertical direction, and obtaining the maximum value of the warpage. The results are shown in Table 1.
[0045]
In addition, the glass ceramic paste for forming the insulating film was applied by a doctor blade method to prepare a coating film having a thickness of about 1 mm. The coated film was dried, punched into a diameter of 30 mm by a die press, debindered at 400 ° C. in air, and fired at 900 ° C., and the fired body density was evaluated by Archimedes method.
[0046]
[Table 1]
Figure 0003548366
[0047]
From Table 1, the density of the fired body of the insulating film of the sample of the present invention is as high as 3.17 to 3.20 g / cm 3 and is stable. As a result, the warpage of the ceramic circuit board is 40 μm or less. It turns out that it is small.
[0048]
On the other hand, the sample No. In No. 13, since the amount of ZrO 2 is more than 0.02 parts by weight, excessive ZrO 2 becomes a nucleus for crystallization during firing and inhibits densification, so that the density of the fired body is 3 compared to the sample of the present invention. It turns out that it is as low as 0.10 g / cm 3 . Further, it can be seen that the density of the fired body decreases as the amount of ZrO 2 increases.
[0049]
Further, Sample No. using a ZrO 2 powder having an average particle size of 3 μm or more was used. In Examples 6 and 8, although the crystallization of the glass did not progress and the density of the fired body was low, it was found that the density of the fired body was higher in the sample using ZrO 2 powder having an average particle diameter of 3 μm or less. In addition, about the insulating film of the sample of this invention, it was confirmed by X-ray diffraction that labradorite was precipitated.
[0050]
Sample No. 1 in Table 1. FIG. 2 is a graph showing the amount of ZrO 2 on the horizontal axis and the density of the fired body on the vertical axis for 3 to 13 and 19. From FIG. 2 and Table 1, it can be seen that by controlling the amount of ZrO 2 , it is possible to solve the variation in the density of the fired body of the insulating film, particularly the reduction in the density, and to suppress the warpage of the ceramic circuit board using the insulating film. .
[0051]
【The invention's effect】
The ceramic circuit board of the present invention, the composition of the insulating film, the glass component containing at least SiO 2, PbO, CaO, Na 2 O, by incorporating the ZrO 2 traces, is ZrO 2 at a low temperature nucleation thereby promoting the crystallization of the labradorite next glass component, by incorporating the ZrO 2 fixed amount or less, to suppress crystallization of the excessive labradorite of the glass component, to ensure the meltability of the glass component, Al 2 The wettability with O 3 particles can be improved. Thereby, it is possible to solve the density variation after the firing of the insulating film, particularly the density reduction, suppress the warpage of the ceramic circuit board, and provide a stable ceramic circuit board.
[Brief description of the drawings]
FIG. 1 shows a sectional view of a ceramic circuit board of the present invention.
FIG. 2 is a graph showing the amount of ZrO 2 on the horizontal axis and the density of the fired body on the vertical axis.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Laminated body 2 ... Surface conductor 3 ... Inner layer conductor 4 ... Via hole conductor 5 ... Insulating film 10 ... Ceramic circuit board

Claims (1)

基板表面に形成された導体を絶縁膜で被覆してなるセラミック回路基板において、前記絶縁膜が、少なくともSiO、PbO、CaO、NaOを含有するガラス成分を35〜60重量%、セラミックフィラー成分としてAlを40〜65重量%、前記ガラス成分100重量部に対してZrOを0.001〜0.02重量部の割合で添加してなる組成物を焼成してなり、結晶相として少なくともラブラドライトが存在することを特徴とするセラミック回路基板。In a ceramic circuit board obtained by covering a conductor formed on a substrate surface with an insulating film, the insulating film contains 35 to 60% by weight of a glass component containing at least SiO 2 , PbO, CaO, and Na 2 O, and a ceramic filler. A composition comprising 40 to 65% by weight of Al 2 O 3 as a component and 0.001 to 0.02 part by weight of ZrO 2 with respect to 100 parts by weight of the glass component is fired to obtain a crystal. A ceramic circuit board, wherein at least Labradorite is present as a phase.
JP04367597A 1997-02-27 1997-02-27 Ceramic circuit board Expired - Fee Related JP3548366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04367597A JP3548366B2 (en) 1997-02-27 1997-02-27 Ceramic circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04367597A JP3548366B2 (en) 1997-02-27 1997-02-27 Ceramic circuit board

Publications (2)

Publication Number Publication Date
JPH10242623A JPH10242623A (en) 1998-09-11
JP3548366B2 true JP3548366B2 (en) 2004-07-28

Family

ID=12670425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04367597A Expired - Fee Related JP3548366B2 (en) 1997-02-27 1997-02-27 Ceramic circuit board

Country Status (1)

Country Link
JP (1) JP3548366B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3882500B2 (en) * 2000-03-02 2007-02-14 株式会社村田製作所 Thick film insulating composition, ceramic electronic component using the same, and electronic device
CN108675770B (en) * 2018-06-12 2021-06-04 佛山市玉矶材料科技有限公司 Preparation method of lead oxide ceramic
KR20230019650A (en) * 2021-08-02 2023-02-09 엘지이노텍 주식회사 Circuit board

Also Published As

Publication number Publication date
JPH10242623A (en) 1998-09-11

Similar Documents

Publication Publication Date Title
JP3358589B2 (en) Composition for ceramic substrate, green sheet and ceramic circuit component
JP5928847B2 (en) Multilayer ceramic substrate and electronic component using the same
JPH0343786B2 (en)
JP2001114554A (en) Low-temperature burnable ceramic composition and ceramic multilayer substrate
JP4295682B2 (en) Multilayer wiring board
JP3943341B2 (en) Glass ceramic composition
JP3548366B2 (en) Ceramic circuit board
JP4748904B2 (en) Glass ceramic sintered body and wiring board using the same
JPH0676227B2 (en) Glass ceramic sintered body
JP3647130B2 (en) Insulator glass composition and glass composition for thick film multilayer circuit insulation layer using the same
JP4794040B2 (en) Ceramic sintered body and wiring board using the same
JPH0758454A (en) Glass ceramic multilayered substrate
JPH0617250B2 (en) Glass ceramic sintered body
JP2003277852A (en) Copper metallized composition and ceramic wiring board
JP2005039164A (en) Method for manufacturing glass ceramic wiring board
JP2004235347A (en) Insulating ceramics and multilayer ceramic substrate using the same
JP3426820B2 (en) Copper metallized composition and method for producing glass ceramic wiring board using the same
JPH068189B2 (en) Oxide dielectric material
JPH09246722A (en) Glass ceramic multilayer wiring substrate and manufacture thereof
JP3101966B2 (en) High thermal expansion Al2O3-SiO2-based sintered body and method for producing the same
JP2003347732A (en) Ceramic substrate and method for its manufacturing
JP2652229B2 (en) Multilayer circuit ceramic substrate
JP3315182B2 (en) Composition for ceramic substrate
JP3240873B2 (en) Low temperature fired ceramic dielectric and low temperature fired ceramic multilayer circuit board
JPH1125754A (en) Manufacture of copper-metallized composition and glass-ceramic substrate

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040416

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees