JP4295682B2 - Multilayer wiring board - Google Patents

Multilayer wiring board Download PDF

Info

Publication number
JP4295682B2
JP4295682B2 JP2004190174A JP2004190174A JP4295682B2 JP 4295682 B2 JP4295682 B2 JP 4295682B2 JP 2004190174 A JP2004190174 A JP 2004190174A JP 2004190174 A JP2004190174 A JP 2004190174A JP 4295682 B2 JP4295682 B2 JP 4295682B2
Authority
JP
Japan
Prior art keywords
glass
vol
wiring board
ceramic mixed
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004190174A
Other languages
Japanese (ja)
Other versions
JP2006012687A (en
Inventor
泰治 宮内
友宏 嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2004190174A priority Critical patent/JP4295682B2/en
Application filed by TDK Corp filed Critical TDK Corp
Priority to KR1020050055797A priority patent/KR100930852B1/en
Priority to US11/166,367 priority patent/US7307032B2/en
Priority to DE602005025285T priority patent/DE602005025285D1/en
Priority to EP05013812A priority patent/EP1612194B1/en
Priority to TW094121534A priority patent/TWI361800B/en
Priority to CN 200510080911 priority patent/CN100561604C/en
Publication of JP2006012687A publication Critical patent/JP2006012687A/en
Application granted granted Critical
Publication of JP4295682B2 publication Critical patent/JP4295682B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

本発明は、ガラス成分とセラミックス成分とからなるガラス−セラミックス基板、すなわち低温焼成基板材料と、これを用いた多層配線基板に関する。   The present invention relates to a glass-ceramic substrate composed of a glass component and a ceramic component, that is, a low-temperature fired substrate material, and a multilayer wiring substrate using the same.

半導体チップ用の絶縁性配線基板において、導体材料や抵抗材料と同時焼成を行なうために、1000℃以下の低温で焼成が可能なガラス−セラミックス基板(低温焼成基板、LTCC基板)に関する技術の開示がある(例えば特許文献1及び特許文献2を参照。)。この基板は、まず、グリーンシートを成形した後、その表面に導体材料や抵抗材料で配線を印刷し、これを複数枚積層してプレスし、その積層体を焼成することで得られ、多層配線基板を構成する。この基板は、高周波重畳モジュール、アンテナスイッチモジュール、フィルタモジュール等のLTCCモジュールとして利用される。
特開平1−132194号公報 特開平5−211006号公報
Disclosure of technology related to glass-ceramic substrates (low temperature fired substrates, LTCC substrates) that can be fired at a low temperature of 1000 ° C. or lower in order to perform simultaneous firing with a conductor material and a resistance material in an insulating wiring substrate for semiconductor chips. (For example, refer to Patent Document 1 and Patent Document 2). This substrate is obtained by first forming a green sheet, printing a wiring with a conductive material or a resistance material on the surface, laminating and pressing a plurality of sheets, and firing the laminated body. Configure the substrate. This substrate is used as an LTCC module such as a high frequency superposition module, an antenna switch module, or a filter module.
JP-A-1-132194 Japanese Patent Laid-Open No. 5-21006

近年、生産効率を上げるために1つの基板から複数の製品が得られるように集合基板形態で焼成を行なうことが多い。このとき集合基板から得られる製品の精度を保つために、集合基板の平面性がますます要求されるようになっている。   In recent years, in order to increase production efficiency, firing is often performed in a collective substrate form so that a plurality of products can be obtained from one substrate. At this time, in order to maintain the accuracy of the product obtained from the collective substrate, the flatness of the collective substrate is increasingly required.

同時に、LTCCモジュールの高集積化、小型化を進めるためには、同じ比誘電率のガラス−セラミックス混合層を積層させた多層配線基板のみならず、比誘電率の異なるガラス−セラミックス混合層を積層させて多層配線基板を形成することが望まれる。   At the same time, in order to increase the integration and miniaturization of LTCC modules, not only a multilayer wiring board in which glass-ceramic mixed layers having the same dielectric constant are stacked, but also glass-ceramic mixed layers having different relative dielectric constants are stacked. It is desired to form a multilayer wiring board.

しかし、比誘電率に違いを持たせるために異組成のガラス−セラミックス混合層を積層させて多層配線基板とすると、異なる組成のガラス−セラミックス混合層では線熱膨張係数も異なることから、焼成品に反りが発生するという問題が生ずる。   However, when glass / ceramic mixed layers of different compositions are laminated to make a difference in relative dielectric constant to form a multilayer wiring board, the linear thermal expansion coefficient of the glass / ceramic mixed layers of different compositions also differs. This causes a problem of warping.

焼成品の反りの問題を解決するため、グリーンシートを積層するに際して、積層方向に対称構造となるようにすることで、線熱膨張係数の違いをキャンセルし、焼成品の反りを防止している。しかし、設計の自由度を向上させ、需要の要求に柔軟に対応できるようにするために、対称構造をとらなくても反りが小さいことが望まれる。   In order to solve the problem of warpage of the fired product, the difference in the linear thermal expansion coefficient is canceled and the warp of the fired product is prevented by making the green sheet a symmetrical structure in the stacking direction. . However, in order to improve the degree of freedom of design and flexibly respond to demand demands, it is desired that the warp is small even without taking a symmetrical structure.

そこで本発明の第1の目的は、線熱膨張係数が5.90×10−6〜6.40×10−6/℃と従来の低温焼成基板材料と同程度の線熱膨張係数を有しつつ、比誘電率が10以上と高い誘電率を有する低温焼成基板材料を提供することである。多層配線基板に高容量のキャパシター層を含ませることで、モジュールの薄型・小型化をはかるものである。さらに本発明の第2の目的は、設計の自由度の向上のために異組成のガラス−セラミックス混合層を積層させた多層配線基板において、積層構造を対称構造としなくても焼成品の反りを小さくすることである。 Therefore, the first object of the present invention is to have a linear thermal expansion coefficient of 5.90 × 10 −6 to 6.40 × 10 −6 / ° C., which is similar to that of a conventional low-temperature fired substrate material. On the other hand, it is to provide a low-temperature fired substrate material having a dielectric constant as high as 10 or more. By including a high-capacitance capacitor layer in the multilayer wiring board, the module can be made thinner and smaller. Furthermore, a second object of the present invention is to provide a multilayer wiring board in which glass-ceramic mixed layers of different compositions are laminated for improving the degree of freedom in design, and warps of the fired product even if the laminated structure is not symmetrical. To make it smaller.

本発明者らは、コーディエライトをフィラーとして含有させ、その含有量を増減させることで、低温焼成基板材料の線熱膨張係数を容易に制御することができることを見出し、本発明を完成させた。本発明に係る多層配線基板において使用する低温焼成基板材料は、SiO46〜60重量%、B0.5〜5重量%、Al6〜17.5重量%及びアルカリ土類金属酸化物25〜45重量%の組成を有し、該アルカリ土類金属酸化物中の少なくとも60重量%がSrOであるガラスを60〜78vol%、アルミナを0vol%を超えて16vol%以下、チタニアを10〜26vol%、及び、コーディエライトを2〜15vol%含有し、且つ、50〜300℃における線熱膨張係数が5.90×10−6〜6.40×10−6/℃で、室温1.9GHzにおける比誘電率が10以上であることを特徴とする。チタニアを添加しつつ、同時にコーディエライトをフィラーとして含有させることで、高い比誘電率を維持しつつ、線熱膨張係数を5.90×10−6〜6.40×10−6/℃とすることができる。ここで本発明に係る多層配線基板において使用する低温焼成基板材料は、コーディエライトの含有量を増減させることで容易に線熱膨張係数を制御することができる。 The present inventors have found that cordierite can be contained as a filler, and that the linear thermal expansion coefficient of the low-temperature fired substrate material can be easily controlled by increasing or decreasing the content thereof, thereby completing the present invention. . Temperature fired substrate material used in the multilayer wiring board according to the present invention, SiO 2 46 to 60 wt%, B 2 O 3 0.5~5 wt%, Al 2 O 3 6~17.5 wt% and alkaline earth 60 to 78 vol% of a glass having a composition of 25 to 45% by weight of a metal oxide, at least 60% by weight of the alkaline earth metal oxide being SrO, more than 0 vol% to 16 vol% or less of alumina, It contains 10 to 26 vol% of titania and 2 to 15 vol% of cordierite, and the linear thermal expansion coefficient at 50 to 300 ° C. is 5.90 × 10 −6 to 6.40 × 10 −6 / ° C. The relative dielectric constant at room temperature 1.9 GHz is 10 or more. While adding titania and simultaneously containing cordierite as a filler, the linear thermal expansion coefficient is 5.90 × 10 −6 to 6.40 × 10 −6 / ° C. while maintaining a high relative dielectric constant. can do. Here, the low-temperature firing substrate material used in the multilayer wiring board according to the present invention can easily control the linear thermal expansion coefficient by increasing or decreasing the cordierite content.

本発明に係る多層配線基板は、ガラス−セラミックス混合層が積層されている多層配線基板において、前記ガラス−セラミックス混合層のうち少なくとも1層、SiO46〜60重量%、B0.5〜5重量%、Al6〜17.5重量%及びアルカリ土類金属酸化物25〜45重量%の組成を有し、該アルカリ土類金属酸化物中の少なくとも60重量%がSrOであるガラスを60〜78vol%、アルミナを0vol%を超えて16vol%以下、チタニアを10〜26vol%、及び、コーディエライトを2〜15vol%含有し、且つ、50〜300℃における線熱膨張係数が5.90×10−6〜6.40×10−6/℃で、室温1.9GHzにおける比誘電率が10以上である低温焼成基板材料からなり、かつ、該低温焼成基板材料からなるガラス−セラミックス混合層以外の他のガラス−セラミックス混合層は、室温1.9GHzにおける比誘電率が5〜8であることを特徴とする。本発明に係る多層配線基板において使用する低温焼成基板材料は、高い比誘電率を有しつつ、線熱膨張係数を5.90×10−6〜6.40×10−6/℃と制御することができるので、例えば低比誘電率の低温焼成基板材料と組み合わせるに際して、線熱膨張係数を合致させ、反りを低減できる。そして、他のガラス−セラミックス混合層の室温1.9GHzにおける比誘電率が5〜8とすることで、比誘電率の異なるガラス−セラミックス混合層を積層させて多層配線基板を形成し、LTCCモジュールの高集積化、小型化を進めることができる。 The multilayer wiring board according to the present invention is a multilayer wiring board in which glass-ceramic mixed layers are laminated, and at least one of the glass-ceramic mixed layers includes 46 to 60% by weight of SiO 2 and B 2 O 3 0. .5~5 wt%, Al 2 O 3 has a composition of from 6 to 17.5% by weight and an alkaline earth metal oxide 25-45 wt%, at least 60% by weight of the alkaline earth metal oxide is SrO glass containing 60 to 78 vol%, alumina exceeding 0 vol% to 16 vol% or less, titania containing 10 to 26 vol%, cordierite containing 2 to 15 vol%, and linear heat at 50 to 300 ° C the expansion coefficient of 5.90 × 10 -6 ~6.40 × 10 -6 / ℃, Ri Do from low-temperature co-fired substrate material is 10 or more relative dielectric constant at room temperature 1.9 GHz, One glass consists sintered at low temperature substrate materials - other glass than ceramics mixed layer - ceramic mixed layer, characterized in that relative dielectric constant at room temperature 1.9GHz is 5-8. The low-temperature fired substrate material used in the multilayer wiring board according to the present invention controls the linear thermal expansion coefficient to 5.90 × 10 −6 to 6.40 × 10 −6 / ° C. while having a high relative dielectric constant. Therefore, when combined with a low-temperature fired substrate material having a low relative dielectric constant, for example, the linear thermal expansion coefficient can be matched and warpage can be reduced. Then, by setting the relative dielectric constant of the other glass-ceramic mixed layer at room temperature 1.9 GHz to 5 to 8, the glass-ceramic mixed layers having different relative dielectric constants are laminated to form a multilayer wiring board, and the LTCC module High integration and downsizing can be promoted.

本発明に係る多層配線基板では、本発明に係る前記低温焼成基板材料からなるガラス−セラミックス混合層と、該ガラス−セラミックス混合層以外の他のガラス−セラミックス混合層との50〜300℃における線熱膨張係数の差が0.25×10−6/℃以下であることが好ましい。線熱膨張係数の差を上記の範囲に制御することで、反りを低減できる。 In the multilayer wiring board according to the present invention, a wire at 50 to 300 ° C. of the glass-ceramic mixed layer made of the low-temperature fired substrate material according to the present invention and another glass-ceramic mixed layer other than the glass-ceramic mixed layer. The difference in thermal expansion coefficient is preferably 0.25 × 10 −6 / ° C. or less. Warpage can be reduced by controlling the difference in linear thermal expansion coefficient within the above range.

また本発明に係る多層配線基板では、前記他のガラス−セラミックス混合層は、具体的には、SiO46〜60重量%、B0.5〜5重量%、Al6〜17.5重量%及びアルカリ土類金属酸化物25〜45重量%の組成を有し、該アルカリ土類金属酸化物中の少なくとも60重量%がSrOであるガラスが58〜76vol%、及び、アルミナが24〜42vol%含有されている低温焼成基板材料からなるガラス−セラミックス混合層であることが好ましい。 In the multilayer wiring board according to the present invention, the other glass-ceramic mixed layer is specifically composed of 46 to 60% by weight of SiO 2 , 0.5 to 5% by weight of B 2 O 3 , Al 2 O 3 6. 58 to 76 vol% of glass having a composition of ˜17.5 wt% and alkaline earth metal oxide of 25 to 45 wt%, wherein at least 60 wt% of the alkaline earth metal oxide is SrO, and A glass-ceramic mixed layer made of a low-temperature fired substrate material containing 24 to 42 vol% of alumina is preferable.

また本発明に係る多層配線基板では、ガラス−セラミックス混合層間の線熱膨張係数の差を小さくすることで反りの発生を抑制するが、その反りは50mm角の大きさ当たりで200μm以下である場合が含まれる。さらに、その反りが100mm角の大きさ当たりで200μm以下である場合も含まれる。   Further, in the multilayer wiring board according to the present invention, the occurrence of warpage is suppressed by reducing the difference in coefficient of linear thermal expansion between the glass-ceramic mixed layers, but the warpage is 200 μm or less per 50 mm square size. Is included. Furthermore, the case where the curvature is 200 μm or less per 100 mm square is included.

本発明は、コーディエライトを線熱膨張係数の制御用フィラーとして低温焼成基板材料に含有させることで、高膨張性磁器となることを阻止し、且つ、高い比誘電率を有する低温焼成基板材料とすることができる。また本発明は、異組成のガラス−セラミックス混合層を積層させた多層配線基板において、積層構造を対称構造としなくても焼成品の反りを小さくすることができる。これにより、多層配線基板に高容量のキャパシター層を入れることで、モジュールの薄型・小型化をはかりつつ、設計の自由度を向上させることができる。   The present invention includes a cordierite as a filler for controlling the linear thermal expansion coefficient in a low-temperature fired substrate material, thereby preventing high-expansion porcelain and having a high relative dielectric constant. It can be. Further, according to the present invention, in a multilayer wiring board in which glass-ceramic mixed layers having different compositions are laminated, the warp of the fired product can be reduced without making the laminated structure symmetrical. Thus, by placing a high-capacitance capacitor layer in the multilayer wiring board, the degree of freedom in design can be improved while the module is reduced in thickness and size.

以下、本発明に実施の形態を示して本発明を詳細に説明するが、本発明はこれらの記載に限定して解釈されない。   Hereinafter, although an embodiment is shown to the present invention and the present invention is explained in detail, the present invention is limited to these descriptions and is not interpreted.

本実施形態に係る低温焼成基板材料は、60〜78vol%のガラス成分と、40〜22vol%のセラミックス成分、すなわちアルミナ(Al)、チタニア(TiO)及びコーディエライト(MgAlSi18)を含むセラミックス成分とからなる。 The low-temperature fired substrate material according to this embodiment includes a glass component of 60 to 78 vol% and a ceramic component of 40 to 22 vol%, that is, alumina (Al 2 O 3 ), titania (TiO 2 ), and cordierite (Mg 2 Al 4 Si 5 O 18 ).

ここでガラスは、SiO46〜60重量%、好ましくは47〜55重量%、B0.5〜5重量%、好ましくは1〜4重量%、Al6〜17.5重量%、好ましくは7〜16.5重量%及びアルカリ土類金属酸化物25〜45重量%、好ましくは30〜40重量%の組成を有することが必要である。このSiOが46重量%未満ではガラス化が困難になるし、60重量%を超えるとガラス軟化点が高くなりすぎて低温焼結ができなくなる。また、Bは5重量%よりも多くすると、焼結後における耐湿性の低下を招くし、また0.5重量%よりも少なすぎるとガラス化温度が若干高くなるとともに焼結温度が高くなりすぎるので好ましくない。さらにAlが6重量%未満では、ガラス成分の強度が低下するし、17.5重量%を超えるとガラス化が困難になる。このガラス成分中のアルカリ土類金属酸化物としては、MgO、CaO、BaO及びSrOがあるが、その合計量の少なくとも60重量%、好ましくは80重量%以上がSrOであることが必要である。この量が60重量%未満では、ガラス軟化点が高くなり,低温焼成化が困難となる。そして、他のCaO、MgO、BaOの若干を複合添加することにより、溶解ガラスの粘性を低下させ、焼結温度幅を拡大することができ、製造が容易になるので、これらを混合使用することが好ましい。添加効果の点では、前記アルカリ土類金属酸化物中のCaOとMgOとBaOは合計で1重量%以上にするのが好ましく、さらにCaOとMgOはそれぞれ0.2重量%以上、特に0.5重量%以上にするのが好ましい。前記アルカリ土類金属酸化物中のCaOは、10重量%未満、MgOは6重量%以下にするのが好ましい。これらの酸化物の量がそれよりも多くなると高強度の磁器が得られず、また、ガラスの結晶化度の制御が困難になる。 Here, the glass is composed of 46 to 60% by weight of SiO 2 , preferably 47 to 55% by weight, 0.5 to 5% by weight of B 2 O 3 , preferably 1 to 4% by weight, and 6 to 17.5 Al 2 O 3 . It is necessary to have a composition of wt%, preferably 7 to 16.5 wt% and alkaline earth metal oxide 25 to 45 wt%, preferably 30 to 40 wt%. If this SiO 2 is less than 46% by weight, vitrification becomes difficult, and if it exceeds 60% by weight, the glass softening point becomes too high and low-temperature sintering becomes impossible. Further, if B 2 O 3 is more than 5% by weight, the moisture resistance after sintering is lowered, and if it is less than 0.5% by weight, the vitrification temperature is slightly increased and the sintering temperature is increased. Since it becomes too high, it is not preferable. Further, if Al 2 O 3 is less than 6% by weight, the strength of the glass component is lowered, and if it exceeds 17.5% by weight, vitrification becomes difficult. As the alkaline earth metal oxide in the glass component, there are MgO, CaO, BaO and SrO, but it is necessary that at least 60% by weight, preferably 80% by weight or more of the total amount is SrO. If this amount is less than 60% by weight, the glass softening point becomes high and low-temperature firing becomes difficult. And by adding some of other CaO, MgO, BaO in combination, the viscosity of the molten glass can be reduced, the sintering temperature range can be expanded, and the production becomes easy. Is preferred. In terms of the effect of addition, CaO, MgO, and BaO in the alkaline earth metal oxide are preferably combined in an amount of 1% by weight or more, and CaO and MgO are each 0.2% by weight or more, particularly 0.5%. It is preferable to make it at least wt%. The CaO in the alkaline earth metal oxide is preferably less than 10% by weight, and MgO is preferably 6% by weight or less. If the amount of these oxides is larger than that, a high-strength porcelain cannot be obtained, and it becomes difficult to control the crystallinity of the glass.

本実施形態に係る低温焼成基板材料において、ガラス成分は、60〜78vol%、好ましくは60〜73vol%とすることが必要であり、ガラス成分が60vol%未満、すなわちセラミックス成分が40vol%を超えると1000℃以下でち密な焼結体が得られなくなる。一方、ガラス成分が78vol%超、すなわちセラミックス成分が22vol%未満となると抗折強度が低下する。   In the low-temperature fired substrate material according to the present embodiment, the glass component needs to be 60 to 78 vol%, preferably 60 to 73 vol%, and when the glass component is less than 60 vol%, that is, the ceramic component exceeds 40 vol%. A dense sintered body cannot be obtained at 1000 ° C. or lower. On the other hand, when the glass component exceeds 78 vol%, that is, when the ceramic component is less than 22 vol%, the bending strength decreases.

セラミックス成分の一つであるアルミナの含有量は、0vol%を超えて16vol%以下、好ましくは1〜8vol%とする。アルミナは比誘電率の調整として添加されるが、16vol%を超えて添加されると、目的とする比誘電率が得られなくなる。   The content of alumina, which is one of the ceramic components, is more than 0 vol% and not more than 16 vol%, preferably 1 to 8 vol%. Alumina is added to adjust the relative dielectric constant, but if it exceeds 16 vol%, the intended relative dielectric constant cannot be obtained.

セラミックス成分の一つであるチタニアの含有量は、10〜26vol%、好ましくは14〜25vol%とする。チタニアは比誘電率を高めるために添加し、10vol%未満では比誘電率が低い。一方、26vol%を超えて添加されると、低温焼成基板材料の線熱膨張係数が大きくなりすぎる。   The content of titania, which is one of ceramic components, is 10 to 26 vol%, preferably 14 to 25 vol%. Titania is added to increase the relative dielectric constant, and if it is less than 10 vol%, the relative dielectric constant is low. On the other hand, when it exceeds 26 vol%, the linear thermal expansion coefficient of the low-temperature fired substrate material becomes too large.

セラミックス成分の一つであるコーディエライトの含有量は、2〜15vol%、好ましくは6〜14vol%とする。コーディエライトは、50〜300℃の線熱膨張係数が1.8×10−6/℃と低く、比誘電率は4.8と低い。したがって、低温焼成基板材料中の含有量を変化させることで、比誘電率に大きな影響を与えることなく、線熱膨張係数を低くする方向への制御を行なうことができる。コーディエライトの含有量が2vol%未満とすると、低温焼成基板材料の線熱膨張係数が大きくなってしまい、一方、15vol%を超えると低温焼成基板材料の線熱膨張係数が小さくなりすぎる。 The content of cordierite which is one of ceramic components is 2 to 15 vol%, preferably 6 to 14 vol%. Cordierite has a low linear thermal expansion coefficient of 50 to 300 ° C. as 1.8 × 10 −6 / ° C. and a relative dielectric constant as low as 4.8. Therefore, by changing the content in the low-temperature fired substrate material, it is possible to control the linear thermal expansion coefficient to be lowered without greatly affecting the relative dielectric constant. When the cordierite content is less than 2 vol%, the linear thermal expansion coefficient of the low-temperature fired substrate material becomes large. On the other hand, when the cordierite content exceeds 15 vol%, the linear thermal expansion coefficient of the low-temperature fired substrate material becomes too small.

本実施形態に係る低温焼成基板材料は、各成分を調整することで、50〜300℃における線熱膨張係数が5.90×10−6〜6.40×10−6/℃で、室温1.9GHzにおける比誘電率を10以上とすることが良い。特に線熱膨張係数の制御はコーディエライトで行なう。低温焼成基板材料として、高線熱膨張性化を抑制し、且つ高比誘電率の材料を提供しうる。 The low-temperature fired substrate material according to the present embodiment has a linear thermal expansion coefficient of 5.90 × 10 −6 to 6.40 × 10 −6 / ° C. at 50 to 300 ° C. and room temperature of 1 by adjusting each component. The relative dielectric constant at 9 GHz is preferably 10 or more. In particular, the linear thermal expansion coefficient is controlled by cordierite. As a low-temperature fired substrate material, it is possible to provide a material having a high relative dielectric constant while suppressing high linear thermal expansion.

本実施形態の低温焼成基板材料は、本発明の目的に反しない限り、他の成分を含有させても良い。   The low-temperature fired substrate material of the present embodiment may contain other components as long as the object of the present invention is not violated.

本実施形態に係る低温焼成基板材料からなるガラス−セラミックス混合層のみを積層して多層配線基板としても良いが、図1に示すように本実施形態では、ガラス−セラミックス混合層のうち少なくとも1層が本実施形態に係る低温焼成基板材料からなることとし、異組成のガラス−セラミックス混合層を積層して多層配線基板とすることができる。図1に、多層配線基板の断面概略図を示した。(1)の(a)〜(e)及び(2)の(a)〜(e)で示した積層構造は、異組成のガラス−セラミックス混合層を非対称構造に積層した場合の具体例であり、(3)の(a)〜(e)で示した積層構造は、異組成のガラス−セラミックス混合層を対称構造に積層した場合の具体例である。図1では2組成のガラス−セラミックス混合層を積層して多層配線基板を得た場合を示し、例えば斜線部分で示したガラス−セラミックス混合層が本実施形態に係る低温焼成基板材料からなり、斜線のない白部分で示したガラス−セラミックス混合層が他の低温焼成基板材料からなる。なお、3種類以上の異なる組成のガラス−セラミックス混合層からなる多層配線基板としても良い。   Only the glass-ceramic mixed layer made of the low-temperature fired substrate material according to the present embodiment may be laminated to form a multilayer wiring board. However, in the present embodiment, at least one of the glass-ceramic mixed layers as shown in FIG. Is made of the low-temperature fired substrate material according to the present embodiment, and a multilayer wiring substrate can be formed by laminating glass-ceramic mixed layers having different compositions. FIG. 1 shows a schematic cross-sectional view of a multilayer wiring board. The laminated structure shown in (a) to (e) of (1) and (a) to (e) of (2) is a specific example in the case where glass-ceramic mixed layers having different compositions are laminated in an asymmetric structure. The laminated structures shown in (a) to (e) of (3) are specific examples in the case where glass-ceramic mixed layers having different compositions are laminated in a symmetrical structure. FIG. 1 shows a case where a multilayer wiring board is obtained by laminating glass-ceramic mixed layers having two compositions. For example, the glass-ceramic mixed layer shown by hatched portions is made of the low-temperature fired substrate material according to the present embodiment. The glass-ceramic mixed layer shown by the white part without the mark is made of another low-temperature fired substrate material. In addition, it is good also as a multilayer wiring board which consists of a glass-ceramics mixed layer of 3 or more types of different compositions.

本実施形態に係る低温焼成基板材料は50〜300℃における線熱膨張係数が5.90×10−6〜6.40×10−6/℃で、室温1.9GHzにおける比誘電率が10以上という物性を有するが、別組成のガラス−セラミックス混合層と組み合わせて多層基板とする場合、ガラス−セラミックス混合層間の50〜300℃における線熱膨張係数の差を0.25×10−6/℃以下とすることで、集合基板の反りを抑制することができる。反りは図2のwで示される。積層された各ガラス−セラミックス混合層の線熱膨張係数の差を0.25×10−6/℃以下とすることで、多層配線基板の反りWは、50mm角の大きさ当たりで200μm以下、或いは100mm角の大きさ当たりで200μm以下とすることができる。このとき、基板の一辺の長さ(長辺と短辺があるときは長辺)をtとして、w/tで求められる反り率を、0.4%以下、好ましくは0.2%以下とできる。 The low-temperature fired substrate material according to the present embodiment has a linear thermal expansion coefficient of 5.90 × 10 −6 to 6.40 × 10 −6 / ° C. at 50 to 300 ° C., and a relative dielectric constant of 10 or more at a room temperature of 1.9 GHz. However, when a multilayer substrate is combined with a glass-ceramic mixed layer of another composition, the difference in linear thermal expansion coefficient at 50 to 300 ° C. between the glass-ceramic mixed layers is 0.25 × 10 −6 / ° C. By making the following, it is possible to suppress warping of the collective substrate. Warpage is indicated by w in FIG. By setting the difference in linear thermal expansion coefficient of each laminated glass-ceramic mixed layer to 0.25 × 10 −6 / ° C. or less, the warp W of the multilayer wiring board is 200 μm or less per 50 mm square size, Alternatively, it can be 200 μm or less per 100 mm square size. At this time, assuming that the length of one side of the substrate (long side when there is a long side and a short side) is t, the warpage rate obtained by w / t is 0.4% or less, preferably 0.2% or less. it can.

線熱膨張係数の差が0.25×10−6/℃を超える場合には、反りを小さくするために、例えば図1(3)の(a)〜(e)で示す積層構造のように、積層方向の中心で対称となるようにガラス−セラミックス混合層を配置せざるを得ない。しかし、本実施形態に係る多層配線基板では、線熱膨張係数の差をコーディエライトの含有量により0.25×10−6/℃以内に制御できるので、図1(1)の(a)〜(e)及び(2)の(a)〜(e)で示す積層構造のように非対称構造に積層しても、反りを小さく保つことができる。 When the difference in linear thermal expansion coefficient exceeds 0.25 × 10 −6 / ° C., for example, a laminated structure shown in (a) to (e) of FIG. The glass-ceramic mixed layer must be arranged so as to be symmetric at the center in the stacking direction. However, in the multilayer wiring board according to the present embodiment, the difference in coefficient of linear thermal expansion can be controlled within 0.25 × 10 −6 / ° C. depending on the cordierite content, so that (a) in FIG. Even when laminated in an asymmetric structure like the laminated structures shown in (a) to (e) of (e) and (2), the warp can be kept small.

さらに、本実施形態に係る低温焼成基板材料以外からなる他のガラス−セラミックス混合層の室温1.9GHzにおける比誘電率を5〜8とすれば、比誘電率の差を少なくとも2以上とすることができるので、基板設計の自由度がより増すこととなる。   Furthermore, if the relative dielectric constant at room temperature 1.9 GHz of another glass-ceramic mixed layer made of materials other than the low-temperature fired substrate material according to the present embodiment is 5 to 8, the difference in relative dielectric constant should be at least 2 or more. Therefore, the degree of freedom in substrate design is further increased.

例えば、本実施形態に係る低温焼成基板材料以外からなる他のガラス−セラミックス混合層として特許文献1記載の低温焼成基板材料からなるガラス−セラミックス混合層を選択することができる。特許文献1記載の低温焼成基板材料は、50〜300℃における線熱膨張係数は5.90×10−6〜6.40×10−6/℃で、室温1.9GHzにおける比誘電率は、5〜8である。よって本発明に係る低温焼成基板材料と組み合わせて多層基板とするためには好適である。特許文献1記載の低温焼成基板材料は、SiO46〜60重量%、B0.5〜5重量%、Al6〜17.5重量%及びアルカリ土類金属酸化物25〜45重量%の組成を有し、該アルカリ土類金属酸化物中の少なくとも60重量%がSrOであるガラスが58〜76vol%、及び、フィラーとしてアルミナが24〜42vol%含有されている。ガラス成分を58〜76vol%とするのは、58vol%未満では焼成せず、76vol%を超えると抗折強度が低下するからである。 For example, the glass-ceramic mixed layer made of the low-temperature fired substrate material described in Patent Document 1 can be selected as another glass-ceramic mixed layer made of other than the low-temperature fired substrate material according to the present embodiment. The low-temperature fired substrate material described in Patent Document 1 has a coefficient of linear thermal expansion at 50 to 300 ° C. of 5.90 × 10 −6 to 6.40 × 10 −6 / ° C., and a relative dielectric constant at room temperature of 1.9 GHz is 5-8. Therefore, it is suitable for combining with the low-temperature fired substrate material according to the present invention to form a multilayer substrate. The low-temperature fired substrate material described in Patent Document 1 includes 46 to 60% by weight of SiO 2 , 0.5 to 5% by weight of B 2 O 3 , 6 to 17.5% by weight of Al 2 O 3, and alkaline earth metal oxide 25. The glass has a composition of ˜45 wt%, and 58 to 76 vol% of glass in which at least 60 wt% of the alkaline earth metal oxide is SrO, and 24 to 42 vol% of alumina as a filler. The reason why the glass component is 58 to 76 vol% is that the glass is not fired if it is less than 58 vol%, and the bending strength is lowered if it exceeds 76 vol%.

他のガラス−セラミックス混合層として特許文献1記載の低温焼成基板材料からなるガラス−セラミックス混合層とした場合、50〜300℃における層間での線熱膨張係数の差を0.25×10−6/℃以内とし、且つ、層間での比誘電率の差を2以上確保するためには、本実施形態に係る低温焼成基板材料からなるガラス−セラミックス混合層において、セラミックス成分の一つであるアルミナの含有量を好ましくは1〜8vol%、より好ましくは4〜8vol%とする。また、セラミックス成分の一つであるチタニアの含有量を好ましくは14〜25vol%、より好ましくは14〜16vol%とする。さらにセラミックス成分の一つであるコーディエライトの含有量を、好ましくは6〜14vol%、より好ましくは6〜7vol%とする。また、ガラス成分を好ましくは60〜73vol%、より好ましくは72〜73vol%とする。ここでガラスの組成は、好ましくは、SiO47〜55重量%、B1〜3重量%、Al7〜16.5重量%及びアルカリ土類金属酸化物30〜40重量%である。 When the glass-ceramic mixed layer made of the low-temperature fired substrate material described in Patent Document 1 is used as the other glass-ceramic mixed layer, the difference in linear thermal expansion coefficient between the layers at 50 to 300 ° C. is 0.25 × 10 −6. In order to keep the difference in relative dielectric constant between layers within 2 ° C./° C., alumina as one of the ceramic components in the glass-ceramic mixed layer made of the low-temperature fired substrate material according to the present embodiment The content of is preferably 1 to 8 vol%, more preferably 4 to 8 vol%. Further, the content of titania, which is one of the ceramic components, is preferably 14 to 25 vol%, more preferably 14 to 16 vol%. Furthermore, the content of cordierite, which is one of the ceramic components, is preferably 6 to 14 vol%, more preferably 6 to 7 vol%. The glass component is preferably 60 to 73 vol%, more preferably 72 to 73 vol%. Wherein the composition of the glass, preferably, SiO 2 47-55% by weight, B 2 O 3 1 to 3 wt%, Al 2 O 3 7 to 16.5% by weight and an alkaline earth metal oxide 30-40 wt %.

本発明に係る低温焼成材料からなるガラス−セラミックス混合層以外の他のガラス−セラミックス混合層は、少なくとも1層以上について、例えば特許文献1記載の配線基板に係る低温焼成基板材料により形成する。好ましくは全ての他のガラス−セラミックス混合層を特許文献1記載の配線基板に係る低温焼成基板材料により形成する。   The glass-ceramic mixed layer other than the glass-ceramic mixed layer made of the low-temperature fired material according to the present invention is formed of at least one layer using, for example, the low-temperature fired substrate material related to the wiring board described in Patent Document 1. Preferably, all other glass-ceramic mixed layers are formed of a low-temperature fired substrate material according to the wiring substrate described in Patent Document 1.

本実施形態の多層配線基板を製造するには、例えば前記のセラミックス成分及びガラス成分の原料をそれぞれ平均粒径10μm以下、好ましくは1〜4μmの粉末として混合し、これに水若しくは溶剤及び必要に応じ適当なバインダーを加えてペーストを調製する。次にこのペーストをドクターブレード、押出機などを用いて厚さ0.1〜1.0mm程度のシート状に成形し、セラミックスグリーンシートを得る。このセラミックスグリーンシートを複数枚積層し、40〜120℃の加温状態でプレスし、積層体を得る。この積層体を800〜1000℃で同時に焼結する。これにより、多層基板が得られる。また、各成分の粉末状混合物そのまま乾式プレスしてシート状に成形し、これを複数枚積層した後プレスして積層体を得て、これを焼結しても良い。この際、導体、抵抗体、オーバーコート、サーミスターなどを施し、同時焼成することで、多層配線基板としても良い。   In order to manufacture the multilayer wiring board of the present embodiment, for example, the ceramic component and glass component raw materials are mixed as a powder having an average particle size of 10 μm or less, preferably 1 to 4 μm, respectively, and water or a solvent and necessary A paste is prepared by adding an appropriate binder accordingly. Next, this paste is formed into a sheet having a thickness of about 0.1 to 1.0 mm using a doctor blade, an extruder or the like to obtain a ceramic green sheet. A plurality of the ceramic green sheets are laminated and pressed in a heated state at 40 to 120 ° C. to obtain a laminated body. This laminate is simultaneously sintered at 800 to 1000 ° C. Thereby, a multilayer substrate is obtained. Alternatively, the powdery mixture of each component may be dry-pressed as it is to form a sheet, a plurality of these are laminated, then pressed to obtain a laminate, and this may be sintered. At this time, a multilayer wiring board may be formed by applying a conductor, a resistor, an overcoat, a thermistor, and the like and firing them simultaneously.

次に実施例により本発明をさらに詳細に説明する。表1で示す組成となるように、ガラス、アルミナ、チタニア及びコーディエライトの各粉末をボールミルで16時間混合し、得られた混合粉末(平均粒径1.5μm)をトルエン,エタノール等の溶剤及びバインダーを加えてペースト化して塗料を得る。ここでガラスの組成は、酸化物換算で、50重量%SiO+2重量%B+11重量%Al+1重量%MgO+3重量%CaO+33重量%SrOとした。この塗料を用いてドクターブレード法でセラミックスグリーンシートを成形した。セラミックスグリーンシートの厚さは、焼成後80μmとなるように調整した。このセラミックスグリーンシートを6層積層した後、プレスし、850〜950℃で2時間焼成を行なった。これにより、厚さ480μmの単独組成の多層基板を得た。得られた多層基板の室温1.9GHzにおける比誘電率εr、Q(1/tanδ)、50〜300℃における線熱膨張係数α及び抗折強度を表1に示す。比誘電率及びtanδは、HEWLETT PACKARD社製装置名ネットワークアナライザ型番HP8510Cを用いて、摂動法により測定した。線熱膨張係数は、MAC社製装置名DILATOMETER型番5000を用いて測定した。抗折強度は、INSTRON社製装置名万能材料試験機型番5543を用いて三点曲げ法により求めた。

Figure 0004295682
Next, the present invention will be described in more detail with reference to examples. Each powder of glass, alumina, titania and cordierite was mixed with a ball mill for 16 hours so that the composition shown in Table 1 was obtained, and the resulting mixed powder (average particle size 1.5 μm) was a solvent such as toluene or ethanol. And a binder is added and it pastes and obtains a coating material. Here, the composition of the glass was 50 wt% SiO 2 +2 wt% B 2 O 3 +11 wt% Al 2 O 3 +1 wt% MgO + 3 wt% CaO + 33 wt% SrO in terms of oxide. Using this paint, a ceramic green sheet was formed by the doctor blade method. The thickness of the ceramic green sheet was adjusted to 80 μm after firing. Six layers of this ceramic green sheet were laminated, then pressed and fired at 850 to 950 ° C. for 2 hours. As a result, a multilayer substrate having a thickness of 480 μm and a single composition was obtained. Table 1 shows the relative dielectric constant εr, Q (1 / tan δ) at room temperature of 1.9 GHz, linear thermal expansion coefficient α and bending strength at 50 to 300 ° C. of the obtained multilayer substrate. The relative dielectric constant and tan δ were measured by the perturbation method using a device name network analyzer model number HP8510C manufactured by HEWLETT PACKARD. The linear thermal expansion coefficient was measured using a device name DILATOMETER model number 5000 manufactured by MAC. The bending strength was determined by a three-point bending method using a device name Universal Material Testing Machine Model No. 5543 manufactured by INSTRON.
Figure 0004295682

(コーディエライト添加による線熱膨張係数の制御−その1)
まず、比較例1と比較例2及び実施例1〜実施例3によって示されるように、アルミナをコーディエライトで置換した場合、すなわち、組成式0.72ガラス+0.14TiO+(0.14−x)Al+xMgAlSi18において、xを変化させた場合は、線熱膨張係数は図3に示すように変化し、比誘電率は図4に示すように変化する。コーディエライトは、50〜300℃の線熱膨張係数が1.8×10−6/℃、比誘電率が4.8であり、一方、アルミナは50〜300℃の線熱膨張係数が7.2×10−6/℃、比誘電率が9.8である。したがって、アルミナをコーディエライトで置換する置換量を増やすと、図3に示すように線熱膨張係数は添加量にしたがって低下し、図4に示すように比誘電率は添加量にしたがって低下する。ただし、アルミナとコーディエライトの比誘電率の差は5.0であり、比誘電率の変化は線熱膨張係数の変化と比べると緩やかである。したがって、アルミナをコーディエライトで置換することにより、低温焼成基板材料の比誘電率を大きく変えることなく、線熱膨張係数を低下させるように制御ができることが明らかとなった。
(Control of coefficient of linear thermal expansion by addition of cordierite-1)
First, as shown by Comparative Example 1, Comparative Example 2, and Examples 1 to 3, when alumina was replaced with cordierite, that is, composition formula 0.72 glass + 0.14TiO 2 + (0. 14-x) In Al 2 O 3 + xMg 2 Al 4 Si 5 O 18 , when x is changed, the linear thermal expansion coefficient changes as shown in FIG. 3, and the relative dielectric constant is as shown in FIG. To change. Cordierite has a linear thermal expansion coefficient of 1.8 × 10 −6 / ° C. and a dielectric constant of 4.8 at 50 to 300 ° C., whereas alumina has a linear thermal expansion coefficient of 7 at 50 to 300 ° C. 0.2 × 10 −6 / ° C. and relative dielectric constant is 9.8. Therefore, when the substitution amount for replacing alumina with cordierite is increased, the linear thermal expansion coefficient decreases according to the addition amount as shown in FIG. 3, and the relative dielectric constant decreases according to the addition amount as shown in FIG. . However, the difference in relative permittivity between alumina and cordierite is 5.0, and the change in relative permittivity is gentle compared to the change in linear thermal expansion coefficient. Therefore, it has been clarified that by replacing alumina with cordierite, the linear thermal expansion coefficient can be controlled without significantly changing the relative dielectric constant of the low-temperature fired substrate material.

(コーディエライト添加による線熱膨張係数の制御−その2)
次に、比較例4と比較例5及び実施例11〜実施例13によって示されるように、チタニアをコーディエライトで置換した場合、すなわち、組成式0.60ガラス+(0.39−x)TiO+0.01Al+xMgAlSi18において、xを変化させた場合は、線熱膨張係数は図5に示すように変化し、比誘電率は図6に示すように変化する。コーディエライトは、50〜300℃の線熱膨張係数が1.8×10−6/℃、比誘電率が4.8であり、一方、チタニアは50〜300℃の線熱膨張係数が11.5×10−6/℃、比誘電率が104である。したがって、チタニアをコーディエライトで置換する置換量を増やすと、図5に示すように線熱膨張係数は添加量にしたがって低下し、図6に示すように比誘電率は添加量にしたがって低下する。ただし、チタニアとコーディエライトの比誘電率の差は99.2であり、図4で示される変化と比較すると比誘電率の変化は大きい。また、図5に示される線熱膨張係数の変化は、図3の場合と同程度の変化量がある。したがって、チタニアをコーディエライトで置換することにより、低温焼成基板材料の比誘電率と線熱膨張係数を同時に低下させるように制御ができることが明らかとなった。
(Control of coefficient of linear thermal expansion by addition of cordierite-2)
Next, as shown by Comparative Example 4, Comparative Example 5 and Examples 11 to 13, when titania is replaced with cordierite, that is, composition formula 0.60 glass + (0.39-x). In TiO 2 +0.01 Al 2 O 3 + xMg 2 Al 4 Si 5 O 18 , when x is changed, the linear thermal expansion coefficient changes as shown in FIG. 5, and the relative dielectric constant is shown in FIG. To change. Cordierite has a linear thermal expansion coefficient of 1.8 × 10 −6 / ° C. and a relative dielectric constant of 4.8 at 50 to 300 ° C., while titania has a linear thermal expansion coefficient of 11 at 50 to 300 ° C. 5 × 10 −6 / ° C. and a relative dielectric constant of 104. Therefore, when the substitution amount for replacing titania with cordierite is increased, the linear thermal expansion coefficient decreases with the addition amount as shown in FIG. 5, and the relative dielectric constant decreases with the addition amount as shown in FIG. . However, the difference in relative permittivity between titania and cordierite is 99.2, and the change in relative permittivity is large compared to the change shown in FIG. Further, the change in the linear thermal expansion coefficient shown in FIG. 5 has the same amount of change as in FIG. Therefore, it has been clarified that by replacing titania with cordierite, the relative permittivity and the linear thermal expansion coefficient of the low-temperature fired substrate material can be controlled simultaneously.

以上により、コーディエライト添加による線熱膨張係数の制御ができることが明らかとなったが、低温焼成基板として焼成されていなければならず、また焼成されたとしても所定以上の抗折強度が必要である。さらに50〜300℃における線熱膨張係数を5.90×10−6〜6.40×10−6/℃とし、且つ、室温1.9GHzにおける比誘電率を10以上とすることが要求される。比較例1は、コーディエライトが2vol%しか含有されておらず、線熱膨張係数が6.54×10−6/℃と高すぎる。比較例2は、熱膨張係数が5.82×10−6/℃と低すぎる。比較例3は、ガラス成分が57vol%しか含有されていないため、焼成しなかった。比較例4は、チタニアが27vol%と多いため、熱膨張係数が6.41×10−6/℃と高い。比較例5は、コーディエライトが16vol%と多いため、熱膨張係数が5.80×10−6/℃と低すぎる。比較例6〜比較例8は、アルミナの添加量が多く、比誘電率が10未満である。比較例9は、ガラス成分が80vol%含有されているため、抗折強度が低い。比較例10は、チタニアが9vol%と少ないため、比誘電率が10未満である。 From the above, it has been clarified that the coefficient of linear thermal expansion can be controlled by adding cordierite, but it must be fired as a low-temperature fired substrate, and even if fired, it must have a bending strength of a predetermined level or higher. is there. Furthermore, the linear thermal expansion coefficient at 50 to 300 ° C. is required to be 5.90 × 10 −6 to 6.40 × 10 −6 / ° C., and the relative dielectric constant at room temperature 1.9 GHz is required to be 10 or more. . Comparative Example 1 contains only 2 vol% cordierite, and the linear thermal expansion coefficient is too high at 6.54 × 10 −6 / ° C. In Comparative Example 2, the thermal expansion coefficient is too low at 5.82 × 10 −6 / ° C. Comparative Example 3 was not fired because the glass component contained only 57 vol%. Since the comparative example 4 has many titania as 27 vol%, a thermal expansion coefficient is as high as 6.41 * 10 < -6 > / degreeC. Since the comparative example 5 has many cordierite as 16 vol%, a thermal expansion coefficient is too low with 5.80x10 < -6 > / degreeC. In Comparative Examples 6 to 8, the amount of alumina added is large, and the relative dielectric constant is less than 10. Since Comparative Example 9 contains 80 vol% of the glass component, the bending strength is low. In Comparative Example 10, since titania is as low as 9 vol%, the relative dielectric constant is less than 10.

(異組成多層基板の反りの予備検討)
組成の異なる2種類のセラミックスグリーンシートをそれぞれ10mm角で成形し、6層の積層構造となるように積層体を形成した後、同時焼成を行ない、6層からなる厚さ480μmの異組成の層からなる多層基板を作製した。ここで一方のガラス−セラミックス混合層の組成は70vol%ガラス−30vol%アルミナ(S組成と表記する)とし、他方のガラス−セラミックス混合層の組成は、70vol%ガラス−15vol%アルミナ−15vol%チタニア(T組成と表記する)とした。ここでいずれのガラスの組成も、酸化物換算で、50重量%SiO+2重量%B+11重量%Al+1重量%MgO+3重量%CaO+33重量%SrOとした。多層基板の積層構造は、図7の(a)〜(g)に示す積層構造とした。そのときの反りの大きさ(平均値)を図7に合わせて示した。図7を参照すると、最も非対称構造となっている(d)で示した積層構造において反りが最も大きく、同一組成のみからなる多層基板である(a)と(g)で示した積層構造において反りが最も小さいことがわかる。
(Preliminary examination of warpage of different composition multilayer substrate)
Two types of ceramic green sheets with different compositions are each formed into a 10 mm square, and a laminated body is formed so as to form a laminated structure of 6 layers, and then fired at the same time. A multilayer substrate made of Here, the composition of one glass-ceramic mixed layer is 70 vol% glass-30 vol% alumina (referred to as S composition), and the composition of the other glass-ceramic mixed layer is 70 vol% glass-15 vol% alumina-15 vol% titania. (Denoted as T composition). Here, the composition of each glass was 50 wt% SiO 2 +2 wt% B 2 O 3 +111 wt% Al 2 O 3 +1 wt% MgO + 3 wt% CaO + 33 wt% SrO in terms of oxide. The multilayer structure of the multilayer substrate was the multilayer structure shown in FIGS. The magnitude (average value) of warping at that time is shown in FIG. Referring to FIG. 7, the warp is the largest in the laminated structure shown in (d), which is the most asymmetrical structure, and the warped in the laminated structure shown in (a) and (g), which is a multilayer substrate made of only the same composition. Is the smallest.

図7で示した結果から、図1の(a)〜(e)の積層構造を有する多層基板のうち、(c)の積層構造が最も非対称構造で、反りが大きくなることを確認したため、以降、図1の(c)の積層構造を評価対象とした。図1の(c)の積層構造として、反りを小さくできれば、その他の積層構造では反りがより小さくなるからである。   From the results shown in FIG. 7, since it was confirmed that the multilayer structure of (c) is the most asymmetric structure among the multilayer substrates having the multilayer structure of (a) to (e) of FIG. The laminated structure shown in FIG. 1C was evaluated. This is because if the warp can be reduced in the stacked structure of FIG. 1C, the warp is reduced in other stacked structures.

(異組成多層基板の反りの検討)
組成の異なる2種類のセラミックスグリーンシートをそれぞれ成形し、図1(c)の6層の積層構造となるように積層体を形成した後、同時焼成を行なうことで、6層からなる厚さ480μmの異組成のガラス−セラミックス混合層からなる多層基板を作製した。多層基板の大きさは、10mm角、50mm角及び100mm角の3水準を作製した。ここで一方のガラス−セラミックス混合層の組成は表1に示した各組成とした。他方のガラス−セラミックス混合層の組成は、ガラス70vol%とアルミナ30vol%を含有するガラス−セラミックス混合層とした。ここでいずれのガラス−セラミックス混合層においても、ガラスの組成は、酸化物換算で、50重量%SiO+2重量%B+11重量%Al+1重量%MgO+3重量%CaO+33重量%SrOとした。他方のガラス−セラミックス混合層の50〜300℃における線熱膨張係数αは、6.15×10−6/℃、比誘電率は7.3であった。
(Examination of warpage of multilayer substrate with different composition)
Two types of ceramic green sheets having different compositions are respectively formed, and a laminated body is formed so as to have a laminated structure of 6 layers shown in FIG. 1 (c), and then subjected to simultaneous firing, whereby a thickness of 6 layers is 480 μm. A multilayer substrate comprising glass-ceramic mixed layers having different compositions was prepared. Three levels of the multilayer substrate were prepared: 10 mm square, 50 mm square, and 100 mm square. Here, the composition of one glass-ceramic mixed layer was set to each composition shown in Table 1. The composition of the other glass-ceramic mixed layer was a glass-ceramic mixed layer containing 70 vol% glass and 30 vol% alumina. Here, in any glass-ceramic mixed layer, the composition of the glass is 50 wt% SiO 2 +2 wt% B 2 O 3 +111 wt% Al 2 O 3 +1 wt% MgO + 3 wt% CaO + 33 wt% in terms of oxide. SrO. The other glass-ceramic mixed layer had a linear thermal expansion coefficient α at 50 to 300 ° C. of 6.15 × 10 −6 / ° C. and a relative dielectric constant of 7.3.

ガラス−セラミックス混合層の50〜300℃における線熱膨張係数αと、多層基板10mm角、50mm角及び100mm角のそれぞれの基板の反り量及び多層基板の反り評価を表2にまとめた。多層基板の反り評価は50mm角の基板の反りが200μm以下のサンプルを○とし、200μm超の場合を×とした。さらにガラス−セラミックス混合層の層間の比誘電率差が所定値以上であるか否かを多層基板の評価に加えた。そして、50mm角の基板の反りが200μm以下、且つ、一方のガラス−セラミックス混合層の比誘電率が10以上、且つ、表1の抗折強度が190MPa以上、を満たす場合に、多層基板としての総合評価○を与え、満たさない場合を×とし、結果を表2に示した。

Figure 0004295682
Table 2 summarizes the linear thermal expansion coefficient α of the glass-ceramic mixed layer at 50 to 300 ° C., the amount of warpage of each of the 10 mm square, 50 mm square, and 100 mm square multilayer substrates, and the warpage evaluation of the multilayer substrate. In the evaluation of the warpage of the multilayer substrate, a sample in which the warpage of a 50 mm square substrate was 200 μm or less was evaluated as “◯”, and the case where it exceeded 200 μm was evaluated as “X”. Further, whether or not the relative dielectric constant difference between the glass-ceramic mixed layers was equal to or greater than a predetermined value was added to the evaluation of the multilayer substrate. When the warpage of the 50 mm square substrate is 200 μm or less, the relative dielectric constant of one glass-ceramic mixed layer is 10 or more, and the bending strength in Table 1 is 190 MPa or more, the multilayer substrate is A comprehensive evaluation (circle) was given, the case where it was not satisfied was set as x, and the results are shown in Table 2.
Figure 0004295682

表2の結果から他方のガラス−セラミックス混合層と一方のガラス−セラミックス混合層との線熱膨張係数の差が小さいほど基板の反りが小さいことがわかる。他方のガラス−セラミックス混合層の50〜300℃における線熱膨張係数が、6.15×10−6/℃であることに対して、一方のガラス−セラミックス混合層の50〜300℃における線熱膨張係数が、5.90×10−6〜6.40×10−6/℃にあるときは、基板の反りが小さい。すなわち、線熱膨張係数の差を0.25×10−6/℃以内とすれば、50mm角の基板の反りを200μm以下と小さくすることができる。より好ましくは、線熱膨張係数の差を0.1×10−6/℃以内とすることで、50mm角の基板の反りが100μm以下となる場合が多い。さらに好ましくは、線熱膨張係数の差を0.05×10−6/℃以内とすることで、100mm角の基板の反りが200μm以下となる。比較例1、2、4、5は、線熱膨張係数の差が大きく、反りが大きい。比較例3は焼成体が得られない。比較例6から比較例8並びに比較例10は基板の反りは小さいが、ガラス−セラミックス混合層間の比誘電率の差が小さく、2種以上のガラス−セラミックス混合層を形成する意義が少ない。比較例9は、ガラス−セラミックス混合層間の比誘電率の差が小さいと共に、一方のガラス−セラミックス混合層の抗折強度が小さいため、多層基板自体の抗折強度も小さいと考えられる。実施例で示されるように、誘電率の異なるガラス−セラミックス混合層を設け、且つ、反りの小さい多層基板を作成できた。これにより、精度を保ちながら多層配線基板に高容量のキャパシター層を入れてモジュールの薄型・小型化をはかりつつ、設計の自由度を向上させることができる。 From the results in Table 2, it can be seen that the smaller the difference in linear thermal expansion coefficient between the other glass-ceramic mixed layer and the one glass-ceramic mixed layer, the smaller the warp of the substrate. The linear thermal expansion coefficient at 50 to 300 ° C. of the other glass-ceramic mixed layer is 6.15 × 10 −6 / ° C., whereas the linear heat at 50 to 300 ° C. of one glass-ceramic mixed layer. When the expansion coefficient is 5.90 × 10 −6 to 6.40 × 10 −6 / ° C., the warpage of the substrate is small. That is, if the difference in linear thermal expansion coefficient is within 0.25 × 10 −6 / ° C., the warpage of the 50 mm square substrate can be reduced to 200 μm or less. More preferably, by setting the difference in coefficient of linear thermal expansion within 0.1 × 10 −6 / ° C., the warpage of a 50 mm square substrate often becomes 100 μm or less. More preferably, by setting the difference in coefficient of linear thermal expansion within 0.05 × 10 −6 / ° C., the warpage of a 100 mm square substrate becomes 200 μm or less. Comparative Examples 1, 2, 4, and 5 have large differences in linear thermal expansion coefficients and large warpage. In Comparative Example 3, a fired body cannot be obtained. In Comparative Examples 6 to 8 and Comparative Example 10, the warpage of the substrate is small, but the difference in relative dielectric constant between the glass-ceramic mixed layers is small, and it is less meaningful to form two or more glass-ceramic mixed layers. In Comparative Example 9, the difference in dielectric constant between the glass-ceramic mixed layers is small, and the flexural strength of one of the glass-ceramic mixed layers is small. As shown in the Examples, it was possible to provide a multilayer substrate having a glass-ceramic mixed layer having a different dielectric constant and a small warpage. As a result, a high-capacity capacitor layer is placed in the multilayer wiring board while maintaining accuracy, and the degree of freedom in design can be improved while reducing the thickness and size of the module.

多層配線基板の断面概略図を示し、(1)の(a)〜(e)及び(2)の(a)〜(e)で示した積層構造は、異組成のガラス−セラミックス混合層を非対称構造に積層した場合の具体例であり、(3)の(a)〜(e)で示した積層構造は、異組成のガラス−セラミックス混合層を対称構造に積層した場合の具体例である。The cross-sectional schematic diagram of a multilayer wiring board is shown, and the laminated structure shown in (a) to (e) of (1) and (a) to (e) of (2) is asymmetric with a glass-ceramic mixed layer of different composition This is a specific example in the case of being laminated in a structure, and the laminated structure shown by (a) to (e) in (3) is a specific example in the case where glass-ceramic mixed layers having different compositions are laminated in a symmetrical structure. 基板の反り量を求めるときの測定箇所を示す概略図である。It is the schematic which shows the measurement location when calculating | requiring the curvature amount of a board | substrate. 組成式0.72ガラス+0.14TiO+(0.14−x)Al+xMgAlSi18において、xによる線熱膨張係数の変化を示す図である。In the composition formula 0.72 glass + 0.14TiO 2 + (0.14-x ) Al 2 O 3 + xMg 2 Al 4 Si 5 O 18, is a graph showing changes in linear thermal expansion coefficient x. 組成式0.72ガラス+0.14TiO+(0.14−x)Al+xMgAlSi18において、xによる比誘電率の変化を示す図である。In the composition formula 0.72 glass + 0.14TiO 2 + (0.14-x ) Al 2 O 3 + xMg 2 Al 4 Si 5 O 18, is a graph showing changes in the dielectric constant by x. 組成式0.60ガラス+(0.39−x)TiO+0.01Al+xMgAlSi18において、xによる線熱膨張係数の変化を示す図である。In the composition formula 0.60 glass + (0.39-x) TiO 2 + 0.01Al 2 O 3 + xMg 2 Al 4 Si 5 O 18, is a graph showing changes in linear thermal expansion coefficient x. 組成式0.60ガラス+(0.39−x)TiO+0.01Al+xMgAlSi18において、xによる比誘電率の変化を示す図である。In the composition formula 0.60 glass + (0.39-x) TiO 2 + 0.01Al 2 O 3 + xMg 2 Al 4 Si 5 O 18, is a graph showing changes in the dielectric constant by x. 多層基板の積層構造と、基板の反りとの一関係を示す図である。It is a figure which shows one relationship between the laminated structure of a multilayer substrate, and the curvature of a board | substrate.

Claims (5)

ガラス−セラミックス混合層が積層されている多層配線基板において、前記ガラス−セラミックス混合層のうち少なくとも1層は、SiO46〜60重量%、B0.5〜5重量%、Al6〜17.5重量%及びアルカリ土類金属酸化物25〜45重量%の組成を有し、該アルカリ土類金属酸化物中の少なくとも60重量%がSrOであるガラスを60〜78vol%、アルミナを0vol%を超えて16vol%以下、チタニアを10〜26vol%、及び、コーディエライトを2〜15vol%含有し、且つ、50〜300℃における線熱膨張係数が5.90×10−6〜6.40×10−6/℃で、室温1.9GHzにおける比誘電率が10以上である低温焼成基板材料からなり、かつ、該低温焼成基板材料からなるガラス−セラミックス混合層以外の他のガラス−セラミックス混合層は、室温1.9GHzにおける比誘電率が5〜8であることを特徴とする多層配線基板。 In the multilayer wiring board in which the glass-ceramic mixed layers are laminated, at least one of the glass-ceramic mixed layers is composed of 46 to 60% by weight of SiO 2 , 0.5 to 5% by weight of B 2 O 3 , Al 2 O 3 6-17.5 wt% and has a composition of an alkaline earth metal oxide 25-45 wt%, glass 60~78Vol% at least 60% by weight of the alkaline earth metal oxide is SrO , Containing more than 0 vol% and not more than 16 vol%, titania 10 to 26 vol%, cordierite 2 to 15 vol%, and linear thermal expansion coefficient at 50 to 300 ° C. is 5.90 × 10 in 6 ~6.40 × 10 -6 / ℃, Ri Do from low-temperature co-fired substrate material is 10 or more relative dielectric constant at room temperature 1.9 GHz, and the low temperature firing substrate material That glass - other glass than ceramics mixed layer - ceramic mixed layer, multi-layer wiring board, wherein a relative dielectric constant at room temperature 1.9GHz is 5-8. 前記低温焼成基板材料からなるガラス−セラミックス混合層と、該ガラス−セラミックス混合層以外の他のガラス−セラミックス混合層との50〜300℃における線熱膨張係数の差が0.25×10−6/℃以下であることを特徴とする請求項1記載の多層配線基板。 The difference in linear thermal expansion coefficient at 50 to 300 ° C. between the glass-ceramic mixed layer made of the low-temperature fired substrate material and another glass-ceramic mixed layer other than the glass-ceramic mixed layer is 0.25 × 10 −6. The multilayer wiring board according to claim 1 , wherein the temperature is / ° C. or lower. 前記他のガラス−セラミックス混合層は、SiO46〜60重量%、B0.5〜5重量%、Al6〜17.5重量%及びアルカリ土類金属酸化物25〜45重量%の組成を有し、該アルカリ土類金属酸化物中の少なくとも60重量%がSrOであるガラスが58〜76vol%、及び、アルミナが24〜42vol%含有されている低温焼成基板材料からなるガラス−セラミックス混合層であることを特徴とする請求項1又は2記載の多層配線基板。 The other glass - ceramic mixed layer, SiO 2 46 to 60 wt%, B 2 O 3 0.5~5 wt%, Al 2 O 3 6~17.5 wt% and alkaline earth metal oxides 25 From a low-temperature fired substrate material having a composition of 45% by weight, 58 to 76% by volume of glass whose SrO is at least 60% by weight in the alkaline earth metal oxide, and 24 to 42% by volume of alumina. The multilayer wiring board according to claim 1 or 2, which is a glass-ceramic mixed layer. 前記多層配線基板の反りは、50mm角の大きさ当たりで200μm以下であることを特徴とする請求項1、2又は3記載の多層配線基板。 4. The multilayer wiring board according to claim 1, wherein the warpage of the multilayer wiring board is 200 [mu] m or less per 50 mm square. 前記多層配線基板の反りは、100mm角の大きさ当たりで200μm以下であることを特徴とする請求項1、2、3又は4記載の多層配線基板。 5. The multilayer wiring board according to claim 1, wherein the warpage of the multilayer wiring board is 200 μm or less per 100 mm square.
JP2004190174A 2004-06-28 2004-06-28 Multilayer wiring board Expired - Fee Related JP4295682B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2004190174A JP4295682B2 (en) 2004-06-28 2004-06-28 Multilayer wiring board
US11/166,367 US7307032B2 (en) 2004-06-28 2005-06-27 Low-temperature co-fired ceramics material and multilayer wiring board using the same
DE602005025285T DE602005025285D1 (en) 2004-06-28 2005-06-27 Low temperature simultaneously fired ceramic and multilayer printed circuit board
EP05013812A EP1612194B1 (en) 2004-06-28 2005-06-27 Low-temperature co-fired ceramic material and multilayer wiring board using the same
KR1020050055797A KR100930852B1 (en) 2004-06-28 2005-06-27 Low temperature fired substrate material and multilayer wiring board using the same
TW094121534A TWI361800B (en) 2004-06-28 2005-06-28 Low-temperature co-fired ceramics material and multilayer wiring board using the same
CN 200510080911 CN100561604C (en) 2004-06-28 2005-06-28 The multi-layer wiring board of low-temperature co-burning ceramic material and this material of use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004190174A JP4295682B2 (en) 2004-06-28 2004-06-28 Multilayer wiring board

Publications (2)

Publication Number Publication Date
JP2006012687A JP2006012687A (en) 2006-01-12
JP4295682B2 true JP4295682B2 (en) 2009-07-15

Family

ID=35779673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004190174A Expired - Fee Related JP4295682B2 (en) 2004-06-28 2004-06-28 Multilayer wiring board

Country Status (2)

Country Link
JP (1) JP4295682B2 (en)
CN (1) CN100561604C (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4655715B2 (en) * 2005-03-24 2011-03-23 Tdk株式会社 Low temperature fired substrate material and multilayer wiring board using the same
WO2008050757A1 (en) * 2006-10-24 2008-05-02 Murata Manufacturing Co., Ltd. Slurry composition for ceramic green sheet and method for producing the same, and multilayer ceramic electronic component and method for manufacturing the same
CN101617575B (en) * 2007-02-20 2011-06-22 日立化成工业株式会社 Flexible multilayer wiring board
JP5590869B2 (en) * 2009-12-07 2014-09-17 新光電気工業株式会社 WIRING BOARD, MANUFACTURING METHOD THEREOF, AND SEMICONDUCTOR PACKAGE
JP5514559B2 (en) 2010-01-12 2014-06-04 新光電気工業株式会社 WIRING BOARD, MANUFACTURING METHOD THEREOF, AND SEMICONDUCTOR PACKAGE
JP2011155149A (en) * 2010-01-27 2011-08-11 Shinko Electric Ind Co Ltd Wiring board and method of manufacturing the same, and semiconductor package
JP5651040B2 (en) * 2011-02-22 2015-01-07 日本電産サンキョー株式会社 Sensor unit and composite substrate
DE102012101606A1 (en) * 2011-10-28 2013-05-02 Epcos Ag ESD protection device and device with an ESD protection device and an LED
JP6075481B2 (en) * 2015-02-10 2017-02-08 Tdk株式会社 Glass ceramic composition and coil electronic component
JP6724481B2 (en) * 2016-03-30 2020-07-15 日立金属株式会社 Ceramic substrate and manufacturing method thereof
CN106747357B (en) * 2016-12-22 2019-12-06 广东风华高新科技股份有限公司 Low-temperature co-fired ceramic and preparation method thereof
CN113165982B (en) * 2018-12-21 2022-12-27 株式会社村田制作所 Laminate and electronic component
CN109655194A (en) * 2018-12-26 2019-04-19 联合汽车电子有限公司 Pressure sensor
CN112341178B (en) * 2020-11-06 2023-04-21 南京工业大学 Broadband low-expansion-coefficient low-temperature cofired glass composite ceramic and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4939106A (en) * 1987-08-31 1990-07-03 Tdk Corporation Sintered ceramic body
WO1993002979A1 (en) * 1991-08-09 1993-02-18 Tdk Corporation Dielectric material for high frequency and resonator made thereof, and manufacture thereof
CN1197802C (en) * 2002-09-18 2005-04-20 深圳南虹电子陶瓷有限公司 Low temp cofired low specific inductive capacity glass ceramic material
CN1309680C (en) * 2003-07-09 2007-04-11 山东硅苑新材料科技股份有限公司 Low-temperature sintered complex phase abrasion resistant ceramic material

Also Published As

Publication number Publication date
JP2006012687A (en) 2006-01-12
CN1716459A (en) 2006-01-04
CN100561604C (en) 2009-11-18

Similar Documents

Publication Publication Date Title
JP3240271B2 (en) Ceramic substrate
EP1059271B1 (en) Composition for ceramic substrate and ceramic circuit component
JP5273490B2 (en) Ceramic composition, ceramic green sheet, and ceramic electronic component
JP5481854B2 (en) Electronic components
WO2009113475A1 (en) Glass ceramic composition, glass ceramic sinter and laminated type ceramic electronic component
CN100561604C (en) The multi-layer wiring board of low-temperature co-burning ceramic material and this material of use
JP5316545B2 (en) Glass ceramic composition and glass ceramic substrate
JPWO2008126486A1 (en) Ceramic substrate and manufacturing method thereof
EP2168928B1 (en) Glass Ceramic Substrate
JPWO2008018408A1 (en) Glass ceramic composition, glass ceramic sintered body, and multilayer ceramic electronic component
JPWO2008018407A1 (en) Glass ceramic composition, glass ceramic sintered body, and multilayer ceramic electronic component
JPH04231363A (en) Conductive composition containing iolite and glass
KR100485736B1 (en) Glass ceramic composition, glass ceramic sintered material and ceramic multilayer substrate
JP2001114554A (en) Low-temperature burnable ceramic composition and ceramic multilayer substrate
KR100930852B1 (en) Low temperature fired substrate material and multilayer wiring board using the same
JP7348587B2 (en) glass ceramic dielectric
JP2010052970A (en) Ceramic composition, ceramic green sheet, and ceramic electronic component
JP4655715B2 (en) Low temperature fired substrate material and multilayer wiring board using the same
JP4166731B2 (en) Low temperature fired substrate material and multilayer wiring board using the same
JP4699769B2 (en) Manufacturing method of ceramic multilayer substrate
JP3101966B2 (en) High thermal expansion Al2O3-SiO2-based sintered body and method for producing the same
JP2652229B2 (en) Multilayer circuit ceramic substrate
JP3315182B2 (en) Composition for ceramic substrate
JP2006008466A (en) Low temperature firing substrate material and multilayer wiring board using the same
JPH07277791A (en) Ceramic composition for insulating base and ceramic multilayer wiring circuit board

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090410

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4295682

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees