JP3541575B2 - Optical head device and composite anisotropic diffraction element used therefor - Google Patents

Optical head device and composite anisotropic diffraction element used therefor Download PDF

Info

Publication number
JP3541575B2
JP3541575B2 JP22708696A JP22708696A JP3541575B2 JP 3541575 B2 JP3541575 B2 JP 3541575B2 JP 22708696 A JP22708696 A JP 22708696A JP 22708696 A JP22708696 A JP 22708696A JP 3541575 B2 JP3541575 B2 JP 3541575B2
Authority
JP
Japan
Prior art keywords
light
diffraction grating
diffracted
diffraction
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22708696A
Other languages
Japanese (ja)
Other versions
JPH1069673A (en
Inventor
譲 田辺
浩一 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP22708696A priority Critical patent/JP3541575B2/en
Publication of JPH1069673A publication Critical patent/JPH1069673A/en
Application granted granted Critical
Publication of JP3541575B2 publication Critical patent/JP3541575B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Head (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光磁気記録媒体用の光ヘッド装置及びそれに用いる複合異方性回折素子に関する。
【0002】
【従来の技術】
光磁気記録媒体用の光ヘッド装置においては、光磁気記録媒体のカー回転角(偏光面の回転角)を検出して用いている。このような光ヘッド装置としては、図5のような構成のものが用いられていた。
【0003】
図5において、41は半導体レーザのような光源、42は単純回折格子、43はビーム分離用のプリズム、44は集光レンズ、45は光磁気記録媒体、46はウオラストンプリズム、51〜55は光検出器を示す。
【0004】
図5の光ヘッド装置では、光源41から出射した光は、単純回折格子42、プリズム43を通過し、集光レンズ44で集光されて光磁気記録媒体45に到達する。この光磁気記録媒体45で反射された戻り光は、再度集光レンズ44で集光され、プリズム43に入射して2つの光に分離される。
【0005】
分離された光の一方は、そのまま直進して再度単純回折格子42に入射して回折し、光検出器51、52に到達する。この回折光は、フォーカスエラーの検出、トラッキングエラーの検出に用いられる。分離された光の他方は、プリズム43内で反射されてウオラストンプリズム46に入射し、ここで回折されて光検出器53〜55に到達する。この回折光は信号として検出される。
【0006】
【発明が解決しようとする課題】
しかしこのような構成の光ヘッド装置は、高価な結晶材料を用いており、部品点数が多く、調整が複雑で、生産性が悪く、コストが高く、形状が大きい問題があった。本発明は、これらの問題点を解決した光ヘッド装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、光源と光磁気記録媒体との間に光分離回折素子を設け、光磁気記録媒体からの戻り光を、光分離回折素子で2以上の光に分離し、さらにそれらの光を回折させて光ヘッド装置の駆動制御のための光検出器及び信号検出のための光検出器に到達するようにした光ヘッド装置において、光分離回折素子が単純回折格子と偏光回折格子とを有しており、戻り光が単純回折格子で回折され、その+1次と−1次の回折光が、夫々偏光特性の異なる偏光回折格子に入射して回折されることを特徴とする光ヘッド装置を提供する。
【0008】
また、それらの偏光回折格子が2枚の基板ともに内面に凹凸のある基板を用い、一方の1次の回折光が入射側に凹凸がある基板で、他方の1次の回折光が出射側に凹凸がある基板であり、液晶を内部に封入した液晶回折格子である光ヘッド装置、及び、それらの光分離回折素子の光源側の基板外面にも単純回折格子が形成され、3ビームを発生するようにされている光ヘッド装置を提供する。
【0009】
また、少なくとも一方に、内面に凹凸のある基板を用い、内部に封入した光学異方性材料との相互作用による偏光回折格子を有する複合異方性回折素子において、少なくとも一方の基板の外面には凹凸による回折格子が形成され、この外側の回折格子で回折された光の0次でない回折光の1つ以上の光が内面の偏光回折格子に入射して再度回折されるように配置されたことを特徴とする複合異方性回折素子を提供する。
【0010】
また、その2枚の基板ともに内面に凹凸のある基板を用い、一方の1次の回折光が入射側に凹凸がある偏光回折格子に、他方の1次の回折光が出射側に凹凸がある偏光回折格子に入射するように配置された複合異方性回折素子を提供する。
【0011】
【発明の実施の形態】
本発明では、光ヘッド装置の光分離回折素子が単純回折格子と偏光回折格子とを有しており、戻り光が単純回折格子で回折され、その+1次と−1次の回折光が、夫々偏光特性の異なる偏光回折格子に入射して回折されるようにされているので、光分離回折素子が小型でかつ容易に製造できる。
【0012】
参考とし、基板の内外面に凹凸による回折格子を設け、内部に光学異方性材料を充填した複合異方性回折素子を用いることにより、きわめて小型にできるとともに、その部分については組立後の調整が不要となる利点を有する。
【0013】
図1、図2は本発明の複合異方性回折素子の具体的な例の断面図である。図1は基本的な構成を示し、図2は3ビーム発生用の第4の回折格子を設けた例を示す。図1、図2において、1、2、3は回折格子、4、5は基板、6は光学異方性材料の代表である液晶、10は半導体レーザ等の光源からの光、11〜16は光磁気記録媒体からの戻り光の回折光を示す。図2の7は3ビーム発生用の回折格子を示す。
【0014】
図3、図4は、図1、図2の複合異方性回折素子を用いた光ヘッド装置の具体的な例の模式図である。図3は図1に対応し、図4は図2に対応している。図3、図4において、21は半導体レーザ等の光源、22は図1の複合異方性回折素子、23は集光レンズ、24は光磁気記録媒体、30は光源から出射し光磁気記録媒体に到達した光、31〜36は光検出器を示す。図4の25は図2の複合異方性回折素子、37は光源から出射し光磁気記録媒体に到達した光を示す。
【0015】
本発明では、光ヘッド装置の光分離回折素子が単純回折格子と偏光回折格子とを有している。光磁気記録媒体からの戻り光が単純回折格子で回折され、その+1次と−1次の回折光が、夫々偏光特性の異なる偏光回折格子に入射して回折される。この2種類の回折格子が一体化されている。
【0016】
具体的には、少なくとも一方に、内面に凹凸のある基板を用い、内部に封入した光学異方性材料との相互作用による偏光回折格子を用い、これと基板外面に設けた単純回折格子とにより複合異方性回折素子を構成する。
【0017】
基板の外面の単純回折格子は、ストライプ状に回折格子を形成すればよい。これには、基板の外面をエッチング、機械的な切削、プレス等により凹凸化して回折格子を形成することが生産性が良く好適である。この場合、基板自体を直接加工してもよく、基板表面に特定の屈折率の透明膜を形成しこれを加工してもよい。このほか、部分的に基板自体の屈折率を変えて回折格子として働くようにもできる。この外面の単純回折格子は、光磁気記録媒体側に配置され、光磁気記録媒体からの戻り光が単純回折格子で回折される。
【0018】
この、単純回折格子で回折された光のうち、その+1次と−1次の回折光が、夫々偏光特性の異なる偏光回折格子に入射するようにされる。この偏光回折格子は、参考として基板内面に形成された凹凸と内部に封入した光学異方性材料との相互作用により、特定の偏光方向の光を回折する。この基板内面の凹凸も、前記した基板の外面の単純回折格子と同様に形成すればよい。
【0019】
この光分離回折素子の偏光回折格子は、+1次と−1次の回折光の両方の回折光を回折させるために2つの偏光回折格子を形成する。この2つの偏光回折格子は、偏光依存性に差があるようにされることが好ましい。
【0020】
具体的には、一方はP波を回折させ、S波は直進させ、他方はS波を回折させ、P波は直進させるような偏光依存性を有することが好ましい。このため、基板内面の凹凸と光学異方性材料とで構成した偏光回折格子の場合には、2つの偏光回折格子で凹凸がある面を逆の基板にすることが好ましい。
【0021】
特に、この偏光回折格子は、内部に封入する光学異方性材料と基板の凹凸との屈折率との関係が重要になるので、凹凸の屈折率を調整する必要がある。このため、基板自体が所望の屈折率であればそのまま使用できるが、基板自体の屈折率と所望の屈折率とが異なる場合には、基板表面に所望の屈折率の透明膜を形成することが好ましい。この透明膜はエッチング等によりパターニングしてもよく、所望のパターンに直接形成してもよい。
【0022】
具体的には、凹凸部の屈折率を、光学異方性材料の常光屈折率か異常光屈折率に一致するようにされる。光学異方性材料として液晶を用い、回折格子の長手方向にラビングにより配向処理をした場合について説明する。
【0023】
凹凸部の屈折率を液晶の常光屈折率に一致するようにすると、液晶分子が格子の長手方向に配列しているので、格子の長手方向に直交する方向に偏光方向のある光は両方の屈折率は一致していることになるので、回折格子として働かず、光は直進する。一方、格子の長手方向に偏光方向のある光は、見かけ上液晶の屈折率が異常光屈折率となり、両方の屈折率は一致しなくなるので、回折格子として働くことになり、光は回折される。
【0024】
また、この凹凸部の屈折率を液晶の異常光屈折率に一致するようにすると、液晶分子が格子の長手方向に配列しているので、格子の長手方向に直交する方向に偏光方向のある光は、見かけ上液晶の屈折率が常光屈折率となるので、両方の屈折率は一致しなくなり、光は回折される。一方、格子の長手方向に偏光方向のある光は、両方の屈折率は一致していることになるので、回折格子として働かず、光は直進する。
【0025】
このため、2つの回折格子の凹凸部を夫々常光屈折率及び異常光屈折率と一致するような材料で構成しておくことにより、異なる偏光特性を有するようにさせうる。これにより、回折格子2と3では、一方でP波成分が回折し、他方ではS波成分が回折することになる。
【0026】
図1のように液晶層を挟んだ2枚の基板に凹凸部を形成する場合には、液晶が90°ねじれるように配向処理しておけば、両方の凹凸部が液晶の常光屈折率と屈折率が一致するようにしておいてもよい。これは、凹凸部が光源側の基板5にある回折格子には液晶層を通過することにより光の偏光方向が90°回転して入射するので、回折格子2と3では、一方でP波成分が回折し、他方ではS波成分が回折することになる。
【0027】
図1の例では、単純回折格子である回折格子1で回折された光は、直進する0次光の他に少なくとも2方向に進行する。左側に進行した光は基板5の内面に設けられた凹凸と光学異方性材料である液晶6とによる偏光回折格子である回折格子2で回折し光11、12、13となって、光検出器にに到達する。右側に進行した光は基板4の内面に設けられた凹凸と光学異方性材料である液晶6とによる偏光回折格子である回折格子3で回折し、光14、15、16となって光検出器に到達する。
【0028】
ここで、光源からの光がP波とS波との両成分を含む45°傾いた偏光方向の光を用いることとする。光磁気記録媒体で反射した戻り光は、ある角度偏光面が回転している。この戻り光を単純回折格子である回折格子1で回折させて2つの回折格子2、3に導く。
【0029】
この左側の回折格子2では、0次の光12ではほぼP波となり、−1次と+1次の光11、13はほぼS波となるようにし、右側の回折格子3では、0次の光15ではほぼS波となり、−1次と+1次の光14、16はほぼP波となるようにされる。このときに、11と13と15とのS波の合計と、12と14と16とのP波の合計との差を計算することにより、光磁気記録媒体での偏光回転角を読み取りうる。
【0030】
図2のように、単純回折格子である第4の回折格子7を光源側の基板外面に設けることにより、3ビーム発生用となしうる。この第4の回折格子7は、通常は回折格子1、2、3とは格子のストライプの方向が直交するようにされる。
【0031】
また、回折格子1にはさまざまな湾曲格子を形成したり、領域を分け各々の異なる湾曲格子を形成したりすることによって、フォーカスエラー検出、トラッキングエラー検出の機能を光ヘッド装置に持たせうる。
【0032】
複合異方性回折素子に用いる基板は、通常のガラス、プラスチック等の基板が使用でき、必要に応じて所望の屈折率の透明膜を積層して用いる。さらに、必要に応じて、これにポリイミドの配向膜、間隙制御用のスペーサ、電極、シール材等を用いる。
【0033】
光学異方性材料としては、液晶が代表的な材料として用いられる。通常は正の誘電異方性のネマチック液晶を用いればよい。上記の説明では、液晶は液体状の材料を用いることで説明したが、高分子液晶も使用できる。不必要な表面反射を抑制するために反射防止コートを形成したり、回折格子を複雑な形状にして付加機能を付与させてもよい。
【0034】
【実施例】
屈折率1.52、厚さ2mmのガラス基板の上(外面側)に、SiO膜を蒸着によって厚さ0.6μmで形成し、フォトリソグラフィとドライエッチングによって、ピッチ1.5μm、深さ0.6μmの回折格子1を形成した。この回折格子には、SSD(Spot Size Detection )法によるフォーカスエラー検出用のパターンを形成した。
【0035】
そのガラス基板の上記回折格子形成面と逆の面(内面側)の+1次光が通過する位置に、屈折率1.79、厚さ1.4μmのSiON系の膜をプラズマCVD法により形成し、フォトリソグラフィとドライエッチングによって、ピッチ8μm、深さ1.4μmの回折格子3を形成した。
【0036】
厚さ0.5mm、屈折率1.52の第2のガラス基板の表面(内面側)の−1次光が通過する位置に、屈折率1.52、厚さ1.4μmのSiON系の膜を同じくプラズマCVD法により形成し、フォトリソグラフィとドライエッチングによって、ピッチ8μm、深さ1.4μmの回折格子2を形成した。
【0037】
第2のガラス基板の上記回折格子形成面と逆の面(外面側)に、半導体レーザからの往路光が通過する位置に、SiO膜を蒸着法により形成し、フォトリソグラフィとドライエッチングによって、ピッチ16μm、深さ0.5μmの回折格子4を形成した。
【0038】
上記2つの内面側のSiON系の膜の回折格子面を相対向させるようにし、ストライプ方向を一致させ、−1次回折光が回折格子2を通過するような配置にして、周辺部をエポキシ樹脂でシールした。その後、常光屈折率1.52、異常光屈折率1.79の液晶を注入し、注入口を同じくエポキシ樹脂で封止して複合異方性回折素子となる液晶素子を作成した。なお、2枚の基板とも内面側にはポリイミドの薄膜を設け、格子の長手方向に沿ってラビングしたものを用いた。このため、液晶のねじれ角は0°とした。
【0039】
上記液晶素子を用いて図4に示すように、光ヘッド装置を作成し、光磁気デイスクのカー回転角を読み取った。
【0040】
【発明の効果】
本発明では、光ヘッド装置の光分離回折素子が単純回折格子と偏光回折格子とを有しており、戻り光が単純回折格子で回折され、その+1次と−1次の回折光が、夫々偏光特性の異なる偏光回折格子に入射して回折されるようにされているので、光分離回折素子が小型でかつ容易に製造できる。
【0041】
特に、基板の内外面に凹凸による回折格子を設け、内部に液晶に代表される光学異方性材料を充填した複合異方性回折素子を用いることにより、きわめて小型化できるとともに、その部分については全ての回折格子が一体化されていることになるので、回折格子の組立後の調整が不要となる。
【0042】
さらに、このように小型で調整不要の光分離回折素子を用いているので、光ヘッド装置自体も小型化でき、その部品点数も少ないので組み立ても容易であり、さらにその調整も容易になり、生産性も良い。本発明は、本発明の効果を損しない範囲内で、種々の応用ができる。
【図面の簡単な説明】
【図1】本発明の複合異方性回折素子の具体的な例の断面図。
【図2】本発明の複合異方性回折素子の他の具体的な例の断面図。
【図3】図1の複合異方性回折素子を用いた光ヘッド装置の具体的な例の模式図。
【図4】図2の複合異方性回折素子を用いた光ヘッド装置の具体的な例の模式図。
【図5】従来の光ヘッド装置の例の模式図。
【符号の説明】
回折格子:1、2、3、7
基板 :4、5
液晶 :6
光 :11〜16
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical head device for a magneto-optical recording medium and a composite anisotropic diffraction element used for the same.
[0002]
[Prior art]
In an optical head device for a magneto-optical recording medium, the Kerr rotation angle (rotation angle of a polarization plane) of the magneto-optical recording medium is detected and used. As such an optical head device, one having a configuration as shown in FIG. 5 has been used.
[0003]
5, reference numeral 41 denotes a light source such as a semiconductor laser; 42, a simple diffraction grating; 43, a prism for separating beams; 44, a condenser lens; 45, a magneto-optical recording medium; 46, a Wollaston prism; Indicates a photodetector.
[0004]
In the optical head device of FIG. 5, light emitted from the light source 41 passes through the simple diffraction grating 42 and the prism 43, is condensed by the condenser lens 44, and reaches the magneto-optical recording medium 45. The return light reflected by the magneto-optical recording medium 45 is condensed again by the condenser lens 44, enters the prism 43, and is separated into two lights.
[0005]
One of the separated lights proceeds straight as it is, enters the simple diffraction grating 42 again, diffracts, and reaches the photodetectors 51 and 52. This diffracted light is used for detecting a focus error and a tracking error. The other of the separated light is reflected in the prism 43 and enters the Wollaston prism 46, where it is diffracted and reaches the photodetectors 53 to 55. This diffracted light is detected as a signal.
[0006]
[Problems to be solved by the invention]
However, such an optical head device has a problem that an expensive crystal material is used, the number of parts is large, adjustment is complicated, productivity is low, cost is high, and the shape is large. An object of the present invention is to provide an optical head device that solves these problems.
[0007]
[Means for Solving the Problems]
The present invention provides a light separation / diffraction element between a light source and a magneto-optical recording medium, separates return light from the magneto-optical recording medium into two or more lights by a light separation / diffraction element, and further diffracts the light. In the optical head device which is caused to reach the photodetector for drive control of the optical head device and the photodetector for signal detection, the light separation / diffraction element has a simple diffraction grating and a polarization diffraction grating. An optical head device characterized in that return light is diffracted by a simple diffraction grating, and + 1st-order and -1st-order diffracted lights are incident on and diffracted by polarization diffraction gratings having different polarization characteristics. I do.
[0008]
Also, its use of the substrate polarization grating of these is that an uneven inner surface of both the two substrates, the substrate one of the primary diffracted light is uneven in the incident side, the other first-order diffracted light emitted An optical head device which is a liquid crystal diffraction grating with liquid crystal encapsulated inside , and a simple diffraction grating is also formed on the outer surface of the light source side substrate of these light separation / diffraction elements. An optical head device adapted to generate the optical head.
[0009]
Further, at least one of the composite anisotropic diffraction elements having a polarization diffraction grating by interaction with an optically anisotropic material encapsulated therein using a substrate having an uneven inner surface, wherein the outer surface of at least one of the substrates has A diffraction grating is formed by unevenness, and one or more non-zero-order diffracted lights of the light diffracted by the outer diffraction grating are arranged so as to be incident on the inner polarization diffraction grating and diffracted again. And a composite anisotropic diffraction element characterized by the following.
[0010]
In addition, both of the two substrates use a substrate having irregularities on the inner surface. One of the first-order diffracted lights has irregularities on the incident side, and the other primary diffracted light has irregularities on the emission side. Provided is a composite anisotropic diffraction element arranged to be incident on a polarization diffraction grating.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, an optical separation diffraction element of the optical head device has a simple diffraction grating and the polarizing diffraction grating are diffracted return light by a simple diffraction grating, its +1 order and -1 order diffracted light, respectively Since the light is diffracted by being incident on polarization diffraction gratings having different polarization characteristics , the light separation / diffraction element can be manufactured in a small size and easily.
[0012]
As a reference, by providing a diffraction grating with irregularities on the inner and outer surfaces of the substrate and using a composite anisotropic diffraction element filled with an optically anisotropic material inside, it can be made extremely small, and that part can be adjusted after assembly Has the advantage that it becomes unnecessary.
[0013]
1 and 2 are sectional views of a specific example of the composite anisotropic diffraction element of the present invention. FIG. 1 shows a basic configuration, and FIG. 2 shows an example in which a fourth diffraction grating for generating three beams is provided. 1 and 2, reference numerals 1, 2, and 3 denote diffraction gratings, reference numerals 4 and 5 denote substrates, reference numeral 6 denotes a liquid crystal representative of an optically anisotropic material, reference numeral 10 denotes light from a light source such as a semiconductor laser, and reference numerals 11 to 16 Fig. 7 shows diffracted light of return light from a magneto-optical recording medium. Reference numeral 7 in FIG. 2 shows a diffraction grating for generating three beams.
[0014]
3 and 4 are schematic diagrams of specific examples of an optical head device using the composite anisotropic diffraction element of FIGS. 1 and 2. FIG. FIG. 3 corresponds to FIG. 1, and FIG. 4 corresponds to FIG. 3 and 4, reference numeral 21 denotes a light source such as a semiconductor laser, 22 denotes the composite anisotropic diffraction element of FIG. 1, 23 denotes a condenser lens, 24 denotes a magneto-optical recording medium, and 30 denotes a magneto-optical recording medium emitted from the light source. , 31 to 36 indicate photodetectors. In FIG. 4, reference numeral 25 denotes the composite anisotropic diffraction element shown in FIG. 2, and reference numeral 37 denotes light emitted from the light source and reaching the magneto-optical recording medium.
[0015]
In the present invention, the light separation / diffraction element of the optical head device has a simple diffraction grating and a polarization diffraction grating. The return light from the magneto-optical recording medium is diffracted by a simple diffraction grating, and the + 1st-order and -1st-order diffracted light are incident on polarization diffraction gratings having different polarization characteristics, and are diffracted. These two types of diffraction gratings are integrated.
[0016]
Specifically, on at least one side, a substrate having an uneven surface is used, and a polarization diffraction grating is used by the interaction with an optically anisotropic material enclosed therein, and a simple diffraction grating provided on the outer surface of the substrate is used. A composite anisotropic diffraction element is formed.
[0017]
The simple diffraction grating on the outer surface of the substrate may be formed in a stripe shape. For this purpose, it is preferable that the outer surface of the substrate is made uneven by etching, mechanical cutting, pressing, or the like to form a diffraction grating with good productivity. In this case, the substrate itself may be directly processed, or a transparent film having a specific refractive index may be formed on the substrate surface and then processed. In addition, the refractive index of the substrate itself can be partially changed to function as a diffraction grating. The simple diffraction grating on the outer surface is arranged on the magneto-optical recording medium side, and return light from the magneto-optical recording medium is diffracted by the simple diffraction grating.
[0018]
Of the light diffracted by the simple diffraction grating, the + 1st-order and -1st-order diffracted lights are made to enter polarization gratings having different polarization characteristics . This polarization diffraction grating diffracts light of a specific polarization direction by the interaction between the unevenness formed on the inner surface of the substrate and the optically anisotropic material enclosed therein for reference. The unevenness on the inner surface of the substrate may be formed in the same manner as the simple diffraction grating on the outer surface of the substrate.
[0019]
Polarization grating of the beam splitting diffraction element, form two polarization grating for diffracting the diffracted light both + 1-order and -1-order diffracted light. Preferably, the two polarization gratings have a difference in polarization dependence.
[0020]
Specifically, it is preferable that one has a polarization dependency such that one diffracts the P wave and the S wave goes straight, and the other diffracts the S wave and the P wave goes straight. For this reason, in the case of a polarization diffraction grating composed of the unevenness on the inner surface of the substrate and the optically anisotropic material, it is preferable that the surface of the two polarization diffraction gratings having the unevenness be the opposite substrate.
[0021]
In particular, since the relationship between the refractive index of the optically anisotropic material encapsulated therein and the unevenness of the substrate becomes important, it is necessary to adjust the refractive index of the unevenness. Therefore, if the substrate itself has a desired refractive index, it can be used as it is, but if the refractive index of the substrate itself is different from the desired refractive index, it is possible to form a transparent film having a desired refractive index on the substrate surface. preferable. This transparent film may be patterned by etching or the like, or may be formed directly into a desired pattern.
[0022]
Specifically, the refractive index of the uneven portion is made to match the ordinary light refractive index or the extraordinary light refractive index of the optically anisotropic material. A case in which liquid crystal is used as an optically anisotropic material and orientation processing is performed by rubbing in the longitudinal direction of the diffraction grating will be described.
[0023]
If the refractive index of the concave and convex portions is made to match the ordinary refractive index of the liquid crystal, the liquid crystal molecules are arranged in the longitudinal direction of the lattice, so that light having a polarization direction in a direction perpendicular to the longitudinal direction of the lattice is both refracted. Since the indices match, the light does not work as a diffraction grating and the light goes straight. On the other hand, light having a polarization direction in the longitudinal direction of the grating will act as a diffraction grating because the apparent refractive index of the liquid crystal becomes an extraordinary light refractive index and the two refractive indexes do not match, and the light is diffracted. .
[0024]
When the refractive index of the concave and convex portions is made to match the extraordinary light refractive index of the liquid crystal, since the liquid crystal molecules are arranged in the longitudinal direction of the lattice, light having a polarization direction perpendicular to the longitudinal direction of the lattice. Since the apparent refractive index of the liquid crystal becomes the ordinary light refractive index, the two refractive indexes do not match, and light is diffracted. On the other hand, light having a polarization direction in the longitudinal direction of the grating has the same refractive index, so that it does not work as a diffraction grating and the light goes straight.
[0025]
Therefore, by forming the concave and convex portions of the two diffraction gratings with materials that match the ordinary light refractive index and the extraordinary light refractive index, respectively, it is possible to have different polarization characteristics. Thereby, in the diffraction gratings 2 and 3, the P-wave component is diffracted on the one hand, and the S-wave component is diffracted on the other hand.
[0026]
As shown in FIG. 1, when forming an uneven portion on two substrates sandwiching a liquid crystal layer, if the alignment treatment is performed so that the liquid crystal is twisted by 90 °, both the uneven portions will have the ordinary light refractive index and the refractive index of the liquid crystal. The rates may match. This is because light passes through the liquid crystal layer and the polarization direction of the light is rotated by 90 ° and enters the diffraction grating in which the concave and convex portions are on the substrate 5 on the light source side. Is diffracted, while the S-wave component is diffracted.
[0027]
In the example of FIG. 1, the light diffracted by the diffraction grating 1, which is a simple diffraction grating, travels in at least two directions in addition to the zero-order light traveling straight. The light traveling to the left is diffracted by the diffraction grating 2 that is a polarization diffraction grating formed by the unevenness provided on the inner surface of the substrate 5 and the liquid crystal 6 that is an optically anisotropic material, and becomes light 11, 12, and 13. Reach the vessel. The light traveling to the right is diffracted by the diffraction grating 3 which is a polarization diffraction grating formed by the unevenness provided on the inner surface of the substrate 4 and the liquid crystal 6 which is an optically anisotropic material, and becomes light 14, 15, and 16 for light detection. Reach the vessel.
[0028]
Here, it is assumed that the light from the light source has a polarization direction inclined by 45 ° and includes both the P wave and the S wave components. The return light reflected by the magneto-optical recording medium has its polarization plane rotated by a certain angle. This return light is diffracted by the diffraction grating 1 which is a simple diffraction grating, and guided to two diffraction gratings 2 and 3.
[0029]
In the diffraction grating 2 on the left side, the 0th-order light 12 becomes substantially P-wave, and the -1st-order and + 1st-order lights 11 and 13 become almost S-waves. At 15, the light is substantially an S wave, and the −1 and +1 order lights 14 and 16 are substantially P waves. At this time, the polarization rotation angle on the magneto-optical recording medium can be read by calculating the difference between the sum of the S-waves of 11, 13 and 15 and the sum of the P-waves of 12, 14 and 16.
[0030]
As shown in FIG. 2, by providing the fourth diffraction grating 7 which is a simple diffraction grating on the outer surface of the substrate on the light source side, it can be used for generating three beams. The fourth diffraction grating 7 is usually set so that the directions of the stripes of the grating are orthogonal to the diffraction gratings 1, 2, and 3.
[0031]
In addition, by forming various curved gratings on the diffraction grating 1 or forming different curved gratings by dividing regions, the optical head device can have a function of detecting a focus error and a tracking error.
[0032]
As the substrate used for the composite anisotropic diffraction element, a substrate of ordinary glass, plastic, or the like can be used. If necessary, a transparent film having a desired refractive index is laminated and used. Further, if necessary, an alignment film of polyimide, a spacer for controlling a gap, an electrode, a sealing material, and the like are used for this.
[0033]
As an optically anisotropic material, liquid crystal is used as a typical material. Usually, a nematic liquid crystal having a positive dielectric anisotropy may be used. In the above description, the liquid crystal is described as using a liquid material, but a polymer liquid crystal can also be used. An anti-reflection coating may be formed to suppress unnecessary surface reflection, or the diffraction grating may be formed into a complicated shape to add an additional function.
[0034]
【Example】
On a glass substrate having a refractive index of 1.52 and a thickness of 2 mm (outer surface side), a SiO 2 film is formed to a thickness of 0.6 μm by vapor deposition, and a pitch of 1.5 μm and a depth of 0 is formed by photolithography and dry etching. A diffraction grating 1 of 0.6 μm was formed. A pattern for focus error detection by an SSD (Spot Size Detection) method was formed on this diffraction grating.
[0035]
An SiON-based film having a refractive index of 1.79 and a thickness of 1.4 μm was formed by plasma CVD on a surface (the inner surface side) of the glass substrate opposite to the surface on which the diffraction grating was formed, at a position where + 1st-order light passes. The diffraction grating 3 having a pitch of 8 μm and a depth of 1.4 μm was formed by photolithography and dry etching.
[0036]
An SiON-based film having a refractive index of 1.52 and a thickness of 1.4 μm is provided at a position on the surface (inner side) of the second glass substrate having a thickness of 0.5 mm and a refractive index of 1.52 through which −1st-order light passes. Was formed by the plasma CVD method, and a diffraction grating 2 having a pitch of 8 μm and a depth of 1.4 μm was formed by photolithography and dry etching.
[0037]
An SiO 2 film is formed by vapor deposition on a surface (outer surface side) of the second glass substrate opposite to the surface on which the diffraction grating is formed, at a position where the outward light from the semiconductor laser passes, and is subjected to photolithography and dry etching. A diffraction grating 4 having a pitch of 16 μm and a depth of 0.5 μm was formed.
[0038]
The two inner surfaces of the SiON-based films are made to face each other with the diffraction grating surfaces facing each other, the stripe directions are matched, and the −1st-order diffracted light is arranged to pass through the diffraction grating 2, and the peripheral portion is made of epoxy resin. Sealed. Thereafter, a liquid crystal having an ordinary light refractive index of 1.52 and an extraordinary light refractive index of 1.79 was injected, and the injection port was similarly sealed with an epoxy resin to prepare a liquid crystal element serving as a composite anisotropic diffraction element. Note that both substrates were provided with a polyimide thin film on the inner surface side and rubbed along the longitudinal direction of the lattice. For this reason, the twist angle of the liquid crystal was set to 0 °.
[0039]
As shown in FIG. 4, an optical head device was prepared using the above liquid crystal element, and the Kerr rotation angle of the magneto-optical disk was read.
[0040]
【The invention's effect】
In the present invention, an optical separation diffraction element of the optical head device has a simple diffraction grating and the polarizing diffraction grating are diffracted return light by a simple diffraction grating, its +1 order and -1 order diffracted light, respectively Since the light is diffracted by being incident on polarization diffraction gratings having different polarization characteristics , the light separation / diffraction element can be manufactured easily in a small size.
[0041]
In particular, by providing a diffraction grating with irregularities on the inner and outer surfaces of the substrate and using a composite anisotropic diffraction element filled with an optically anisotropic material typified by liquid crystal inside, the size can be extremely reduced, Since all the diffraction gratings are integrated, adjustment after assembly of the diffraction grating is not required.
[0042]
Furthermore, the use of such a light separating and diffractive element that does not require adjustment makes it possible to reduce the size of the optical head device itself, and the number of parts is small, so that the assembly is easy and the adjustment is easy, and the production is easy. Good nature. The present invention can be applied to various applications within a range that does not impair the effects of the present invention.
[Brief description of the drawings]
FIG. 1 is a sectional view of a specific example of a composite anisotropic diffraction element of the present invention.
FIG. 2 is a cross-sectional view of another specific example of the composite anisotropic diffraction element of the present invention.
FIG. 3 is a schematic diagram of a specific example of an optical head device using the composite anisotropic diffraction element of FIG.
FIG. 4 is a schematic diagram of a specific example of an optical head device using the composite anisotropic diffraction element of FIG. 2;
FIG. 5 is a schematic view of an example of a conventional optical head device.
[Explanation of symbols]
Diffraction grating: 1, 2, 3, 7
Substrate: 4, 5
Liquid crystal: 6
Light: 11-16

Claims (5)

光源と光磁気記録媒体との間に光分離回折素子を設け、光磁気記録媒体からの戻り光を、光分離回折素子で2以上の光に分離し、さらにそれらの光を回折させて光ヘッド装置の駆動制御のための光検出器及び信号検出のための光検出器に到達するようにした光ヘッド装置において、光分離回折素子が単純回折格子と偏光回折格子とを有しており、戻り光が単純回折格子で回折され、その+1次と−1次の回折光が、夫々偏光特性の異なる偏光回折格子に入射して回折されることを特徴とする光ヘッド装置。An optical separation / diffraction element is provided between the light source and the magneto-optical recording medium, the return light from the magneto-optical recording medium is separated into two or more lights by the light separation / diffraction element, and the light is diffracted to form an optical head. In an optical head device that reaches a photodetector for drive control of the device and a photodetector for signal detection, the light separation / diffraction element has a simple diffraction grating and a polarization diffraction grating. An optical head device, wherein light is diffracted by a simple diffraction grating, and + 1st-order and -1st-order diffracted lights are incident on polarization diffraction gratings having different polarization characteristics and are diffracted. 偏光回折格子が2枚の基板ともに内面に凹凸のある基板を用い、一方の1次の回折光が入射側に凹凸がある基板で、他方の1次の回折光が出射側に凹凸がある基板であり、液晶を内部に封入した液晶回折格子である請求項1記載の光ヘッド装置。 Both of the substrates having two polarization diffraction gratings have irregularities on the inner surface, and one of the primary diffracted light has irregularities on the incident side and the other primary diffracted light has irregularities on the emission side. , and the claim 1 Symbol placement of the optical head device is a liquid crystal diffraction grating in which liquid crystal is sealed therein. 光分離回折素子の光源側の基板外面にも単純回折格子が形成され、3ビームを発生するようにされている請求項記載の光ヘッド装置。3. The optical head device according to claim 2, wherein a simple diffraction grating is also formed on the outer surface of the substrate on the light source side of the light separating and diffractive element to generate three beams. 少なくとも一方に、内面に凹凸のある基板を用い、内部に封入した光学異方性材料との相互作用による偏光回折格子を有する複合異方性回折素子において、少なくとも一方の基板の外面には凹凸による回折格子が形成され、この外側の回折格子で回折された光の0次でない回折光の1つ以上の光が内面の偏光回折格子に入射して再度回折されるように配置されたことを特徴とする複合異方性回折素子。In a composite anisotropic diffraction element having a polarization diffraction grating by interaction with an optically anisotropic material encapsulated therein, at least one of the substrates has an irregular surface on the inner surface, and at least one of the substrates has an irregular surface on the outer surface. A diffraction grating is formed, and one or more non-zero-order diffracted lights of the light diffracted by the outer diffraction grating are arranged to be incident on the inner surface polarization diffraction grating and diffracted again. Composite anisotropic diffraction element. 2枚の基板ともに内面に凹凸のある基板を用い、一方の1次の回折光が入射側に凹凸がある偏光回折格子に、他方の1次の回折光が出射側に凹凸がある偏光回折格子に入射するように配置された請求項記載の複合異方性回折素子。Both substrates use substrates with irregularities on the inner surface. One of the first order diffracted light is a polarization grating having irregularities on the incident side, and the other is a diffractive grating having the first order diffracted light on the exit side. The composite anisotropic diffraction element according to claim 4, wherein the element is arranged so as to be incident on.
JP22708696A 1996-08-28 1996-08-28 Optical head device and composite anisotropic diffraction element used therefor Expired - Fee Related JP3541575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22708696A JP3541575B2 (en) 1996-08-28 1996-08-28 Optical head device and composite anisotropic diffraction element used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22708696A JP3541575B2 (en) 1996-08-28 1996-08-28 Optical head device and composite anisotropic diffraction element used therefor

Publications (2)

Publication Number Publication Date
JPH1069673A JPH1069673A (en) 1998-03-10
JP3541575B2 true JP3541575B2 (en) 2004-07-14

Family

ID=16855288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22708696A Expired - Fee Related JP3541575B2 (en) 1996-08-28 1996-08-28 Optical head device and composite anisotropic diffraction element used therefor

Country Status (1)

Country Link
JP (1) JP3541575B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001042824A1 (en) * 1999-12-08 2001-06-14 Otm Technologies, Ltd. Improved motion detector and components suitable for use therein
WO2002001555A1 (en) * 2000-06-29 2002-01-03 Matsushita Electric Industrial Co., Ltd. Optical element, optical head and optical information processor
EP1437608A4 (en) 2001-09-13 2006-07-26 Asahi Glass Co Ltd Diffraction device
EP2012148A4 (en) 2006-04-12 2011-04-06 Toyo Seikan Kaisha Ltd Structure, forming method of structure, structure forming device, structure color and/or diffraction light reading method, and truth/false discriminating method
KR100779693B1 (en) 2006-08-09 2007-11-26 주식회사 엘지에스 Wave selection type diffractive optical elements and optical pickup device has them
WO2019054756A1 (en) * 2017-09-12 2019-03-21 주식회사 엘지화학 Diffraction light guide plate and method for manufacturing diffraction light guide plate

Also Published As

Publication number Publication date
JPH1069673A (en) 1998-03-10

Similar Documents

Publication Publication Date Title
US6118586A (en) Optical head device including an optically anisotropic diffraction grating and production method thereof
EP0390610B1 (en) Optical element and optical pickup device comprising the same
WO1999018459A1 (en) Optical head device and a diffraction element suitable for the device, and a method of manufacturing the diffraction element and the optical head device
JPH09304748A (en) Liquid crystal lens and optical head device using the same
JP4792679B2 (en) Isolator and variable voltage attenuator
JP3541575B2 (en) Optical head device and composite anisotropic diffraction element used therefor
JP2594548B2 (en) Polarizing beam splitter
JP3994450B2 (en) Manufacturing method of optical diffraction grating and optical head device using the same
JP3711652B2 (en) Polarization diffraction element and optical head device using the same
JP3885251B2 (en) Optical anisotropic diffraction grating, driving method thereof, and optical head device using the same
JP3947828B2 (en) Optical head device and manufacturing method thereof
WO2005045484A1 (en) Diffraction element and optical head device
JP5152366B2 (en) Isolator and variable voltage attenuator
JP3509399B2 (en) Optical head device
JP4179645B2 (en) Optical head device and driving method thereof
JP3713778B2 (en) Optical head device
JP3528381B2 (en) Optical head device
JPH09127335A (en) Manufacture of optical head device and optical head device
JP3596152B2 (en) Method of manufacturing optical modulation element and method of manufacturing optical head device
JPH11312329A (en) Polarizing diffraction element and optical head device
JP4631679B2 (en) Optical head device
JP4420990B2 (en) Optical head device
JPH09185837A (en) Optical head device
JPH09198698A (en) Production of optical head device
JPH09274188A (en) Optical modulation element and optical head device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040322

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080409

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 8

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees