JP3493988B2 - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP3493988B2
JP3493988B2 JP34466497A JP34466497A JP3493988B2 JP 3493988 B2 JP3493988 B2 JP 3493988B2 JP 34466497 A JP34466497 A JP 34466497A JP 34466497 A JP34466497 A JP 34466497A JP 3493988 B2 JP3493988 B2 JP 3493988B2
Authority
JP
Japan
Prior art keywords
carbon
secondary battery
positive electrode
lithium secondary
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34466497A
Other languages
Japanese (ja)
Other versions
JPH11176446A (en
Inventor
修子 山内
壽 安藤
正則 吉川
村中  廉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP34466497A priority Critical patent/JP3493988B2/en
Publication of JPH11176446A publication Critical patent/JPH11176446A/en
Application granted granted Critical
Publication of JP3493988B2 publication Critical patent/JP3493988B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は小型携帯用電子機器
の電源あるいは、自動車用,電力貯蔵用等の産業用大型
二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power source for small portable electronic devices or a large industrial secondary battery for automobiles, power storage, and the like.

【0002】[0002]

【従来の技術】従来、Li二次電池用の正極材料とし
て、LiCoO2 ,LiNiO2 ,LiMn24等に代
表される遷移金属酸化物が用いられているが、負極であ
る炭素材料,リチウム金属、あるいはリチウム合金化金
属に比較してかなり導電性が低い。そのため、導電助剤
として黒鉛あるいは非晶質の炭素材料を混合し、電極内
の導電性の向上を行い、結着剤と混合して、金属基体に
塗布した電極を作製している。
2. Description of the Related Art Conventionally, transition metal oxides represented by LiCoO 2 , LiNiO 2 , LiMn 2 O 4 and the like have been used as positive electrode materials for Li secondary batteries. It has considerably lower conductivity than metals or lithium alloyed metals. Therefore, graphite or an amorphous carbon material is mixed as a conduction aid to improve the conductivity inside the electrode, and mixed with a binder to prepare an electrode coated on a metal substrate.

【0003】導電助剤である炭素材料と正極活物質は点
あるいは面で接触しているが、充放電に伴う正極活物質
自体の膨張収縮の繰り返しにより導電助剤と正極活物質
の接触面積が減少し、導通が次第にとれなくなる。この
ため、正極活物質の能力を生かしきることができなくな
っていた。
The carbon material, which is a conduction aid, and the positive electrode active material are in contact with each other at a point or a surface. However, due to repeated expansion and contraction of the positive electrode active material itself due to charging and discharging, the contact area between the conduction aid and the positive electrode active material is increased. It will decrease and the continuity will gradually disappear. Therefore, it has been impossible to make full use of the ability of the positive electrode active material.

【0004】これを解決する方法としてたとえば、特開
平−105459号公報において、LiMn24にグラファイ
トを導電助剤として使用し、LiMn24とグラファイ
トの合計重量において、グラファイトの割合を8から2
2重量%とすることにより、充放電サイクル特性が向上
することが開示されている。
As a method for solving this problem, for example, in Japanese Unexamined Patent Publication (Kokai) No. 105459/1998, LiMn 2 O 4 is used with graphite as a conductive auxiliary agent, and the ratio of graphite to the total weight of LiMn 2 O 4 and graphite is from 8 to 8. Two
It is disclosed that the charge / discharge cycle characteristics are improved by setting the content to 2% by weight.

【0005】しかしながら、この方法では、サイクル特
性は向上しても、高効率放電においての特性は、グラフ
ァイトをより多く使用しなければ、十分ではなく、グラ
ファイト量が増えれば電池の活物質充填密度が下がると
いう欠点があり、高容量,高出力の電池を実現するため
には十分とはいえない。
However, according to this method, even if the cycle characteristics are improved, the characteristics in high-efficiency discharge are not sufficient unless more graphite is used. If the amount of graphite increases, the packing density of the active material of the battery increases. It has the drawback of lowering, and is not sufficient to realize a high-capacity, high-power battery.

【0006】この理由は以下のように考えられる。グラ
ファイトが粒子同士の接触により導電経路を作るため、
材料そのものには導電ネットワークがないために高い集
電性を得るためには多くの粒子を必要とすることが原因
である。グラファイトを導電剤に使用した電極では、高
効率の放電をした場合、粒子の量が少ないために、活物
質との接触点が少なく、集電性が不十分で、放電容量が
低下する。
The reason for this is considered as follows. Since graphite creates a conductive path by contact between particles,
This is because the material itself does not have a conductive network, and thus many particles are required to obtain high current collecting property. In an electrode using graphite as a conductive agent, when discharged with high efficiency, the amount of particles is small, so that the number of contact points with the active material is small, the current collecting property is insufficient, and the discharge capacity is reduced.

【0007】また、サイクル特性向上のために、フタル
酸ジブチル(DBP)吸油量が50ml/100g〜3
00ml/100g未満のカーボンブラックを使用する
ことが特開平7−296794 号に提案されている。これは吸
油量が大きいことを利用して電池内で電解液を浸みこま
せ、電極が膨潤することを利用して、電池内でも、電極
間の巻き緩みによる加圧不足を解消することによって、
充放電サイクル特性の向上がはかれると提案されてい
る。
In order to improve the cycle characteristics, the dibutyl phthalate (DBP) oil absorption is 50 ml / 100 g to 3
It has been proposed in JP-A 7-296794 to use less than 00 ml / 100 g of carbon black. This is because the large amount of oil absorption is used to soak the electrolyte solution in the battery and the swelling of the electrodes is used to eliminate the insufficient pressurization due to loose winding between the electrodes even in the battery.
It has been proposed that the charge / discharge cycle characteristics be improved.

【0008】しかしながら、実際に、吸油量が多い炭素
材料,カーボンブラックを使用すると、吸油量が大きい
ため、電極塗工時のスラリー調製が難しく、また、結着
剤も多量に吸液するために粒子間の結合を維持して機械
的強度を保った正極を作製するのが難しい。
However, in practice, when a carbon material or carbon black having a large oil absorption is used, the oil absorption is large, so that it is difficult to prepare a slurry during electrode coating, and a large amount of a binder is also absorbed. It is difficult to manufacture a positive electrode which maintains the mechanical strength while maintaining the bond between particles.

【0009】そのため、結着剤を増加する必要があり、
結果的に正極活物質の充填密度が低下するという欠点が
ある。
Therefore, it is necessary to increase the amount of binder,
As a result, there is a drawback that the packing density of the positive electrode active material decreases.

【0010】さらにカーボンブラック系は嵩密度が大き
いため高電極密度にすることが難しく、電極密度を高く
するためにはプレス圧を高くしなければならないが、高
電極密度を得るためにプレス圧を高くすると基体と合剤
が剥離する問題が生じてくる。このため電池の体積エネ
ルギー密度を上げることが難しかった。さらに、長期の
サイクルでは電極の機械的強度が不十分のため、集電体
と合剤が剥離し、サイクル特性に問題があった。
Further, since carbon black has a large bulk density, it is difficult to obtain a high electrode density. To increase the electrode density, it is necessary to increase the pressing pressure. However, in order to obtain a high electrode density, the pressing pressure is increased. If it is increased, the problem that the substrate and the mixture are separated occurs. Therefore, it is difficult to increase the volumetric energy density of the battery. Furthermore, since the mechanical strength of the electrode was insufficient in a long-term cycle, the current collector and the mixture were peeled off, and there was a problem in cycle characteristics.

【0011】[0011]

【発明が解決しようとする課題】本発明の目的は、正極
の電極内での導電性、および電極強度を向上させ、充放
電サイクル特性、高レートでの出力特性に優れたリチウ
ム二次電池を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a lithium secondary battery having improved positive electrode conductivity and electrode strength, and excellent charge / discharge cycle characteristics and high rate output characteristics. To provide.

【0012】[0012]

【課題を解決するための手段】前述の課題を解決するた
めに以下に述べる技術的手段を採用することにより、本
発明を完成するに至った。
The present invention has been completed by adopting the following technical means in order to solve the above-mentioned problems.

【0013】本発明によるリチウム二次電池の特徴は、
正極,負極,非水電解液を備え、リチウムイオン挿入脱
離反応を利用するリチウム二次電池において、正極合剤
が、正極活物質,導電助剤、および結着剤より構成さ
れ、該導電助剤は、炭素材料であり、繊維状炭素材料と
粒状炭素により構成され、該導電助剤全体を100重量
%としたとき、該繊維状炭素の割合が1〜20重量%、
該粒状炭素が99〜80重量%で構成されていることに
ある。繊維状炭素を加えたことで、電極の膨張収縮に対
する体積のストレスの緩和が可能になり、構造の維持を
容易にする。また粒状炭素を加えたことにより、活物質
との接触点が増加し低抵抗となる。繊維状炭素を粒状炭
素よりも少ない重量比で混合したことにより、膨張収縮
に伴う電極の導電性の低下を抑制することが可能にな
る。
The features of the lithium secondary battery according to the present invention are:
In a lithium secondary battery including a positive electrode, a negative electrode and a non-aqueous electrolyte solution and utilizing a lithium ion insertion / desorption reaction, a positive electrode mixture is composed of a positive electrode active material, a conductive auxiliary agent, and a binder, The agent is a carbon material, and is composed of a fibrous carbon material and granular carbon, and the ratio of the fibrous carbon is 1 to 20% by weight, when the total amount of the conductive additive is 100% by weight.
The granular carbon is composed of 99 to 80% by weight. By adding the fibrous carbon, it becomes possible to relieve the volume stress against the expansion and contraction of the electrode and facilitate the maintenance of the structure. In addition, the addition of granular carbon increases the number of contact points with the active material, resulting in low resistance. By mixing the fibrous carbon in a weight ratio smaller than that of the granular carbon, it becomes possible to suppress the decrease in conductivity of the electrode due to expansion and contraction.

【0014】また、本発明によるリチウム二次電池の他
の特徴は、正極,負極,非水電解液を備え、リチウムイ
オン挿入脱離反応を利用するリチウム二次電池におい
て、正極合剤が、正極活物質,導電助剤、および結着剤
より構成され、該導電助剤は、炭素材料であり、繊維状
炭素材料と粒状炭素を含み、粒状炭素は、結晶性の炭素
と、非晶質炭素を含み、該繊維状炭素の割合が1〜20
重量%、該粒状炭素が99〜80重量%で構成されてお
り、かつ、粒状炭素中の結晶性炭素と非晶質炭素の割合
が、粒状炭素を100重量%として、該結晶性炭素が9
0〜60重量%、該非晶質炭素10〜40%で構成され
ているところにある。
Another feature of the lithium secondary battery according to the present invention is that the lithium secondary battery comprises a positive electrode, a negative electrode and a non-aqueous electrolyte, and utilizes a lithium ion insertion / desorption reaction. It is composed of an active material, a conductive auxiliary agent, and a binder, and the conductive auxiliary agent is a carbon material and includes a fibrous carbon material and granular carbon, and the granular carbon is crystalline carbon and amorphous carbon. And the ratio of the fibrous carbon is 1 to 20
%, The granular carbon is composed of 99 to 80% by weight, and the ratio of crystalline carbon to amorphous carbon in the granular carbon is 9% by weight with the granular carbon being 100% by weight.
It is composed of 0 to 60% by weight and 10 to 40% of the amorphous carbon.

【0015】さらに別の特徴は、該正極の導電助剤の繊
維状炭素は、繊維径に対する長さのアスペクト比(以下
アスペクト比と記載する)が20〜100000であ
り、繊維径は0.001〜2μm であること、該正極の
導電助剤の、結晶性炭素の平均粒径と、非晶質炭素の平
均粒径の比が、非晶質炭素の平均粒径を1とすると、非
晶質炭素のそれが、0.004以上0.05以下である点
にある。
Still another characteristic is that the fibrous carbon of the conductive additive of the positive electrode has an aspect ratio of length to fiber diameter (hereinafter referred to as aspect ratio) of 20 to 100,000 and a fiber diameter of 0.001. ˜2 μm, the ratio of the average particle size of crystalline carbon to the average particle size of amorphous carbon in the conductive additive of the positive electrode is amorphous when the average particle size of amorphous carbon is 1. The quality carbon is in the range of 0.004 to 0.05.

【0016】繊維状炭素は、黒鉛と比較すると長い導電
経路を持っているが、繊維径が5μm程度以上になると
効率よく活物質表面に接することは難しく、活物質に充
分に電子が供給されないため高効率の放電が難しい。
Fibrous carbon has a longer conductive path than graphite, but if the fiber diameter is about 5 μm or more, it is difficult to efficiently contact the surface of the active material, and electrons are not sufficiently supplied to the active material. High efficiency discharge is difficult.

【0017】そのため、本発明では、繊維径が細く、か
つ電極内に充分な導電経路を作成できる長さが望まし
い。繊維状炭素は、電極内での導電パスを形成し、繊維
径が0.001〜2μm でありその長さが20μm程度
と、ある程度長さがある材料が電極の維持を容易にする
ことができる。
Therefore, in the present invention, it is desirable that the fiber diameter is small and the length is such that a sufficient conductive path can be formed in the electrode. The fibrous carbon forms a conductive path in the electrode, and the material having a fiber diameter of 0.001 to 2 μm and a length of about 20 μm can easily maintain the electrode. .

【0018】そして、炭素繊維と混合する粒状炭素とし
て、粒状炭素中の黒鉛に代表される結晶性炭素を使用す
る。これにより電極密度が上がり、平均粒径が粒径が1
μm以下の細かい非晶質のカーボンブラック系の炭素を
混合することで、結晶性炭素の接触点の不足を補い、電
極内の導電性をあげるとともに捕液性が向上する。
As the granular carbon mixed with the carbon fiber, crystalline carbon represented by graphite in the granular carbon is used. This increases the electrode density, and the average particle size is 1
By mixing fine amorphous carbon black carbon having a size of μm or less, the lack of contact points of crystalline carbon is compensated for, the conductivity in the electrode is increased, and the liquid collecting property is improved.

【0019】これらの混合により、電極密度を向上させ
ることができ、また、活物質充填量も増やすことが可能
となる。そのため、高体積エネルギー密度で、サイクル
特性,高率放電特性とも優れた電池が、実現できる。
By mixing these, the electrode density can be improved, and the active material filling amount can be increased. Therefore, a battery having a high volume energy density and excellent cycle characteristics and high rate discharge characteristics can be realized.

【0020】本発明は、リチウム二次電池に関し、電極
の導電助剤を導電助剤全体に対し、繊維状炭素1〜20
%と、粒状炭素を99〜80%混合し、電極を作製した
電池が、電極の剥離の問題も少なく、長寿命で、高体積
エネルギー密度で、またさらに、粒状炭素全体の10〜
40%を非晶質炭素、残りの90〜60%を黒鉛系炭素
にした電極を使用した電池が、より高性能との知見によ
るものである。
The present invention relates to a lithium secondary battery, wherein the conductive auxiliary agent of the electrode is 1 to 20 carbon fibers based on the whole conductive auxiliary agent.
%, And 99% to 80% of granular carbon are mixed to form an electrode, the battery has less problems of peeling of the electrode, has a long life, has a high volume energy density, and further has 10% of the entire granular carbon.
A battery using an electrode in which 40% is amorphous carbon and the remaining 90 to 60% is graphite carbon is based on the finding of higher performance.

【0021】[0021]

【発明の実施の形態】以下本発明の実施の形態について
説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.

【0022】まず、当発明者らが得た知見のまとめとし
ての本発明によるリチウム二次電池の特徴について記述
して、実施の形態の概要について説明する。なお、知見
として得られた具体的な実施例については後述する。
First, the features of the lithium secondary battery according to the present invention will be described as a summary of the findings obtained by the present inventors, and the outline of the embodiment will be described. Specific examples obtained as knowledge will be described later.

【0023】上記目的を達成するための本発明によるリ
チウム二次電池は、正極,負極および有機電解液から構
成され、リチウムイオン挿入脱離反応を利用する二次電
池において、正極、あるいは負極に加えられる導電助剤
を繊維状炭素と、粒状の結晶性炭素および/または非晶
質炭素を混合するものである。
The lithium secondary battery according to the present invention for achieving the above object is composed of a positive electrode, a negative electrode and an organic electrolytic solution. In a secondary battery utilizing a lithium ion insertion / desorption reaction, a positive electrode or a negative electrode is added. The conductive additive used is a mixture of fibrous carbon, granular crystalline carbon and / or amorphous carbon.

【0024】正極活物質としては、遷移金属酸化物,遷
移金属硫化物,ポリアニリン系の有機化合物、その他ど
のような活物質を用いても実現可能であるが特に好まし
くはLixNi1-yy2 ,Lix1-yCoy2 ,Li
xMn1-yy2(0<x≦1.3 ,0≦y≦1,0≦z
<2,M:Al,Fe,Cu,Co,Mg,Ca,V,
Ni,Ag,Sn,n第二遷移金属元素のうち少なくと
も1種以上),LiMn24,Li4Mn512等の含リ
チウムマンガン酸化物あるいはLixMn2-yy
4-z(0<x≦1.3,0≦y<2,0≦z<2,M:A
l,Fe,Cu,Co,Mg,Ca,V,Ni,Ag,
Sn、第二遷移金属元素の少なくとも1種以上)の化学
式で示される含リチウム酸化物である。
The positive electrode active material can be realized by using a transition metal oxide, a transition metal sulfide, a polyaniline type organic compound, or any other active material, but Li x Ni 1-y M is particularly preferable. y O 2 , Li x M 1-y Co y O 2 , Li
x Mn 1-y M y O 2 (0 <x ≦ 1.3, 0 ≦ y ≦ 1,0 ≦ z
<2, M: Al, Fe, Cu, Co, Mg, Ca, V,
Ni, Ag, Sn, at least one of n second transition metal elements), lithium-containing manganese oxide such as LiMn 2 O 4 , Li 4 Mn 5 O 12 or Li x Mn 2- y My O
4-z (0 <x ≦ 1.3, 0 ≦ y <2, 0 ≦ z <2, M: A
l, Fe, Cu, Co, Mg, Ca, V, Ni, Ag,
Sn, a lithium-containing oxide represented by the chemical formula of at least one kind of a second transition metal element).

【0025】一方、負極活物質としては、金属リチウ
ム,リチウム合金(例えば、LiAl,LiPb,LiS
n,LiBi,LiCd等),リチウムイオンをドーピ
ングした導電性高分子(例えば、ポリアセチレンやポリ
ピロール等),リチウムイオンを結晶中に混入した層間
化合物(例えばTiS2 ,MoS2 等の層間にリチウム
を含んだもの)、あるいはリチウムをドープ,脱ドープ
可能な炭素質材料、あるいは、シリサイドのような金属
間化合物、あるいは、金属酸化物、あるいは、リチウム
を吸蔵,放出可能なあらゆる材料が使用可能である。
On the other hand, examples of the negative electrode active material include metallic lithium and lithium alloys (eg, LiAl, LiPb, LiS).
n, LiBi, LiCd, etc.), a conductive polymer doped with lithium ions (eg, polyacetylene, polypyrrole, etc.), an intercalation compound with lithium ions mixed in the crystal (eg, TiS 2 , MoS 2, etc., containing lithium between layers). However, a carbonaceous material that can be doped or dedoped with lithium, an intermetallic compound such as silicide, a metal oxide, or any material that can store and release lithium can be used.

【0026】また、電解液には、リチウム塩を電解質と
して、この電解質を有機溶剤に溶解させた非プロトン性
有機電解液が使用される。ここで有機溶剤としては、エ
ステル類,エーテル類,3置換−2−オキサゾリジノン
類及びこれらの2種以上の混合溶剤等が使用される。具
体的に例示するならば、エステル類としては、アルキレ
ンカーボネート(エチレンカーボネート,プロピレンカ
ーボネート,γ−ブチロラクトン,2−メチル−γブチ
ロラクトン等)等あるいは、鎖状のジメチルカーボネー
ト,ジエチルカーボネート,エチルメチルカーボネート
等である。
As the electrolytic solution, an aprotic organic electrolytic solution in which a lithium salt is used as an electrolyte and the electrolyte is dissolved in an organic solvent is used. Here, as the organic solvent, esters, ethers, 3-substituted-2-oxazolidinones, and a mixed solvent of two or more of these are used. Specific examples include esters such as alkylene carbonates (ethylene carbonate, propylene carbonate, γ-butyrolactone, 2-methyl-γ-butyrolactone, etc.), chain dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, etc. Is.

【0027】エーテル類としては、ジエチルエーテル,
ジメトキシエタン,ジエトキシエタン,環状エーテル、
例えば5員環を有するエーテルとしてはテトラヒドロフ
ラン及びその置換体,ジオキソラン等、6員環を有する
エーテルとしては、1,4−ジオキソラン,ピラン,ジ
ヒドロピラン,テトラヒドロピラン等である。電解質と
しては過塩素酸リチウム,ホウフッ化リチウム,塩化ア
ルミン酸リチウム,ハロゲン化リチウム,トリフルオロ
メタンスルホン酸リチウム,LiPF6 ,LiAs
6 ,LiB(C65)4 が使用可能であり、中でもフッ
化燐リチウム,ホウフッ化リチウム,過塩素酸リチウム
が好ましい。
As the ethers, diethyl ether,
Dimethoxyethane, diethoxyethane, cyclic ether,
For example, the ether having a 5-membered ring is tetrahydrofuran and its substitution product, dioxolane and the like, and the ether having a 6-membered ring is 1,4-dioxolane, pyran, dihydropyran, tetrahydropyran and the like. As the electrolyte, lithium perchlorate, lithium borofluoride, lithium chloroaluminate, lithium halide, lithium trifluoromethanesulfonate, LiPF 6 , LiAs
F 6 and LiB (C 6 H 5 ) 4 can be used, and among these, lithium phosphorus fluoride, lithium borofluoride, and lithium perchlorate are preferable.

【0028】しかしながら、リチウム塩を支持電解質と
した、有機電解液すべてが使用可能であり上記の例示に
限定されない。
However, all organic electrolytic solutions using a lithium salt as a supporting electrolyte can be used and are not limited to the above examples.

【0029】正極の導電助剤として、繊維状の炭素材料
と粒状の炭素材料を混合し、その粒状の炭素材料は、黒
鉛粒子と、非晶質炭素材料とを混合することにより、電
極の活物質の割合を90重量%以上にし、結着剤と、導
電助剤の重量の割合を減らして、最適化することによ
り、高体積エネルギー密度で、高レート特性,長寿命の
電池を実現できる。
As a conductive additive for the positive electrode, a fibrous carbon material and a granular carbon material are mixed, and the granular carbon material is mixed with graphite particles and an amorphous carbon material to activate the electrode. By optimizing the proportion of the substance to 90% by weight or more and reducing the proportion of the weight of the binder and the conductive assistant to optimize, a battery having high volume energy density, high rate characteristics and long life can be realized.

【0030】繊維状炭素材料の欠点は、前述したよう
に、活物質との接触点の少なさが問題であり単独では電
極内の添加量を増加させる必要がある。また黒鉛に比較
すると、繊維状の形状のために黒鉛のようなつぶれが無
く、電極密度の増加が困難である。また、気相合成炭素
繊維などに代表される炭素繊維は合成コストが他の炭素
材料に比べて高価であるため大量に使用することは電池
のコストを上げることになる。
As described above, the drawback of the fibrous carbon material is that the number of contact points with the active material is small, and it is necessary to increase the amount of addition in the electrode by itself. Further, compared with graphite, since it has a fibrous shape, there is no collapse like graphite, and it is difficult to increase the electrode density. In addition, since carbon fibers represented by vapor-phase synthetic carbon fibers and the like have a higher synthesis cost than other carbon materials, the use of a large amount increases the cost of the battery.

【0031】一方、繊維状炭素材料の長所は電極内での
導電パスを形成し、電極の膨張収縮に対する体積のスト
レスの緩和を可能とし、構造の維持を容易にすることで
ある。また、比表面積が小さくスラリー調製が容易であ
るという利点がある。
On the other hand, the advantage of the fibrous carbon material is that it forms a conductive path in the electrode, enables the relaxation of the volume stress due to the expansion and contraction of the electrode, and facilitates the maintenance of the structure. Further, there is an advantage that the specific surface area is small and the slurry can be easily prepared.

【0032】黒鉛材料を正極の導電助剤に使用する場合
は、平均粒径5μm以下、比表面積は10m2/g 以上
のものを用いると、例えば2C程度の大きな電流を通電
した時に、抵抗が大きく容量特性が劣る問題が生じる。
しかし、吸油量は小さく、スラリー調製が容易である。
また、電極をプレスした場合、黒鉛は配向しやすいた
め、容易に高電極密度を得ることができ、電池内に多量
の活物質を充填できるため電池のエネルギー密度の向上
に有効である。
When a graphite material is used as the conductive additive for the positive electrode, if the average particle size is 5 μm or less and the specific surface area is 10 m 2 / g or more, the resistance is increased when a large current of about 2 C is applied. There is a problem in that the capacity characteristics are large and inferior.
However, the oil absorption is small and the slurry preparation is easy.
Further, when the electrodes are pressed, graphite is easily oriented, so that a high electrode density can be easily obtained, and a large amount of active material can be filled in the battery, which is effective in improving the energy density of the battery.

【0033】カーボンブラック系のケッチェンブラック
やアセチレンブラックは吸油量が大きくスラリー調製が
難しい他、嵩密度が低いため、高い合剤密度が得にく
く、また、結着剤を吸着するために電極基体との機械的
接着が弱いという問題がある。しかしながら、これらは
電子伝導性のよいストラクチャー構造が発達しており、
また平均粒径が0.1μm 以下と小さいため、電極中で
の活物質との接触点も多く、集電性が高いため、レート
特性が非常によい。さらにサイクル特性もその電極内に
電解液を十分捕液できるために良いと考えられる。
Carbon black-based Ketjen black and acetylene black have a large oil absorption amount, making it difficult to prepare a slurry and having a low bulk density, making it difficult to obtain a high mixture density and also adsorbing a binder to form an electrode substrate. There is a problem of weak mechanical adhesion with. However, these have a well-developed structure with good electron conductivity,
Moreover, since the average particle size is as small as 0.1 μm or less, there are many contact points with the active material in the electrode, and the current collecting property is high, so that the rate characteristics are very good. Furthermore, it is considered that the cycle characteristics are good because the electrolyte can be sufficiently captured in the electrode.

【0034】本発明では、電極の導電助剤の構成を以下
のようにする。繊維径が、0.001 〜2μmで、アスペク
ト比が200より大きい炭素繊維を、炭素材料全体の1
〜20重量%加えることにより、電極内の構造の維持を
容易にし、平均粒径5μm以下の粒状炭素を99〜80
重量%加えて、導電助剤と正極活物質との接触点を増や
す。また、導電助剤中に含まれる粒状炭素中、粒径0.
5〜5μm の黒鉛を60〜90重量%とし、電極密度
を上げ、さらに粒径80nm以下のカーボンブラック系
のケッチェンブラック,アセチレンブラック等の非晶質
炭素を粒状炭素全体の半量以下、好ましくは10〜40
重量%加えることにより、活物質との接触点を増やし導
電ネットワークを形成し、実効的に高性能な電極を実現
した。
In the present invention, the constitution of the conductive auxiliary agent of the electrode is as follows. Carbon fibers with a fiber diameter of 0.001 to 2 μm and an aspect ratio of more than 200 are
Addition of ~ 20% by weight makes it easy to maintain the structure in the electrode and 99-80% of granular carbon having an average particle size of 5 μm or less is added.
Add wt% to increase the contact points between the conductive additive and the positive electrode active material. In addition, the particle size of the granular carbon contained in the conductive additive is 0.1.
Graphite having a particle size of 5 to 5 μm is used in an amount of 60 to 90% by weight to increase the electrode density, and further, amorphous carbon such as carbon black-based Ketjen black or acetylene black having a particle size of 80 nm or less is less than half of the total amount of granular carbon, preferably 10-40
By adding the weight%, the contact points with the active material were increased to form a conductive network, and an electrode with high performance was realized effectively.

【0035】炭素繊維を加えたことで、電極の膨張収縮
に対する体積のストレスの緩和が可能になる。またカー
ボンブラックを加えたことにより、捕液性も高くなり、
抵抗が下がる。ここで、非晶質炭素であるカーボンブラ
ック系の炭素材料の粒径が、黒鉛の粒径に対し、0.0
04以上0.05以下の比であると、正極活物質と黒
鉛、あるいは黒鉛同士、繊維状炭素材料とこれらが十分
に接触できていない隙間に効率よく入り込むことが可能
で、接触点を増やし、より導電性の高い電極を実現でき
る。これら炭素材料を混合し、導電助剤として使用する
ことにより、高密度の電極を得ることが可能になり、活
物質充填量を増加させることが可能となる。そのため、
高体積エネルギー密度の電池が実現できる。
By adding the carbon fiber, it becomes possible to relieve the volume stress against the expansion and contraction of the electrode. In addition, the addition of carbon black also improves the liquid catching property,
The resistance drops. Here, the particle size of the carbon black-based carbon material that is amorphous carbon is 0.0 with respect to the particle size of graphite.
When the ratio is 04 or more and 0.05 or less, it is possible to efficiently enter the positive electrode active material and the graphite, or the graphites, or the fibrous carbon material and the gap where these cannot be sufficiently contacted, increasing the number of contact points, An electrode with higher conductivity can be realized. By mixing these carbon materials and using them as a conductive additive, it is possible to obtain a high density electrode and increase the amount of the active material filled. for that reason,
A battery with high volume energy density can be realized.

【0036】更に、このように導電助剤を複合化するこ
とにより、サイクル特性、特に、放電速度をあげた場合
の容量特性の向上を実現し、かつ長寿命であるという相
乗効果が発現した。
Further, by compounding the conductive auxiliary agent in this way, the cycle characteristics, particularly the capacity characteristics when the discharge rate is increased, are realized, and the synergistic effect of a long life is exhibited.

【0037】本発明の導電助剤に使用できる炭素繊維
は、繊維径1〜20μmの気相合成炭素繊維,繊維径1
〜50nmのナノチューブ,ピッチ系繊維,PAN系繊
維,メソフェーズピッチ系の繊維等が使用可能である
が、その引っ張り強度と、抵抗値から好ましくは気相合
成炭素繊維、あるいはナノチューブが望ましい。炭素質
と黒鉛質では、黒鉛質の方が抵抗値が低く、密度も大き
く、電極密度を向上させる効果がより大きく、より好ま
しい。
The carbon fibers which can be used in the conductive additive of the present invention are vapor phase synthetic carbon fibers having a fiber diameter of 1 to 20 μm, and a fiber diameter of 1
˜50 nm nanotubes, pitch-based fibers, PAN-based fibers, mesophase pitch-based fibers and the like can be used, but vapor phase synthetic carbon fibers or nanotubes are preferable in view of their tensile strength and resistance. Among the carbonaceous materials and the graphite materials, the graphite materials have a lower resistance value, a larger density and a greater effect of improving the electrode density, and are more preferable.

【0038】また、本発明に用いる結晶性炭素は、短軸
に対する長軸のアスペクト比が1以上5以下を主とし
た、平均粒径1〜5μmの人造黒鉛,天然黒鉛などで、
BET法による比表面積が10m2/g 以上300m2
/g 以下のものが望ましく、また、灰分が少なく、L
c,Laとも240Å以上のものが好ましい。
The crystalline carbon used in the present invention is an artificial graphite or natural graphite having an average particle size of 1 to 5 μm, mainly having an aspect ratio of the major axis to the minor axis of 1 or more and 5 or less.
Specific surface area by BET method is 10 m 2 / g or more 300 m 2
/ G or less is desirable, and the ash content is low, and L
It is preferable that both c and La are 240 Å or more.

【0039】粒子形状は、鱗片状でも、塊状でも、異方
性があってもよい。非晶質の炭素材料は、カーボンブラ
ックは、種類や製造履歴に制約はなく、ファーネスブラ
ック,チャンネルブラック,サーマルブラック,アセチ
レンブラック,ケッチェンブラック等、各種のものを適
用することができる。好ましくは、ケッチェンブラック
のように中空シェル構造を有するもの、あるいはストラ
クチャー構造の発達したアセチレンブラックがよい。最
も望ましくは、電極密度が上がる系で行うのが望まし
い。
The particle shape may be scale-like, lump-like, or anisotropic. As the amorphous carbon material, carbon black is not limited in type and production history, and various types such as furnace black, channel black, thermal black, acetylene black, and Ketjen black can be applied. Preferable are those having a hollow shell structure such as Ketjen black or acetylene black having a developed structure structure. Most preferably, it is desirable to use a system in which the electrode density increases.

【0040】本発明の正極の構成は、導電助剤として炭
素繊維,人造黒鉛,カーボンブラックを混合したものを
使用し、リチウム含有遷移金属酸化物である正極活物質
と混合し、結着剤とで正極を作製したものである。この
構成により正極活物質と導電助剤の接触面積が従来より
も大きくなるため、電極内の抵抗が減少し、充放電時の
過電圧が小さくなるため、容量特性が向上する。
In the constitution of the positive electrode of the present invention, a mixture of carbon fiber, artificial graphite and carbon black is used as a conductive additive, and it is mixed with a positive electrode active material which is a lithium-containing transition metal oxide to form a binder. The positive electrode was produced in. With this configuration, the contact area between the positive electrode active material and the conductive additive is larger than in the conventional case, the resistance in the electrode is reduced, and the overvoltage during charging / discharging is reduced, so that the capacity characteristics are improved.

【0041】さらに、従来のように単に粒状の炭素を導
電助剤として正極活物質と混合した場合は、充放電に伴
う正極活物質の格子の膨張収縮によって正極活物質と導
電助剤との間の剥離が徐々に進行し、正極活物質への充
放電が円滑に行われなくなる問題があったが、本発明の
導電助剤を用いた場合、正極活物質と繊維状の炭素と、
粒状の炭素が共存していることにより正極活物質と導電
助剤との接触が良好に保たれるため、サイクルに伴う正
極の劣化が少ない電池が実現できる。
Furthermore, when granular carbon is simply mixed with the positive electrode active material as a conduction aid as in the conventional case, the expansion and contraction of the lattice of the positive electrode active material accompanying charge and discharge causes a gap between the positive electrode active material and the conduction aid. Peeling gradually progressed, there was a problem that charge and discharge to the positive electrode active material is not performed smoothly, when using the conductive additive of the present invention, the positive electrode active material and fibrous carbon,
Since the granular carbon coexists, the positive electrode active material and the conductive additive are kept in good contact with each other, so that a battery with less deterioration of the positive electrode due to cycling can be realized.

【0042】本発明の導電助剤を用いた電極によって、
電極崩壊の抑制,電子伝導性の向上が実現し、サイクル
特性の向上、出力特性の向上が達成できる。
By the electrode using the conductive additive of the present invention,
Suppression of electrode collapse and improvement of electronic conductivity are realized, and cycle characteristics and output characteristics can be improved.

【0043】(比較例1)まず比較例について説明す
る。正極は以下のように作製した。導電助剤に平均粒径
5μmの人造黒鉛(8.7重量%)と正極活物質である平
均粒径約20μmのマンガン酸リチウム(87重量%)
に、N−メチル−2−ピロリドン(以下NMPと略記す
る)に溶解させた結着剤のPVDF(ポリフッ化ビニリ
デン)(4.3重量%)を混合し、ペースト状にした後、
厚さ20μmのAl箔に両面塗布し、80℃で3時間乾
燥した。その後、約2.0ton/cm2 の圧力で加圧成形し
た後、真空中120℃で3時間熱処理して、正極を得
た。この正極の合剤層の密度は約3.0g/cm3であっ
た。
Comparative Example 1 First, a comparative example will be described. The positive electrode was manufactured as follows. Artificial graphite having an average particle size of 5 μm (8.7% by weight) as a conductive additive and lithium manganate having an average particle size of about 20 μm (87% by weight) which is a positive electrode active material.
PVDF (polyvinylidene fluoride) (4.3% by weight), which is a binder dissolved in N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP), is mixed with the mixture to form a paste.
Both sides were applied to an Al foil having a thickness of 20 μm and dried at 80 ° C. for 3 hours. Then, after press-molding at a pressure of about 2.0 ton / cm 2 , it was heat-treated in vacuum at 120 ° C. for 3 hours to obtain a positive electrode. The density of the mixture layer of this positive electrode was about 3.0 g / cm 3 .

【0044】負極は以下に示す方法で作製した。人造黒
鉛に結着剤として、PVDF溶液を炭素材料に対してP
VDFが10重量%になるように混合し、NMP加えて
ペースト状にしたものを、厚さ23μmの銅箔の集電体
に両面塗布し、80℃で3h乾燥した。その後合剤密度
が、約1.57g/cm3になるまでロールプレスで圧延成
形した後、真空中、120℃で2h乾燥した。
The negative electrode was manufactured by the following method. As a binder to artificial graphite, PVDF solution was added to carbon material as P
The mixture was mixed so that VDF was 10% by weight, and NMP was added to form a paste, which was applied on both surfaces of a copper foil current collector having a thickness of 23 μm and dried at 80 ° C. for 3 hours. After that, the mixture was roll-formed by a roll press until the mixture density became about 1.57 g / cm 3, and then dried in vacuum at 120 ° C for 2 hours.

【0045】この正極、負極と厚さ25μmのポリエチ
レン製多孔質膜セパレータを組み合わせ図1に示すよう
に捲回して外寸法が直径14mm×47mmの電池缶に収納
した。電解液として1M−LiPF6/EC+DMC
(1:1)を用いて、その特性を評価した。
The positive electrode and the negative electrode were combined with a polyethylene porous membrane separator having a thickness of 25 μm, which was wound as shown in FIG. 1 and housed in a battery can having an outer dimension of 14 mm × 47 mm. 1M-LiPF 6 / EC + DMC as electrolyte
The characteristic was evaluated using (1: 1).

【0046】第二,第三の比較例として同様に、導電助
剤をアセチレンブラックにして、正極を作製し、その電
極密度は2.4g/cm3であった。ケッチェンブラックを
導電助剤にした場合、導電助剤が8.7重量%、結着剤
が4.3%では、電極塗工後の乾燥で剥離が生じ、電極
作製が不可能であった。そのため、ケッチェンブラック
は導電助剤を6重量%にし、結着剤を7重量%で作製し
た。その他は同様に電極を処理し、得られた電極の電極
密度は2.6g/cm3であった。
Similarly as the second and third comparative examples, a positive electrode was prepared by using acetylene black as the conductive additive, and the electrode density was 2.4 g / cm 3 . When Ketjen Black was used as the conductive additive, when the conductive additive was 8.7% by weight and the binder was 4.3%, peeling occurred due to drying after coating the electrode, making it impossible to manufacture the electrode. . Therefore, in Ketjen Black, the conductive additive was made 6 wt% and the binder was made 7 wt%. The other electrodes were treated in the same manner, and the electrode density of the obtained electrode was 2.6 g / cm 3 .

【0047】得られた正極は、黒鉛を導電助剤にしたと
きと同様、正極を除いたもの以外は全く同じ条件で作製
し、特性を評価した。
The obtained positive electrode was prepared under exactly the same conditions except that the positive electrode was removed, and the characteristics were evaluated as in the case where graphite was used as the conductive additive.

【0048】(実施例1)種々の繊維状炭素と粒状炭素
を混合した導電助剤(8.7重量%)と正極活物質のマン
ガン酸リチウム(87重量%)に、N−メチル−2−ピ
ロリドン(以下NMPと略記する)に溶解させた結着剤
のPVDF(ポリフッ化ビニリデン)(4.3重量%)を
混合し、ペースト状にした後、厚さ20μmのAl箔に
両面塗布し、80℃で3時間乾燥した。その後、約2to
n/cm2の圧力で加圧成形した後、真空中120℃で3時
間熱処理して、正極を得た。
Example 1 A conductive auxiliary agent (8.7% by weight) in which various fibrous carbons and granular carbons were mixed and lithium manganate (87% by weight) as a positive electrode active material were added to N-methyl-2-. PVDF (polyvinylidene fluoride) (4.3% by weight), which is a binder dissolved in pyrrolidone (hereinafter abbreviated as NMP), is mixed to form a paste, which is then applied on both sides of an Al foil having a thickness of 20 μm, It was dried at 80 ° C. for 3 hours. After that, about 2 to
After pressure molding at a pressure of n / cm 2 , heat treatment was performed in vacuum at 120 ° C. for 3 hours to obtain a positive electrode.

【0049】[0049]

【表1】 [Table 1]

【0050】これらの電極の炭素の混合比と合剤層の密
度を表1に示す。また、比較例1と正極以外は同様に電
池を作製した時の電池容量と、電流密度が、0.2C
で、4.2V〜3.5Vの電圧範囲で充放電試験を行った
ときの500サイクルでの放電容量維持率(nサイクル
での放電容量/初期放電容量)、放電率を3CmAで下
限電圧3.5Vまで放電したときの対0.2C放電容量維
持率(3CmA時放電容量/0.2CmA 放電容量)も
一緒に表1に比較例と共に示す。繊維状炭素と粒状炭素
とを導電助剤に複合したことにより、電極作製時の塗布
性が改善され、電池の性能も比較例に対し、向上するこ
とがわかる。
Table 1 shows the mixing ratio of carbon of these electrodes and the density of the mixture layer. Further, when a battery was prepared in the same manner as in Comparative Example 1 except for the positive electrode, the battery capacity and current density were 0.2C.
Then, when the charge / discharge test was performed in the voltage range of 4.2V to 3.5V, the discharge capacity maintenance ratio (discharge capacity in n cycles / initial discharge capacity) at 500 cycles, the discharge rate at 3 CmA, and the lower limit voltage 3 The discharge capacity retention ratio vs. 0.2 C (discharge capacity at 3 CmA / 0.2 CmA discharge capacity) when discharged to 0.5 V is also shown in Table 1 together with the comparative example. It can be seen that, by combining the fibrous carbon and the granular carbon with the conductive additive, the coatability at the time of producing the electrode is improved and the battery performance is also improved as compared with the comparative example.

【0051】(実施例2)(Example 2)

【0052】[0052]

【表2】 [Table 2]

【0053】第2の実施例として、導電助剤の繊維状炭
素を除く粒状炭素に非晶質炭素である、カーボンブラッ
ク,アセチレンブラックと、結晶性の人造黒鉛を混合
し、それぞれの比率を変え、実施例2A〜実施例2Kは
実施例1と同様に、電極を作製した。実施例2Lは、正
極活物質が90重量%、導電助剤が6.7% 、結着剤が
3.3 重量%の比率で混合した他は実施例1と同様の条
件で電極を作製した。これらの粒状炭素はアスペクト比
が1.0〜5.0の範囲の形状のものであった。繊維状炭
素は、繊維径0.2μm でアスペクト比が100以上の
ものを20重量%の割合で混合した。
As a second embodiment, carbon black, acetylene black, which is amorphous carbon, and crystalline artificial graphite are mixed with granular carbon excluding fibrous carbon which is a conductive additive, and the respective ratios are changed. In Examples 2A to 2K, electrodes were prepared in the same manner as in Example 1. In Example 2L, an electrode was prepared under the same conditions as in Example 1 except that 90% by weight of the positive electrode active material, 6.7% of the conductive auxiliary agent and 3.3% by weight of the binder were mixed. . These granular carbons had a shape with an aspect ratio in the range of 1.0 to 5.0. The fibrous carbon was a mixture of fibers having a fiber diameter of 0.2 μm and an aspect ratio of 100 or more at a ratio of 20% by weight.

【0054】これらの電極の炭素の混合比と合剤層の密
度と、正極以外は比較例1と同様に電池を作製した時の
電池容量と、電流密度が、0.2C で、4.2V〜3.5
Vの電圧範囲で充放電試験を行ったときの500サイク
ルでの放電容量維持率(nサイクルでの放電容量/初期
放電容量)、放電率を3CmAで下限電圧3.5V まで
放電したときの対0.2C放電容量維持率(3CmA時
放電容量/0.2CmA放電容量)を表2に示す。
The carbon mixing ratio of these electrodes, the density of the mixture layer, the battery capacity when a battery was prepared in the same manner as in Comparative Example 1 except for the positive electrode, and the current density was 0.2 C and 4.2 V. ~ 3.5
The discharge capacity retention rate (discharge capacity in n cycles / initial discharge capacity) at 500 cycles when the charge / discharge test was performed in the voltage range of V, the discharge rate at 3 CmA to the lower limit voltage of 3.5 V vs. Table 2 shows the 0.2 C discharge capacity retention rate (discharge capacity at 3 CmA / 0.2 CmA discharge capacity).

【0055】これらの実施例は、塗布性,接着性とも良
好で、放電容量維持率が、8割以上と高く、また、レー
ト特性も、3C放電で、80%以上の放電容量が得ら
れ、レート特性がより改善され、向上した。特に、粒状
炭素中の非晶質炭素の割合が、10%〜40%の時に高
性能が得られることがわかった。
In these examples, both the coating property and the adhesive property were good, the discharge capacity retention rate was as high as 80% or more, and the rate characteristics were 3C discharge, and a discharge capacity of 80% or more was obtained. The rate characteristics are improved and improved. In particular, it has been found that high performance is obtained when the ratio of amorphous carbon in the granular carbon is 10% to 40%.

【0056】粒状炭素に、カーボンブラックを用い、平
均粒径が1μmの人造黒鉛を使用して、電池を作製する
と、レート特性,容量密度,サイクル特性とも向上した
電池が得られることがわかった。
It has been found that when carbon black is used as the granular carbon and artificial graphite having an average particle size of 1 μm is used to manufacture a battery, a battery having improved rate characteristics, capacity density and cycle characteristics can be obtained.

【0057】(実施例3)次に本発明によるリチウム二
次電池を利用した機器の実施例について説明する。携帯
用パーソナルコンピュータ用の内蔵電源として、実施例
2に記載した電池と同様の構成で、外寸法が直径18mm
×65mmの円筒型の単電池を作製し、これを用いて組電
池を作製しバッテリパックとした。また比較のために比
較例1に示したものと同様な電池構成で、直径18mm×
65mmの円筒型の単電池を作製し、バッテリーパックを
作製した。
(Embodiment 3) Next, an embodiment of an apparatus using the lithium secondary battery according to the present invention will be described. As a built-in power supply for a portable personal computer, it has the same structure as the battery described in Example 2, and the outer dimension is 18 mm in diameter.
A × 65 mm cylindrical type single cell was produced, and an assembled battery was produced using this to prepare a battery pack. For comparison, a battery configuration similar to that shown in Comparative Example 1 was used with a diameter of 18 mm ×
A 65 mm cylindrical unit cell was prepared and a battery pack was prepared.

【0058】本発明を適用したバッテリーパックは、レ
ート特性が良く、比較例1に対し、充電時間を50%短
縮すること可能であった。また、100回充放電後の容
量維持率は、99%以上とよい特性を示した。このよう
に、本発明によるリチウム二次電池を内蔵した携帯用パ
ーソナルコンピュータは、充電の待機時間が短く、ユー
ザの使い勝手が著しく向上することがわかった。また、
バックアップ電源としても、長時間の使用が可能となり
記憶消失などのおそれが回避された。
The battery pack to which the present invention was applied had a good rate characteristic, and it was possible to shorten the charging time by 50% as compared with Comparative Example 1. In addition, the capacity retention rate after 100 times of charge and discharge showed good characteristics of 99% or more. As described above, it was found that the portable personal computer incorporating the lithium secondary battery according to the present invention has a short waiting time for charging and the usability for the user is significantly improved. Also,
Even as a backup power supply, it can be used for a long time and the possibility of memory loss is avoided.

【0059】本実施例では、携帯用パーソナルコンピュ
ータを採り上げて説明したが、本発明によるリチウム二
次電池を電源として採用する、ラジオ,コンパクトディ
スクプレーヤー,カセットレコーダー,光磁気ディスク
プレーヤー,MDプレーヤー,携帯用テレビ,携帯用電
話機,ポケットベル,PHS,ポケットコンピュータ,
ラップトップ式パーソナルコンピュータ,移動用端末,
電子手帳,携帯用電気機器,シェーバー等、携帯する機
器や、リチウム二次電池を内蔵する演算装置,記憶装置
等のバックアップ電源に用いた電子機器,ファクシミ
リ,コードレス電話機等の通信機器および冷蔵庫、エア
コンディショナー,充電式掃除機,コードレスアイロン
に代表される家庭用電子・電気機器,電気自動車,自動
二輪車,原動機付き自転車ゴルフカート,電動車椅子,
電動機補助付き自転車,屋外用非常電源等の電力貯蔵機
器等であっても、従来のものと比較し、本実施例と同様
に、性能の向上が実現できることはいうまでもない。
In this embodiment, a portable personal computer has been described as an example, but a radio, a compact disc player, a cassette recorder, a magneto-optical disc player, an MD player, a portable device which employs the lithium secondary battery according to the present invention as a power source. TV, mobile phone, pager, PHS, pocket computer,
Laptop personal computer, mobile terminal,
Electronic devices such as electronic notebooks, portable electric devices, shavers, and other portable devices, electronic devices used as backup power sources such as arithmetic units and storage devices containing lithium secondary batteries, communication devices such as facsimiles and cordless telephones, refrigerators, and air. Conditioners, rechargeable vacuum cleaners, household electronic / electric devices such as cordless irons, electric vehicles, motorcycles, bicycle golf carts with motors, electric wheelchairs,
Needless to say, even in the case of electric power storage equipment such as a motor-assisted bicycle and an outdoor emergency power source, the performance can be improved as compared with the conventional one, as in the present embodiment.

【0060】[0060]

【発明の効果】以上の説明から明らかなように、本発明
により、電極の強度と、電極内の導電性を高めかつ電極
の合剤密度を向上させて活物質の充填率を上げた電極の
作成が容易になる。これにより放電率特性も良く、充放
電サイクル特性がさらに向上した、高体積エネルギー密
度の高性能なリチウム二次電池が実現できる。
As is clear from the above description, according to the present invention, the strength of the electrode and the conductivity in the electrode are increased and the mixture density of the electrode is improved to increase the filling rate of the active material. Easy to create. As a result, it is possible to realize a high-performance lithium secondary battery with high volume energy density, which has good discharge rate characteristics and further improved charge / discharge cycle characteristics.

【0061】また、本発明によるリチウム二次電池を採
用した機器やシステムであれば、軽量で、高性能で安定
な動作が実現するという効果がある。そして本発明によ
るリチウム二次電池を用いた機器やシステムの小型化、
長寿命化等が図られる効果がある。
In addition, any device or system that employs the lithium secondary battery according to the present invention has the effect of realizing lightweight, high performance, and stable operation. And miniaturization of devices and systems using the lithium secondary battery according to the present invention,
This has the effect of extending the service life.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例の円筒型リチウム二次電池の
分解構成を示す斜視図である
FIG. 1 is a perspective view showing an exploded configuration of a cylindrical lithium secondary battery according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…正極端子、2…セパレータ、3…負極、4…正極、
5…負極端子。
1 ... Positive electrode terminal, 2 ... Separator, 3 ... Negative electrode, 4 ... Positive electrode,
5 ... Negative electrode terminal.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村中 廉 茨城県日立市大みか町七丁目1番1号 株式会社 日立製作所 日立研究所内 (56)参考文献 特開 平8−138678(JP,A) 特開 平9−27344(JP,A) 特開 平8−222206(JP,A) 特開 平7−296794(JP,A) 特開 平2−262243(JP,A) 特開 平7−211320(JP,A) 特開 平4−289658(JP,A) 特開 平4−345760(JP,A) 特開 平11−3710(JP,A) 特開 平10−312811(JP,A) 特開 平9−306502(JP,A) 特開 平8−153539(JP,A) 国際公開98/003710(WO,A1) (58)調査した分野(Int.Cl.7,DB名) H01M 4/62 H01M 4/02 H01M 10/40 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ren Muranaka 7-1, 1-1 Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi Research Laboratory (56) Reference JP-A-8-138678 (JP, A) JP-A-9-27344 (JP, A) JP-A-8-222206 (JP, A) JP-A-7-296794 (JP, A) JP-A-2-262243 (JP, A) JP-A-7-211320 (JP, A) JP 4-289658 (JP, A) JP 4-345760 (JP, A) JP 11-3710 (JP, A) JP 10-312811 (JP, A) Kaihei 9-306502 (JP, A) JP-A-8-153539 (JP, A) International Publication 98/003710 (WO, A1) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 4 / 62 H01M 4/02 H01M 10/40

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】正極,負極,非水電解液を備え、リチウム
イオン挿入脱離反応を利用するリチウム二次電池におい
て、 前記正極の合剤が、正極活物質,導電助剤、および結着
剤より構成され、 前記導電助剤は、炭素材料であり、繊維状炭素と粒状炭
素とを含み、 前記粒状炭素は、結晶性炭素と非晶質炭素とを含み、 前記導電助剤全体を100重量%としたとき、前記繊維
状炭素の割合が1〜20重量%、前記粒状炭素が99〜
80重量%で構成されており、かつ、 前記粒状炭素中の結晶性炭素と非晶質炭素の割合が、前
記粒状炭素を100重量%としたとき、前記結晶性炭素
が90〜60重量%、前記非晶質炭素10〜40重量%
で構成されていることを特徴とするリチウム二次電池。
1. A lithium secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte solution and utilizing a lithium ion insertion / elimination reaction, wherein the positive electrode mixture is a positive electrode active material, a conductive auxiliary agent, and a binder. The conductive auxiliary agent is a carbon material, and includes fibrous carbon and granular carbon, the granular carbon includes crystalline carbon and amorphous carbon, and the total amount of the conductive auxiliary agent is 100% by weight. %, The fibrous carbon content is 1 to 20% by weight, and the granular carbon content is 99 to
80% by weight, and the ratio of crystalline carbon and amorphous carbon in the granular carbon is 90 to 60% by weight when the granular carbon is 100% by weight, 10 to 40% by weight of the amorphous carbon
A lithium secondary battery, which is characterized in that
【請求項2】請求項1記載のリチウム二次電池を携帯機
器の電源に用いたことを特徴とする携帯用電子機器。
2. A portable electronic device, wherein the lithium secondary battery according to claim 1 is used as a power source of a portable device.
【請求項3】請求項1記載のリチウム二次電池をバック
アップ電源に用いたことを特徴とする電子機器。
3. An electronic device using the lithium secondary battery according to claim 1 as a backup power source.
【請求項4】請求項1記載のリチウム二次電池を電源に
用いたことを特徴とする家庭用電子・電気機器。
4. A household electronic / electrical device comprising the lithium secondary battery according to claim 1 as a power source.
【請求項5】請求項1記載のリチウム二次電池を電源に
用いたことを特徴とする走行用電動機。
5. A running electric motor comprising the lithium secondary battery according to claim 1 as a power source.
【請求項6】請求項1記載のリチウム二次電池を電力貯
蔵の電池に用いたことを特徴とする電力貯蔵装置。
6. A power storage device using the lithium secondary battery according to claim 1 as a battery for power storage.
JP34466497A 1997-12-15 1997-12-15 Lithium secondary battery Expired - Fee Related JP3493988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34466497A JP3493988B2 (en) 1997-12-15 1997-12-15 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34466497A JP3493988B2 (en) 1997-12-15 1997-12-15 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH11176446A JPH11176446A (en) 1999-07-02
JP3493988B2 true JP3493988B2 (en) 2004-02-03

Family

ID=18371032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34466497A Expired - Fee Related JP3493988B2 (en) 1997-12-15 1997-12-15 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3493988B2 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4586704B2 (en) * 1999-08-17 2010-11-24 三菱マテリアル株式会社 Resin bond grinding wheel
JP4488558B2 (en) * 1999-09-30 2010-06-23 株式会社東芝 Non-aqueous electrolyte secondary battery
JP4595145B2 (en) * 1999-10-27 2010-12-08 ソニー株式会社 Non-aqueous electrolyte battery
JP2002063937A (en) * 2000-08-17 2002-02-28 Mitsubishi Cable Ind Ltd Lithium ion secondary battery
JP5059992B2 (en) * 2000-09-06 2012-10-31 株式会社東芝 Positive electrode and non-aqueous electrolyte secondary battery
JP3744870B2 (en) 2002-03-22 2006-02-15 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP4191456B2 (en) * 2002-11-19 2008-12-03 日立マクセル株式会社 Non-aqueous secondary battery negative electrode, non-aqueous secondary battery, method for producing non-aqueous secondary battery negative electrode, and electronic device using non-aqueous secondary battery
JP4192574B2 (en) * 2002-11-28 2008-12-10 ソニー株式会社 Non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery
TWI459616B (en) * 2004-08-16 2014-11-01 Showa Denko Kk Lithium batteries with positive and the use of its lithium batteries
JP4784085B2 (en) 2004-12-10 2011-09-28 新神戸電機株式会社 Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery
JPWO2006082708A1 (en) * 2005-02-04 2008-06-26 日本電気株式会社 Positive electrode for secondary battery, method for producing the same, and secondary battery
JP4888411B2 (en) * 2008-02-13 2012-02-29 ソニー株式会社 Positive electrode and non-aqueous electrolyte battery
JP2007048692A (en) * 2005-08-12 2007-02-22 Hitachi Vehicle Energy Ltd Lithium secondary battery cathode material, cathode plate for lithium secondary battery, and lithium secondary battery using this
JP4848723B2 (en) * 2005-09-30 2011-12-28 大日本印刷株式会社 Electrode plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US8241525B2 (en) 2006-06-27 2012-08-14 Kao Corporation Method for producing composite material for positive electrode of lithium battery
CN101479867B (en) 2006-06-27 2012-09-05 花王株式会社 Composite positive electrode material for lithium ion battery and battery using the same
JP2008181850A (en) 2006-10-19 2008-08-07 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2008243529A (en) * 2007-03-27 2008-10-09 Hitachi Vehicle Energy Ltd Positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2008251479A (en) * 2007-03-30 2008-10-16 Nippon Chemicon Corp Electrode material, its manufacturing method, electrode for electrochemical element, its manufacturing method, and electrochemical element
JP5205090B2 (en) * 2008-03-19 2013-06-05 日立ビークルエナジー株式会社 Positive electrode for lithium secondary battery and lithium secondary battery using the same
JP4834030B2 (en) * 2008-04-22 2011-12-07 第一工業製薬株式会社 Positive electrode for lithium secondary battery and lithium secondary battery using the same
EP3629406B1 (en) * 2013-01-25 2024-09-18 Teijin Limited Ultra-fine fibrous carbon for non-aqueous electrolyte secondary battery, ultra-fine fibrous carbon aggregate, composite, and electrode active material layer
CN111316476A (en) 2017-10-10 2020-06-19 江西理工大学 Positive electrode composition for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP7337049B2 (en) 2018-05-08 2023-09-01 デンカ株式会社 Positive electrode composition for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP7402631B2 (en) 2018-08-27 2023-12-21 帝人株式会社 Ultrafine carbon fiber mixture, manufacturing method thereof, and carbon-based conductive aid
JP7490567B2 (en) 2018-11-28 2024-05-27 デンカ株式会社 Positive electrode composition for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP7302402B2 (en) * 2019-09-13 2023-07-04 株式会社豊田中央研究所 storage device

Also Published As

Publication number Publication date
JPH11176446A (en) 1999-07-02

Similar Documents

Publication Publication Date Title
JP3493988B2 (en) Lithium secondary battery
JP3077218B2 (en) Non-aqueous electrolyte secondary battery
US9012089B2 (en) Electric storage device
JP4623940B2 (en) Negative electrode material and secondary battery using the same
JP5360871B2 (en) Non-aqueous electrolyte lithium ion secondary battery
AU757004B2 (en) Non-aqueous electrolyte for electrochemical systems and lithium secondary battery comprising the same
KR100834053B1 (en) Cathode, and lithium secondary battery and hybrid capacitor comprising same
JP2004349164A (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2023522136A (en) Cathode piece, electrochemical device and electronic device containing the cathode piece
JP4834299B2 (en) Lithium secondary battery
JP3216661B2 (en) Non-aqueous electrolyte secondary battery
JPH087926A (en) Nonaqueous electrolytic secondary cell
JP2000268879A (en) Lithium secondary battery
JP2000285966A (en) Lithium secondary battery and its manufacture
JP3191614B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP4166295B2 (en) Non-aqueous electrolyte battery
JP3390195B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
KR100557714B1 (en) Method of Fabricating Electrode of Lithium Secondary Battery and Lithium Secondary Battery with the Electrode
JP2001052749A (en) Manufacture of lithium secondary battery
KR100473621B1 (en) Method of fabricating electrode of Lithium secondary battery and Lithium secondary battery with the electrode
JPH1050312A (en) Nonaqueous electrolyte secondary battery
JP3447187B2 (en) Non-aqueous electrolyte battery and method for manufacturing the same
JP3163642B2 (en) Non-aqueous electrolyte secondary battery
CN117976985B (en) Secondary battery and electronic device
JP3506386B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees