JP3480838B2 - 半導体装置 - Google Patents

半導体装置

Info

Publication number
JP3480838B2
JP3480838B2 JP2001004208A JP2001004208A JP3480838B2 JP 3480838 B2 JP3480838 B2 JP 3480838B2 JP 2001004208 A JP2001004208 A JP 2001004208A JP 2001004208 A JP2001004208 A JP 2001004208A JP 3480838 B2 JP3480838 B2 JP 3480838B2
Authority
JP
Japan
Prior art keywords
film
silicon
thickness
region
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001004208A
Other languages
English (en)
Other versions
JP2001244474A (ja
Inventor
保彦 竹村
広樹 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2001004208A priority Critical patent/JP3480838B2/ja
Publication of JP2001244474A publication Critical patent/JP2001244474A/ja
Application granted granted Critical
Publication of JP3480838B2 publication Critical patent/JP3480838B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、薄膜トランジスタ
(TFT)を少なくとも2つ同じ基板上に有する半導体
集積回路の構造および作製方法に関するものである。本
発明によって作製される半導体集積回路は、液晶ディス
プレーのアクティブマトリクス等に使用される。
【0002】
【従来の技術】従来、薄膜トランジスタは、薄膜半導体
領域(活性層)を島状にパターニングして、他の薄膜ト
ランジスタと分離し、さらに、ゲート絶縁膜として、C
VD法やスパッタ法によって絶縁被膜を形成し、その上
にゲート電極を形成した。
【0003】従来の方法による薄膜トランジスタを有す
る半導体集積回路の作製工程例を図2に示す。まず、基
板21上に下地膜22、シリコン膜23を形成する。そ
して、フォトレジスト等の材料の被膜24a、24bを
シリコン膜23上に選択的に形成する。被膜24a、2
4bとシリコン膜23の間には、汚染を防ぐために、酸
化珪素や窒化珪素の薄い膜を設けてもよい。(図2
(A))その後、この被膜24a、24bをマスクとし
てシリコン膜23をエッチングして、島状のシリコン領
域(活性層)25a、25bを形成するが、同時に下地
膜22も一部エッチングされる。このため、シリコン膜
の厚さに加えて、オーバーエッチxだけ段差が増加す
る。(図2(B))
【0004】その後、ゲート絶縁膜として機能する絶縁
膜26を全面に形成し、さらに、ゲート電極・配線27
n、27p、27cを形成する。この際、先の活性層の
段差が大きいとゲート電極が断線することがある。ゲー
ト電極を形成したのち、イオンドーピング、イオン注入
等の手段によって不純物を注入し、これを熱アニール、
レーザーアニール、ランプアニール等によって活性化さ
せ、不純物領域28n(n型)、28p(p型)を得
る。その後、層間絶縁物29を堆積し、これにコンタク
トホールを形成して、TFTの不純物領域に電極30
a、30b、30cを形成する。
【0005】
【発明が解決しようする課題】このような従来の方法で
は、図2(B)にyで示される下地膜のオーバーエッチ
が問題となっていた。この段差が存在するとゲート電極
が断線し、歩留りが低下した。特に下地膜にエッチング
レートの大きな膜を用いると、この段差が大きくなっ
た。量産性の観点からは、下地膜としてはプラズマCV
D法やAPCVD法によって作製される膜が好ましいの
であるが、このような膜はエッチングレートが大きくて
使用できなかった。本発明はこのような従来、一般的に
用いられてきたTFTの素子間分離の方法を見直し、歩
留りの高いTFTおよびその作製方法を提供することを
課題とする。
【0006】
【課題を解決するための手段】本発明では、シリコン膜
を分断して素子間分離をおこなうのではなく、シリコン
膜を選択的に500〜650℃で熱的に酸化することに
よって電気的な分離をおこなう。酸化されるシリコン膜
はアモルファスでも結晶性でもよい。シリコン膜の厚さ
は100〜1500Å、好ましくは1000Å以下、よ
り好ましくは500Å以下である。また、基板は、コー
ニング社7059番ガラス(無アルカリ、ホウ珪酸ガラ
ス)に代表されるような歪み温度(歪み点)が750℃
以下の各種ガラス基板とする。
【0007】重要なことは単結晶のシリコンに比較し
て、アモルファスや多結晶等の非単結晶のシリコンでは
熱酸化の酸化速度が2倍程度大きいということである。
さらに、本発明では、より酸化速度を高めるに、雰囲気
に0.1〜100%の水を添加する。これによって乾燥
雰囲気に比較して酸化速度を10程度増加させることが
できる。図5には、本発明の酸化法(水蒸気分圧100
%)によって得られる酸化珪素の厚さと時間の関係を示
したものであり、550〜600℃という低温で本発明
のシリコン膜を全面的に酸化することが示されている。
【0008】より酸化速度を向上させるには、1気圧以
上15気圧以下の加圧雰囲気での酸化が好ましい。例え
ば、10気圧の水蒸気雰囲気では、1気圧の水蒸気雰囲
気での酸化に比較して、10倍の酸化速度が得られる。
また、酸化温度を下げることもできる。図5には4気圧
での酸化速度の変化も記した。雰囲気中の水蒸気の量を
安定化させるには、いわゆるパイロジェニック酸化法を
用いればよい。これは、純粋な水素を燃焼させて水蒸気
を生成する方法で、水素の流入量を制御すれば雰囲気中
の水蒸気の濃度が決定される。
【0009】選択的に酸化をおこなうには、シリコン膜
上に窒化珪素膜もしくは酸化珪素上に窒化珪素を重ねて
多層構造とした膜等を酸化に対するマスク膜として選択
的に形成して、熱酸化雰囲気にさらせばよい。このよう
なマスク膜によって覆われた面では酸化反応が進行しな
い。
【0010】
【作用】このように本発明では、熱酸化によって酸化物
を形成するため、従来のシリコン膜のエッチングにおい
て発生したような段差が生じないので、ゲート電極の断
線が少なく、歩留りが向上する。特に、本発明において
は下地膜の影響はほとんどないので、成膜方法の制約が
なく、トータルの量産性を高めることも可能である。
【0011】
【発明の実施の形態】
【0012】
【実施例】〔実施例1〕 図1に本実施例の作製工程を
示す。図1のうち、(A)〜(D)は断面図であり、
(E)は上面から見た図を示す。まず、基板(コーニン
グ7059)を歪み点(593℃)よりも高い600〜
660℃、例えば640℃で1〜4時間、例えば1時間
アニールし、その後、0.1〜0.5℃/分、例えば
0.2℃/分で徐冷し、450〜590℃、例えば55
0℃まで温度が低下した段階で取り出した。この取り出
し温度は、この後の熱処理工程の最高温度以下であるこ
とが望ましい。このような熱処理によって、その後の熱
処理においても基板の不可逆的な収縮を抑制することが
できる。
【0013】このような処理を施した基板10を洗浄
し、スパッタリング法によって厚さ2000Åの酸化珪
素の下地膜11を形成した。そして、プラズマCVD法
によって、厚さ300〜1000Å、例えば500Åの
真性(I型)のアモルファスシリコン膜12を成膜し
た。次に連続的に厚さ500〜2000Å、例えば10
00Åの窒化珪素膜を成膜した。そして、窒化珪素膜の
みを選択的にエッチングして、酸化工程におけるマスク
膜13a、13bを形成した。(図1(A))
【0014】そして、1気圧の窒素雰囲気中、600℃
で48時間熱アニールしてシリコン膜を結晶化させた。
その後、10%の水蒸気を含む1気圧、550〜650
℃、代表的には600℃の酸素雰囲気中において、3〜
5時間放置することによって、シリコン膜のうちマスク
膜で覆われていない領域を底面まで完全に酸化させ、酸
化珪素領域14a〜14cを形成した。水蒸気の圧力の
制御は、パイロジェニック酸化法によっておこなった。
この結果、シリコン膜は領域15aと15bに分離され
た。(図1(B))
【0015】その後、マスク膜13a、13bを除去し
て、TEOS(テトラ・エトキシ・シラン、Si(OC
2 5 4 )と酸素を原料としてプラズマCVD法によ
って厚さ1200Åの酸化珪素膜16を成膜し、ゲート
絶縁膜とした。引き続いて、LPCVD法によって、厚
さ3000〜8000Å、例えば6000Åのシリコン
膜(0.01〜0.2%の燐を含む)を成膜した。そし
て、シリコン膜をパターニングして、ゲート電極17
n、17p、17cを形成した。
【0016】次に、イオンドーピング法(プラズマドー
ピング法とも言う)によって、分離されたシリコン領域
(ソース/ドレイン、チャネルを構成する)にゲート電
極をマスクとして、自己整合的にPもしくはN導電型を
付与する不純物を添加した。ドーピングガスとして、フ
ォスフィン(PH3 )およびジボラン(B2 6 )を用
い、前者の場合は、加速電圧を60〜90kV、例えば
80kV、後者の場合は、40〜80kV、例えば65
kVとした。ドース量は1×1015〜8×10 15
-2、例えば、燐を2×1015cm-2、ホウ素を5×1
15とした。ドーピングに際しては、一方の領域をフォ
トレジストで覆うことによって、それぞれの元素を選択
的にドーピングした。この結果、N型の不純物領域18
nとP型の不純物領域18pが形成され、Pチャネル型
TFT(PTFT)の領域とNチャネル型TFT(NT
FT)との領域を形成することができた。
【0017】その後、レーザー光の照射によってアニー
ルを行った。レーザー光としては、KrFエキシマレー
ザー(波長248nm、パルス幅20nsec)を用い
たが、他のレーザーであってもよい。レーザー光の照射
条件は、エネルギー密度が200〜400mJ/c
2 、例えば250mJ/cm2 とし、一か所につき2
〜10ショット、例えば2ショット照射した。このレー
ザー光の照射時に基板を200〜450℃程度に加熱す
ることによって、効果を増大せしめてもよい。(図1
(C))
【0018】続いて、厚さ6000Åの酸化珪素膜19
を層間絶縁物としてプラズマCVD法によって形成し
た。この層間絶縁物としてはポリイミドまたは酸化珪素
とポリイミドの2層膜を利用してもよい。さらにコンタ
クトホールを形成して、金属材料、例えば、窒化チタン
とアルミニウムの多層膜によってTFTの電極・配線2
0a、20b、20cを形成した。最後に、1気圧の水
素雰囲気で350℃、30分のアニールを行い、TFT
を相補型に構成した半導体回路を完成した。(図1
(D)) 図1(C)を上面から見た様子を図1(E)に示す。図
1(E)の一点鎖線の断面が図1(A)〜(D)であ
る。
【0019】〔実施例2〕 図3に本実施例の作製工程
を示す。まず、基板(コーニング7059)を歪み点
(593℃)よりも高い600〜660℃、例えば64
0℃で1〜4時間、例えば1時間アニールし、その後、
0.1〜0.5℃/分、例えば0.2℃/分で徐冷し、
450〜590℃、例えば550℃まで温度が低下した
段階で取り出した。
【0020】このような処理を施した基板31を洗浄
し、スパッタリング法によって厚さ2000Åの酸化珪
素の下地膜32を形成した。そして、プラズマCVD法
によって、厚さ300〜1000Å、例えば1000Å
の真性(I型)のアモルファスシリコン膜33を成膜し
た。次に連続的に厚さ500〜2000Å、例えば10
00Åの窒化珪素膜を成膜した。そして、窒化珪素膜の
みを選択的にエッチングして、酸化工程におけるマスク
膜34a、34bを形成した。(図3(A))
【0021】そして、1気圧の窒素雰囲気中、600℃
で48時間熱アニールしてシリコン膜を結晶化させた。
その後、100体積%の水蒸気を含む10気圧、500
〜600℃の、代表的には550℃の雰囲気中におい
て、3〜5時間放置することによって、シリコン膜のう
ちマスク膜で覆われていない領域を底面まで完全に酸化
させ、酸化珪素領域35a〜35cを形成した。この結
果、シリコン膜は領域36aと36bに分離された。
(図3(B))
【0022】その後、マスク膜34a、34bを除去し
て、再び、100%の水蒸気を含む1気圧、500〜6
00℃、代表的には550℃の雰囲気中において、3〜
5時間放置することによって、全面を酸化させた。この
工程によって、シリコン領域36a、36bの表面が酸
化され、厚さ約1000Åの酸化膜37a、37bが形
成され、シリコン領域の厚さは500Å程度になった。
酸化工程が終了した後、600℃の一酸化二窒素(N2
O)の雰囲気に基板を放置することによって、脱水処理
をおこない、熱酸化膜37a、37bをゲート絶縁膜と
した。(図3(C)) 引き続いて、LPCVD法によって、厚さ3000〜8
000Å、例えば6000Åのシリコン膜(0.01〜
0.2%の燐を含む)を成膜した。そして、シリコン膜
をパターニングして、ゲート電極38n、38p、38
cを形成した。
【0023】次に、イオンドーピング法(プラズマドー
ピング法とも言う)によって、分離されたシリコン領域
(ソース/ドレイン、チャネルを構成する)にゲート電
極をマスクとして、自己整合的にPもしくはN導電型を
付与する不純物を添加した。ドーピングガスとして、フ
ォスフィン(PH3 )およびジボラン(B2 6 )を用
い、前者の場合は、加速電圧を60〜90kV、例えば
80kV、後者の場合は、40〜80kV、例えば65
kVとした。ドース量は1×1015〜8×10 15
-2、例えば、燐を2×1015cm-2、ホウ素を5×1
15とした。ドーピングに際しては、一方の領域をフォ
トレジストで覆うことによって、それぞれの元素を選択
的にドーピングした。この結果、N型の不純物領域39
nとP型の不純物領域39pが形成され、Pチャネル型
TFT(PTFT)の領域とNチャネル型TFT(NT
FT)との領域を形成することができた。
【0024】その後、レーザー光の照射によってアニー
ルを行った。レーザー光としては、KrFエキシマレー
ザー(波長248nm、パルス幅20nsec)を用い
たが、他のレーザーであってもよい。レーザー光の照射
条件は、エネルギー密度が200〜400mJ/c
2 、例えば250mJ/cm2 とし、一か所につき2
〜10ショット、例えば2ショット照射した。このレー
ザー光の照射時に基板を200〜450℃程度に加熱す
ることによって、効果を増大せしめてもよい。(図3
(D))
【0025】続いて、厚さ6000Åの酸化珪素膜40
を層間絶縁物としてプラズマCVD法によって形成し
た。層間絶縁物としてはポリイミドまたは酸化珪素とポ
リイミドの2層膜を利用してもよい。さらにコンタクト
ホールを形成して、金属材料、例えば、窒化チタンとア
ルミニウムの多層膜によってTFTの電極・配線41
a、41b、41cを形成した。最後に、1気圧の水素
雰囲気で350℃、30分のアニールを行い、TFTを
相補型に構成した半導体回路を完成した。(図3
(E))
【0026】〔実施例3〕図4に本実施例の作製工程の
断面図を示す。まず、基板(コーニング7059)を歪
み点(593℃)よりも高い600〜660℃、例えば
640℃で1〜4時間、例えば1時間アニールし、その
後、0.1〜0.5℃/分、例えば0.2℃/分で徐冷
し、450〜590℃、例えば550℃まで温度が低下
した段階で取り出した。このような処理を施した基板4
2を洗浄し、TEOSを原料とするプラズマCVD法に
よって厚さ2000Åの酸化珪素の下地膜43を形成し
た。そして、プラズマCVD法によって、厚さ100〜
1000Å、例えば300Åの真性(I型)のアモルフ
ァスシリコン膜44を成膜した。つぎに、厚さ1000
Åの酸化珪素膜45と厚さ1000Åの窒化珪素膜46
を堆積し、これをパターニングしてマスク膜とした。
【0027】そして、スパッタ法によって、厚さ5〜2
0Å、例えば10Åのニッケル膜47を形成した。この
ニッケル膜は、極めて薄いので厳密には膜としての形状
を示さない。上記の膜厚の数字は平均的なものである。
この際には基板を150〜300℃に加熱することが好
ましかった。この工程で導入されたニッケルはアモルフ
ァスシリコン膜の結晶化を促進する触媒作用を有する。
(図4(A))
【0028】そして、1気圧の窒素雰囲気において、6
00℃で4時間、熱アニールして結晶化させた。この
際、矢印で示すように、ニッケル膜が選択的に成膜され
た領域からマスク膜で覆われた領域へと、横方向(基板
と平行な方向)に結晶成長が進行した。この結果、アモ
ルファスシリコン膜は結晶化し、結晶性シリコン膜48
となった。(図4(B))
【0029】次に、100%の水蒸気を含む10気圧、
500〜600℃、代表的には550℃の雰囲気中にお
いて、1時間放置することによって、シリコン膜のうち
マスク膜で覆われていない領域を底面まで完全に酸化さ
せ、酸化珪素領域49a、49bを形成した。(図4
(C))
【0030】その後、プラズマCVD法によって厚さ1
200Åの酸化珪素膜51を形成し、ゲート絶縁膜とし
た。引き続いて、スパッタリング法によって、厚さ60
00〜8000Å、例えば6000Åのアルミニウム
(0.01〜0.2%のスカンジウムを含む)を成膜し
た。そして、アルミニウム膜をパターニングして、ゲー
ト電極を形成した。さらに、このアルミニウムの電極の
表面を陽極酸化して、表面に酸化物層を形成した。この
陽極酸化は、酒石酸が1〜5%含まれたエチレングリコ
ール溶液中で行った。得られた酸化物層の厚さは200
0Åであった。なお、この酸化物は、後のイオンドーピ
ング工程において、オフセットゲート領域を形成する厚
さとなるので、オフセットゲート領域の長さを上記陽極
酸化工程で決めることができる。このようにしてゲート
電極部(ゲート電極とその周囲の陽極酸化物層)52
n、52p、52cを形成した。
【0031】次に、イオンドーピング法(プラズマドー
ピング法とも言う)によって、結晶シリコン領域50に
ゲート電極部をマスクとして、自己整合的にPもしくは
N導電型を付与する不純物を添加した。ドーピングガス
として、フォスフィン(PH 3 )およびジボラン(B2
6 )を用い、前者の場合は、加速電圧を60〜90k
V、例えば80kV、後者の場合は、40〜80kV、
例えば65kVとした。ドース量は1×1015〜8×1
15cm-2、例えば、燐を2×1015cm-2、ホウ素を
5×1015とした。ドーピングに際しては、一方の領域
をフォトレジストで覆うことによって、それぞれの元素
を選択的にドーピングした。この結果、N型の不純物領
域53nとP型の不純物領域53pが形成され、Pチャ
ネル型TFT(PTFT)の領域とNチャネル型TFT
(NTFT)との領域を形成することができた。
【0032】その後、レーザー光の照射によってアニー
ルを行った。レーザー光としては、KrFエキシマレー
ザー(波長248nm、パルス幅20nsec)を用い
たが、他のレーザーであってもよい。レーザー光の照射
条件は、エネルギー密度が200〜400mJ/c
2 、例えば250mJ/cm2 とし、一か所につき2
〜10ショット、例えば2ショット照射した。このレー
ザー光の照射時に基板を200〜450℃程度に加熱す
ることによって、効果を増大せしめてもよい。上述のよ
うに不純物領域とゲート電極は、陽極酸化物層の厚さy
だけオフセット状態となっている。(図4(D))
【0033】続いて、厚さ6000Åの酸化珪素膜54
を層間絶縁物としてプラズマCVD法によって形成し
た。さらにコンタクトホールを形成して、金属材料、例
えば、窒化チタンとアルミニウムの多層膜によってTF
Tの電極・配線55a、55b、55cを形成した。最
後に、1気圧の水素雰囲気で350℃、30分のアニー
ルを行い、TFTを相補型に構成した半導体回路を完成
した。(図4(E))
【0034】〔実施例4〕図6に本実施例の作製工程の
断面図を示す。本実施例は液晶ディスプレー等に使用さ
れるTFT型のアクティブマトリクス回路の作製工程で
ある。まず、基板(コーニング7059)を歪み点(5
93℃)よりも高い600〜660℃、例えば640℃
で1〜4時間、例えば1時間アニールし、その後、0.
1〜0.5℃/分、例えば0.2℃/分で徐冷し、45
0〜590℃、例えば550℃まで温度が低下した段階
で取り出した。このような処理を施した基板56を洗浄
し、TEOSを原料とするプラズマCVD法によって厚
さ2000Åの酸化珪素の下地膜57を形成した。そし
て、プラズマCVD法によって、厚さ100〜1000
Å、例えば800Åの真性(I型)のアモルファスシリ
コン膜58を成膜した。つぎに、厚さ1000Åの酸化
珪素膜59と厚さ1000Åの窒化珪素膜60を堆積
し、これをパターニングしてマスク膜とした。
【0035】そして、スパッタ法によって、厚さ5〜2
0Å、例えば10Åのニッケル膜61を形成した。この
ニッケル膜は、極めて薄いので厳密には膜としての形状
を示さない。上記の膜厚の数字は平均的なものである。
この際には基板を150〜300℃に加熱することが好
ましかった。この工程で導入されたニッケルはアモルフ
ァスシリコン膜の結晶化を促進する触媒作用を有する。
その後、イオンドーピング法によって、ホウ素イオンを
2×1013〜5×1015cm-2、例えば5×1015cm
-2のドーズ量でマスク膜60をマスクとしてシリコン膜
58に導入した。このホウ素イオンは酸化珪素界面にN
型層が生じて電流がリークすることを防ぎ、各TFTの
分離をより強化する、いわゆるチャネルストッパーの役
目を持つ。(図6(A))
【0036】そして、1気圧の窒素雰囲気において、6
00℃で4時間、熱アニールして結晶化させた。この
際、矢印で示すように、ニッケル膜が選択的に成膜され
た領域からマスク膜で覆われた領域へと、横方向(基板
と平行な方向)に結晶成長が進行した。結晶化工程が終
了した後、マスク膜60をマスクとして、シリコン膜を
エッチングし、その厚さを当初の800Åから、400
Åへと半減させた。(図6(B))
【0037】次に、10%の水蒸気を含む10気圧、5
00〜600℃、代表的には550℃の雰囲気中におい
て、3時間放置することによって、シリコン膜のうちマ
スク膜で覆われていない、薄いシリコン膜領域62を酸
化させ、酸化珪素領域63a、63bを形成した。水蒸
気の圧力の制御は、パイロジェニック酸化法によってお
こなった。酸化された部分のシリコン膜は、酸化工程に
よって約2倍の厚さの酸化珪素に変化し、この結果、シ
リコンのまま残存している領域64とその周囲の酸化珪
素領域63は同じ程度の高さとなった。(図6(C))
【0038】その後、プラズマCVD法によって厚さ1
200Åの酸化珪素膜65を形成し、ゲート絶縁膜とし
た。引き続いて、スパッタリング法によって、厚さ60
00〜8000Å、例えば6000Åのアルミニウム
(0.01〜0.2%のスカンジウムを含む)を成膜し
た。そして、アルミニウム膜をパターニングして、ゲー
ト電極を形成した。さらに、このアルミニウムの電極の
表面を陽極酸化して、表面に酸化物層を形成した。この
陽極酸化は、酒石酸が1〜5%含まれたエチレングリコ
ール溶液中で行った。得られた酸化物層の厚さは200
0Åであった。なお、この酸化物は、後のイオンドーピ
ング工程において、オフセットゲート領域を形成する厚
さとなるので、オフセットゲート領域の長さを上記陽極
酸化工程で決めることができる。このようにしてゲート
電極部(ゲート電極とその周囲の陽極酸化物層)66を
形成した。本実施例ではシリコン領域64と酸化珪素領
域63の高さがほとんど同じであるので、ゲート電極の
断線等は皆無であった。
【0039】次に、イオンドーピング法(プラズマドー
ピング法とも言う)によって、結晶シリコン領域64に
ゲート電極部をマスクとして、自己整合的にN導電型を
付与する不純物を添加した。ドーピングガスとして、フ
ォスフィン(PH3 )を用い、加速電圧を60〜90k
V、例えば80kV、ドース量は1×1015〜8×10
15cm-2、例えば、2×1015cm-2とした。この結
果、N型の不純物領域67aと67bが形成され、Nチ
ャネル型TFT(NTFT)の領域を形成することがで
きた。
【0040】その後、レーザー光の照射によってアニー
ルを行った。レーザー光としては、KrFエキシマレー
ザー(波長248nm、パルス幅20nsec)を用い
たが、他のレーザーであってもよい。レーザー光の照射
条件は、エネルギー密度が200〜400mJ/c
2 、例えば250mJ/cm2 とし、一か所につき2
〜10ショット、例えば2ショット照射した。このレー
ザー光の照射時に基板を200〜450℃程度に加熱す
ることによって、効果を増大せしめてもよい。(図6
(D))
【0041】続いて、厚さ6000Åの酸化珪素膜68
を層間絶縁物としてプラズマCVD法によって形成し
た。さらに、スパッタ法によって厚さ800ÅのITO
膜を成膜し、これをパターニングして、画素電極69と
した。そして、層間絶縁膜にコンタクトホールを形成し
て、金属材料、例えば、窒化チタンとアルミニウムの多
層膜によってTFTの電極・配線70a、70bを形成
した。最後に、1気圧の水素雰囲気で350℃、30分
のアニールを行い、TFT型のアクティブマトリクス回
路を完成した。(図6(E))
【0042】
【発明の効果】本発明によって、TFTの歩留りを向上
させた。また、本発明によって下地膜に対する制約がな
くなり、量産に適した下地膜の成膜方法を採用できるよ
うになった。このように本発明は工業上有益な発明であ
る。
【図面の簡単な説明】
【図1】 本発明のTFTの作製工程例を示す。(実
施例1参照)
【図2】 従来のTFTの作製工程例を示す。
【図3】 本発明のTFTの作製工程例を示す。(実
施例2参照)
【図4】 本発明のTFTの作製工程例を示す。(実
施例3参照)
【図5】 低温(600℃以下)での水蒸気酸化の様
子を示す。
【図6】 本発明のTFTの作製工程例を示す。(実
施例4参照)
【符号の説明】
10・・・基板 11・・・下地膜 12・・・シリコン膜 13・・・酸化工程に対するマスク膜 14・・・素子間を分離する酸化珪素 15・・・TFTの半導体領域 16・・・ゲート絶縁膜 17・・・ゲート電極 18・・・不純物領域 19・・・層間絶縁物 20・・・ソース、ドレイン電極
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 29/786 H01L 21/336 H01L 21/20 H01L 21/762

Claims (4)

    (57)【特許請求の範囲】
  1. 【請求項1】シリコンでなる半導体膜に、前記半導体膜
    の酸化物によって互いに分離されたシリコンでなる複数
    の半導体領域が設けられており、 前記半導体領域は、ソース、ドレイン、チャネルを有
    し、且つアモルファスシリコン膜にニッケルを導入する
    ことにより前記半導体膜の膜面と平行に結晶成長した結
    晶性シリコンでなり、 前記酸化物は、前記半導体膜のうち結晶成長させるため
    に前記ニッケルが導入された部分を酸化したものである
    ことを特徴とする半導体装置。
  2. 【請求項2】請求項1において、前記半導体領域シリ
    コンでなる多結晶半導体領域であることを特徴とする半
    導体装置。
  3. 【請求項3】請求項1または請求項に記載の半導体装
    置は液晶ディスプレイであることを特徴とする半導体装
    置。
  4. 【請求項4】請求項1乃至請求項3のいずれか一におい
    て、前記半導体膜は絶縁体上に形成されていることを特
    徴とする半導体装置。
JP2001004208A 2001-01-11 2001-01-11 半導体装置 Expired - Lifetime JP3480838B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001004208A JP3480838B2 (ja) 2001-01-11 2001-01-11 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001004208A JP3480838B2 (ja) 2001-01-11 2001-01-11 半導体装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP475599A Division JPH11297623A (ja) 1999-01-11 1999-01-11 半導体装置の作製方法

Publications (2)

Publication Number Publication Date
JP2001244474A JP2001244474A (ja) 2001-09-07
JP3480838B2 true JP3480838B2 (ja) 2003-12-22

Family

ID=18872430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001004208A Expired - Lifetime JP3480838B2 (ja) 2001-01-11 2001-01-11 半導体装置

Country Status (1)

Country Link
JP (1) JP3480838B2 (ja)

Also Published As

Publication number Publication date
JP2001244474A (ja) 2001-09-07

Similar Documents

Publication Publication Date Title
JPH0766424A (ja) 半導体装置およびその作製方法
KR100197780B1 (ko) 트랜지스터 및 반도체 회로 제조 방법
JPH0758339A (ja) 半導体装置およびその作製方法
JP2000174289A (ja) 半導体装置およびその作製方法
JPH07335906A (ja) 薄膜状半導体装置およびその作製方法
JPH06333951A (ja) 薄膜トランジスタおよびその作製方法
JP3369244B2 (ja) 薄膜トランジスタ
JP3190483B2 (ja) 半導体装置作製方法
JP3190482B2 (ja) 半導体装置およびその作製方法
JPH0794756A (ja) 半導体装置の作製方法
JPH07131034A (ja) 半導体装置の作製方法
JP3514891B2 (ja) 半導体装置およびその作製方法
JP3480838B2 (ja) 半導体装置
JP3480839B2 (ja) 半導体装置の作製方法
JP2753955B2 (ja) ガラス基板処理方法
JP3488361B2 (ja) 半導体装置の作製方法
JPH0799323A (ja) 半導体装置の作製方法
JPH11297623A (ja) 半導体装置の作製方法
JP3488441B2 (ja) アクティブ型液晶表示装置の作製方法
JPH06260643A (ja) 薄膜トランジスタ
JPH08316487A (ja) 薄膜半導体装置の製造方法
JP3488440B2 (ja) アクティブ型液晶表示装置の作製方法
JPH05226362A (ja) 半導体装置の製造方法
JP3535463B2 (ja) 半導体回路の作製方法
JP3408242B2 (ja) 半導体装置の作製方法

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101010

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101010

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 9