JP3469475B2 - Semiconductor cooling equipment for railway vehicles - Google Patents

Semiconductor cooling equipment for railway vehicles

Info

Publication number
JP3469475B2
JP3469475B2 JP25687998A JP25687998A JP3469475B2 JP 3469475 B2 JP3469475 B2 JP 3469475B2 JP 25687998 A JP25687998 A JP 25687998A JP 25687998 A JP25687998 A JP 25687998A JP 3469475 B2 JP3469475 B2 JP 3469475B2
Authority
JP
Japan
Prior art keywords
cooler
semiconductor
heat
cooling device
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25687998A
Other languages
Japanese (ja)
Other versions
JP2000092819A (en
Inventor
隆 橋本
和明 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25687998A priority Critical patent/JP3469475B2/en
Publication of JP2000092819A publication Critical patent/JP2000092819A/en
Application granted granted Critical
Publication of JP3469475B2 publication Critical patent/JP3469475B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20909Forced ventilation, e.g. on heat dissipaters coupled to components
    • H05K7/20918Forced ventilation, e.g. on heat dissipaters coupled to components the components being isolated from air flow, e.g. hollow heat sinks, wind tunnels or funnels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/06Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
    • B21J5/068Shaving, skiving or scarifying for forming lifted portions, e.g. slices or barbs, on the surface of the material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20936Liquid coolant with phase change
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、鉄道車両床下に設
置される半導体冷却装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor cooling device installed under the floor of a railway vehicle.

【0002】[0002]

【従来の技術】鉄道車両床下に設置される車両駆動用の
電力変換装置は、鉄道架線から入力される電力を半導体
素子のスイッチングにより変換し、車両駆動用の電動機
を制御するもので、半導体素子より発生する熱を効率良
く外気へ逃がす為、電力変換装置の構成要素として半導
体冷却装置は重要な役割をもつ。
2. Description of the Related Art An electric power converter for driving a vehicle installed under the floor of a railway vehicle converts electric power input from a railway overhead wire by switching a semiconductor element to control an electric motor for driving the vehicle. The semiconductor cooling device plays an important role as a component of the power conversion device in order to efficiently release the generated heat to the outside air.

【0003】半導体冷却装置は、半導体素子とその周辺
回路部品を収納し、冷却の手段として冷却器を有したも
ので、冷却器は半導体素子の取り付く受熱部分と装置外
部ヘ排熱を行う放熱部とから成るが、鉄道車両床下に設
置される車両駆動用では、冷却器の放熱部が車両床下の
車両側方側となるよう設置され、自然冷却により放熱部
から大気へ熱放散する方式をとることが多い。
A semiconductor cooling device accommodates a semiconductor element and its peripheral circuit parts, and has a cooler as a cooling means. The cooler is a heat receiving portion to which the semiconductor element is attached and a heat radiating portion for discharging heat to the outside of the device. However, for driving vehicles installed under the floor of a railway vehicle, the heat dissipation part of the cooler is installed on the side of the vehicle under the car floor, and heat is dissipated from the heat dissipation part to the atmosphere by natural cooling. Often.

【0004】これは、放熱部の冷却を自然冷却として送
風機を使用しないことで、機器のメンテナンス作業が不
要となることを目的としており、車両側方側へ配置する
の理由は、車両床下へ排熱がこもることなく車両走行時
の走行風を受けやすくすることを考慮したものである。
This is for the purpose of eliminating the need for maintenance work of the equipment by not using the blower as the cooling of the heat radiating part is natural cooling, and the reason for arranging it on the side of the vehicle is to discharge it to the under floor of the vehicle. This is to make it easier for the vehicle to receive the wind when the vehicle is running, without heat buildup.

【0005】具体的な構成を図を用いて説明する。A specific configuration will be described with reference to the drawings.

【0006】図23(a)〜(c)に従来装置を示す。
図23(a)は従来装置を示す斜視図で車体に取り付い
ている状態を示す。図23(b)は図23(a)中のA
23−A23線に沿う断面、つまり枕木長手方向の断面
図である。図23(c)は図23(a)の水平方向の断
面(装置平面図)である。
23 (a) to 23 (c) show a conventional device.
FIG. 23 (a) is a perspective view showing a conventional device, which is attached to a vehicle body. FIG. 23B shows A in FIG.
FIG. 23 is a cross-sectional view taken along line 23-A23, that is, a cross-sectional view in the longitudinal direction of the sleeper. 23C is a horizontal cross-section (apparatus plan view) of FIG.

【0007】冷却器1は複数個の半導体素子2が取り付
く受熱部3と大気へ熱放散する放熱部4′とで構成され
る。半導体素子2とその周辺部品は汚損等の無い環境と
する為、冷却器1の受熱部3の少なくとも半導体素子2
の取り付く部分は装置の密閉部へ収納される必要があ
る。一方、放熱部4′は装置の開放部へ配置し効率良く
大気へ熱放散する必要がある。
The cooler 1 comprises a heat receiving portion 3 to which a plurality of semiconductor elements 2 are attached and a heat radiating portion 4'for radiating heat to the atmosphere. At least the semiconductor element 2 of the heat receiving portion 3 of the cooler 1 is provided so that the semiconductor element 2 and its peripheral parts are in an environment free from contamination.
The part to be attached must be housed in the sealed part of the device. On the other hand, it is necessary to dispose the heat dissipating section 4'in the open section of the device to efficiently dissipate heat to the atmosphere.

【0008】さらに車両床下にこの排熱がこもり床下の
配線、配管等を暖める事がないように、放熱部4′が車
体側方側となるよう構成されている。
Further, in order to prevent the exhaust heat from accumulating under the floor of the vehicle and warming the wiring and piping under the floor, the heat radiating portion 4'is arranged on the side of the vehicle body.

【0009】受熱部3から放熱部4′へ効率良く熱輸送
する為、冷却器1は冷媒の相変化を利用したヒートパイ
プ方式が採用されることが多い。すなわち、受熱部3に
はヒートパイプ5の一方の端部が埋め込まれ、もう一方
側には多数枚の放熱フィン6が取り付けられる。ヒート
パイプ5は受熱部3側が下方となるよう傾けて設置さ
れ、ヒートパイプ5内部に封入された冷媒は受熱部3側
で半導体素子2から発生する熱により蒸発し、放熱フィ
ン6側で凝縮して大気へ熱放散をおこなうことになる。
凝縮した冷媒はヒートパイプ5内部を重力により受熱部
3側へともどるサイクルをくりかえす。
In order to efficiently transfer heat from the heat receiving section 3 to the heat radiating section 4 ', the cooler 1 often adopts a heat pipe system utilizing the phase change of the refrigerant. That is, one end of the heat pipe 5 is embedded in the heat receiving portion 3, and a large number of heat radiation fins 6 are attached to the other side. The heat pipe 5 is installed so that the heat receiving portion 3 side is inclined downward, and the refrigerant enclosed in the heat pipe 5 is evaporated by the heat generated from the semiconductor element 2 on the heat receiving portion 3 side and condensed on the radiating fin 6 side. Will dissipate heat to the atmosphere.
The condensed refrigerant repeats a cycle in which the inside of the heat pipe 5 returns to the heat receiving portion 3 side by gravity.

【0010】放熱フィン6は自然冷却により大気へ熱放
散を行う為、地面に対しほぼ垂直に設置され、放熱フィ
ン6間を上昇気流が通りやすくなっている。
Since the heat radiation fins 6 dissipate heat to the atmosphere by natural cooling, they are installed almost vertically to the ground, and an ascending airflow can easily pass between the heat radiation fins 6.

【0011】ヒートパイプ5は放熱フィン6を貫通して
接続されるのでほぼ水平となるが、前述の如く蒸発部側
を若干下方に傾け、放熱フィン6側で凝縮した冷媒が受
熱部3側へもどるようになっている。
The heat pipe 5 is connected through the radiating fins 6 so that it is substantially horizontal. However, as described above, the evaporation portion side is tilted slightly downward, and the refrigerant condensed on the radiating fin 6 side is directed to the heat receiving portion 3 side. It is supposed to come back.

【0012】以上により構成される半導体冷却装置は電
力変換装置の箱体7に、半導体素子実装部は箱体7の内
部(密閉部)に、冷却器の放熱部4′は箱体7の外部
(開放部)となるよう、受熱部3を境として取り付けら
れる。電力変換装置の箱体7は鉄道車両の車体8の床下
に放熱部4′が車体側方側となる向きに艤装される。又
車体床下には電力変換装置等の機器が艤装可能なスペー
スとして艤装限界9があり、冷却器1を含め装置はこの
艤装限界9内に取り付けられることになる。艤装限界9
は一般に下方コーナー部が面取りされた形となってい
る。
The semiconductor cooling device constructed as described above is provided in the box 7 of the power converter, the semiconductor element mounting portion is inside (closed) the box 7, and the heat radiating portion 4'of the cooler is outside the box 7. The heat receiving portion 3 is attached as a boundary so as to be an (open portion). The box body 7 of the power conversion device is mounted below the floor of the vehicle body 8 of the railway vehicle in such a direction that the heat radiating portion 4'is on the side of the vehicle body. Further, there is a fitting limit 9 under the floor of the vehicle body as a space in which equipment such as a power conversion device can be fitted, and the devices including the cooler 1 are mounted within the fitting limit 9. Outfitting limit 9
Generally has a chamfered lower corner.

【0013】[0013]

【発明が解決しようとする課題】鉄道車両の床下に設置
される半導体冷却装置では、車両走行時の走行風を大気
側への熱放散効率向上に利用することが考えられるが、
従来装置では放熱部4′が装置の車側側に設置されてい
るにもかかわらず、多数枚の放熱フィン6が車体中央側
(冷却器受熱部側)から車体側方側(冷却器先端側)へ
と所定のビッチで並んで取り付いており、走行風がはい
りこむ奥側となる冷却器受熱部側の放熱フィン間には走
行風がはいりこみにくい構造となっていた。
In a semiconductor cooling device installed under the floor of a railway vehicle, it is conceivable to use traveling wind during traveling of the vehicle to improve heat dissipation efficiency toward the atmosphere side.
In the conventional device, although the heat radiating portion 4'is installed on the vehicle side of the device, a large number of heat radiating fins 6 are arranged from the vehicle body center side (cooler heat receiving portion side) to the vehicle body side side (cooler tip side). ) Are mounted side by side with a predetermined bitch, and the structure is such that the traveling wind is difficult to penetrate between the radiator fins on the cooler heat receiving part side, which is the back side where the traveling wind enters.

【0014】つまり、冷却器の最も先端の放熱フィンに
は走行風があたるが、それより内側の冷却器根元側の放
熱フィンには先端の放熱フィンにさえぎられて走行風が
はいりこみにくく有効に走行風を利用できない欠点があ
った。
In other words, the radiating fin at the most tip of the cooler receives the running wind, but the radiating fins on the base side of the cooler inside the chiller are blocked by the radiating fin at the tip so that the running wind does not easily enter and is effective. There was a drawback that running wind could not be used.

【0015】冷却器がレール方向に複数個並ぶ場合は、
特に車両進行方向後方側の冷却器では放熱部の根元側へ
走行風が流れにくい構成である。
When a plurality of coolers are arranged in the rail direction,
In particular, in the cooler on the rear side in the vehicle traveling direction, the traveling wind does not easily flow to the base side of the heat radiating portion.

【0016】また、冷却器内部に冷媒を封入し、気密接
続をするので、気密度不良による冷媒漏れでの冷却器異
常温度上昇が引き起こす素子破壊が起きないよう、冷却
器には高い信頼性が要求される。
Further, since the refrigerant is sealed in the cooler and air-tightly connected, the cooler has high reliability so that the element breakage caused by the abnormal temperature rise of the cooler due to the leakage of the refrigerant due to the poor air density does not occur. Required.

【0017】さらに、冷媒には通常、水あるいはパーフ
ロロカーボン系の冷媒が使用されるが、低温環境下での
冷媒凍結による冷却不能、環境問題対応等の理由から、
冷媒を不要とした冷却方式の適用が、冷却器構成の簡素
化の点からも望ましい。
Further, although water or perfluorocarbon type refrigerant is usually used as the refrigerant, it is impossible to cool due to freezing of the refrigerant in a low temperature environment, and environmental problems can be dealt with.
It is desirable to apply a cooling method that does not require a refrigerant from the viewpoint of simplifying the cooler configuration.

【0018】本発明は上記問題点を解消し、車両走行風
を有効に利用した冷却性能の向上した小形軽量の半導体
冷却装置を提供することを目的としたものである。
An object of the present invention is to solve the above problems and to provide a small-sized and lightweight semiconductor cooling device that effectively utilizes the vehicle traveling wind and has improved cooling performance.

【0019】[0019]

【課題を解決するための手段】本発明では鉄道車両の床
下に設置される車両駆動用電力変換装置において、車両
走行時の走行風を有効に冷却器部に取り入れ、冷却器放
熱フィン間をこの走行風が流れるよう冷却器を構成した
もので、冷媒の相変化を利用した熱輸送手段を使わず
に、冷却器を部品種類、数の少ない簡略な冷却器とし信
頼性向上、簡易な製造方法を可能にしたものである。
According to the present invention, in a power converter for driving a vehicle installed under the floor of a railroad vehicle, traveling wind during running of the vehicle is effectively taken into a cooler section, and the space between the cooler radiator fins is provided. The cooler is configured to allow traveling wind to flow, and the cooler is a simple cooler with a small number of parts and a small number of parts without using heat transfer means that uses the phase change of the refrigerant. Is made possible.

【0020】請求項1に対応する半導体冷却装置は、冷
却器の放熱フィン部分は電力変換装置の車体側方側にあ
り、冷却器の1つの内面に,複数個の半導体素子を平面
的に(実質的に面接触させた状態で)取り付け、その面
はその下方が車体中央側、上方が車体側方側となるよう
垂直から傾けて設置されており、冷却器の反対の面(外
面)は大気へ熱放散する為の多数の放熱フィンが上下方
向に所定間隔を存して形成されており、各放熱フィンは
形状がほぼ平板状の同一外形の板フィンで、ほぼ水平に
上下に並んで配置され、車両走行時、冷却装置に対して
空気が相対的に動き、放熱フィンが水平な向きとして構
成してあるので、空気抵抗が小さく有効に放熱フィン間
を空気が流れ、半導体素子の発熱を大気ヘ熱放散するこ
とができる。かつ、車両走行風が充分に得られないとき
も上下に並んだ放熱フィンは上方にいくにしたがって、
車体側方側へつきだして設置されていることになるの
で、自然冷却時の上昇気流に対しても有効な放熱フィン
といえる。これら放熱フィンは先端側が上方となるよう
傾けた場合、上下の放熱フィン間の空気は車両進行方向
だけでなく、上方にも流れることが可能で、自然冷却時
の冷却効果を高める効果をもつ。
According to another aspect of the semiconductor cooling device of the present invention, the radiator fin portion of the cooler is on the side of the power conversion device on the vehicle body side, and a plurality of semiconductor elements are planarly arranged on one inner surface of the cooler. It is installed in a state of substantially surface contact), the surface is installed so that the lower side is the vehicle body center side and the upper side is the vehicle body side side, and it is installed from the vertical, and the opposite surface (outer surface) of the cooler is A large number of radiating fins for dissipating heat to the atmosphere are formed at a predetermined interval in the vertical direction, and each radiating fin is a plate fin of the same external shape with a substantially flat plate shape, which is lined up and down almost horizontally. Since the air is moved relative to the cooling device when the vehicle is running and the heat radiation fins are oriented horizontally, the air resistance is small and the air flows between the heat radiation fins effectively, and the heat generated by the semiconductor element is generated. Can dissipate heat to the atmosphere. And, even when the vehicle traveling wind is not sufficiently obtained, the heat radiation fins arranged vertically are
Since it is installed on the side of the vehicle body, it can be said that it is an effective radiation fin even for upward airflow during natural cooling. When these radiating fins are inclined so that the tip side is upward, the air between the upper and lower radiating fins can flow not only in the traveling direction of the vehicle but also upward, which has the effect of enhancing the cooling effect during natural cooling.

【0021】請求項2に対応する半導体冷却装置は、冷
却器の放熱フィン部分は電力変換装置の車体側方側に
り、冷却器の1つの内面に複数個の半導体素子を平面的
に取り付け、その外面は大気へ熱放散する為の多数の放
熱フィンが所定間隔で形成されており、各放熱フィンは
形状がほぼ平板状の板フィンで、ほぼ水平に上下に並ん
で構成しており、車両走行時、冷却装置に対して空気が
相対的に動き、放熱フィンが水平な向きとして構成して
あるので、空気抵抗が小さく有効に放熱フィン間を空気
が流れ、半導体素子の発熱を大気ヘ良好に熱放散するこ
とができる。これら放熱フィンは先端側が上方となるよ
う傾けた場合、上下の放熱フィン間の空気は車両進行方
向だけでなく、上方にも流れることが可能で、自然冷却
時の冷却効果を高める効果をもつ。
The semiconductor cooling device corresponding to claim 2, the heat radiation fin part of the cooler Ri Oh <br/> on the vehicle body side end of the power converter, a plurality of semiconductor elements on one of the inner surface of the cooler It is mounted on a flat surface, and on its outer surface, a large number of heat radiation fins for heat dissipation to the atmosphere are formed at predetermined intervals, and each heat radiation fin is a plate fin with a substantially flat plate shape, and is arranged almost vertically above and below. Since the air moves relatively to the cooling device when the vehicle is running, and the heat radiation fins are arranged in a horizontal direction, the air resistance is small and the air flows between the heat radiation fins effectively, and The generated heat can be dissipated to the atmosphere well. When these radiating fins are inclined so that the tip side is upward, the air between the upper and lower radiating fins can flow not only in the traveling direction of the vehicle but also upward, which has the effect of enhancing the cooling effect during natural cooling.

【0022】[0022]

【0023】[0023]

【0024】[0024]

【0025】請求項に対応する半導体冷却装置は、請
求項1又は2において、冷却器にはインバータ回路ある
いはコンバータ回路の一相分の半導体素子が取り付けら
れ、この冷却器を3個あるいは2個横に並べ、放熱フィ
ン部分は相毎にまとまって、となりの放熱フィン部分と
は間隔があくよう構成したもので、この空隙部分を上下
に空気が流れることが可能となり、請求項2同様、自然
冷却時の放熱効果も確保される。
According to a third aspect of the present invention, there is provided a semiconductor cooling device according to the first or second aspect , wherein a semiconductor element for one phase of an inverter circuit or a converter circuit is attached to the cooler, and three or two coolers are provided. The radiation fins are arranged side by side and are arranged for each phase so that there is a gap from the adjacent radiation fins, and air can flow vertically through the voids. The heat dissipation effect during cooling is also secured.

【0026】請求項に対応する半導体冷却装置は、請
求項1又は2において、インバータ回路あるいはコンバ
ータ回路の上アーム側の半導体素子を一方の冷却器に取
り付け、もう一方の冷却器には下アーム側の複数相の半
導体素子を取り付け、冷却器を近接して並べて構成する
ことで、冷却器を分割した前項同様の効果に加えて、一
個の冷却器にとりつく半導体素子群の片側の電位が共通
となる為、電気的接続が容易に行える。
A semiconductor cooling device according to a fourth aspect is the semiconductor cooling device according to the first or second aspect , wherein the semiconductor element on the upper arm side of the inverter circuit or the converter circuit is attached to one cooler and the lower arm is attached to the other cooler. In addition to the same effect as the previous section by dividing the cooler by installing the semiconductor elements of multiple phases on the side and arranging the coolers in close proximity, the potential on one side of the semiconductor element group attached to one cooler is common Therefore, electrical connection can be easily performed.

【0027】なお、請求項において、前記半導体素子
は対向する2面が電極面となる平形形状の素子で、下ア
ーム側の半導体素子はその負極側を前記冷却器に向けて
セラミックス板等の絶縁物をはさまずに、直接取り付け
るものであってもよい。この場合、前項で説明したよう
に半導体素子の片側が同じ電位となり、下アーム側では
それがアース電位であることから絶縁不要の構成が可能
となる。
According to a fourth aspect of the present invention, the semiconductor element is a flat element having two electrode surfaces facing each other, and the semiconductor element on the lower arm side is a ceramic plate or the like with its negative electrode side facing the cooler. It may be directly attached without sandwiching the insulator. In this case, one side of the semiconductor element has the same potential and the lower arm side has the ground potential, as described in the previous section, so that a configuration that does not require insulation is possible.

【0028】請求項に対応する半導体冷却装置は、請
求項において、下アーム側の半導体素子を取り付けた
冷却器は、上アーム側の半導体素子を取り付けた冷却器
よりも小さく、電力変換装置の車体側方側に下アーム側
の冷却器を下に、上アーム側の冷却器を上に、上下に並
べて配置したもので、下アーム側は冷却器と半導体素子
の間に入る介在物(セラミックス板、接続導体等)が不
要となる為、上アームに比べこの部分での温度差が小さ
くなり、冷却器が小形化できることになる。一方、鉄道
車両の床下の装置設置可能スペース(艤装限界)は、一
般に、断面形状で下方が面取りされたものであり、下側
に下アーム側の小形の方の冷却器を配置することで、艤
装限界を有効に活用した部品配置が可能となる。
According to a fifth aspect of the present invention, there is provided a semiconductor cooling device according to the fourth aspect , wherein the cooler to which the semiconductor element on the lower arm side is attached is smaller than the cooler to which the semiconductor element on the upper arm side is attached. The lower arm side cooler is placed on the side of the vehicle body below, and the upper arm side cooler is placed on top of each other, and the lower arm side is placed between the cooler and the semiconductor element. Since a ceramic plate, a connecting conductor, etc.) are not required, the temperature difference in this portion is smaller than that of the upper arm, and the cooler can be downsized. On the other hand, the space where the device can be installed under the floor of the railway vehicle (equipment limit) is generally a chamfered lower section, and by arranging the smaller cooler on the lower arm side on the lower side, It is possible to place parts by effectively utilizing the outfitting limit.

【0029】請求項に対応する半導体冷却装置は、請
求項において、2個の冷却器はー方は電力変換装置の
車体側方側に、もう一方の冷却器は電力変換装置の下方
に、それぞれの半導体素子が電力変換装置内部で近接す
るよう冷却器を配置したもので、冷却上は、走行風が有
効に活用できる電力変換装置の下方と車体側方とに冷却
器を配置することで、いずれも良好に冷却でき、それぞ
れの冷却器に取り付けられた半導体素子は電力変換装置
内部でそれぞれの端子が直近で接続できるよう立体的な
近接配置が可能となる。
According to a sixth aspect of the present invention, there is provided a semiconductor cooling device according to the fourth aspect, wherein the two coolers are on the vehicle body side of the power converter and the other cooler is below the power converter. , A cooler is arranged so that the respective semiconductor elements are close to each other inside the power conversion device. For cooling, the cooler should be arranged below the power conversion device where the traveling wind can be effectively used and on the side of the vehicle body. Then, all of them can be cooled well, and the semiconductor elements attached to the respective coolers can be arranged three-dimensionally close to each other so that the respective terminals can be directly connected in the power converter.

【0030】[0030]

【0031】請求項に対応する半導体冷却装置は、請
求項1又は2において、放熱フィンは先端側の幅が根元
側の幅よりも小さくなっており、先端側の温度の低い側
よりも、発熱源である半導体素子に近い根元側の温度の
高い側の方が、冷却に寄与するところ大であるため、フ
ィン効率を考慮したフィン形状である。加えて、この冷
却器が横に並んだ時を考えると、となりあう冷却器の先
端部分での間隔が大きいことで、この部分より走行風が
放熱フィン根元側へ流れ込むことも期待でき冷却効率が
良くなる。
The semiconductor cooling device according to claim 7 is the semiconductor cooling device according to claim 1 or 2, wherein the width of the radiation fin on the tip side is smaller than the width on the root side, and the width of the radiation fin on the tip side is lower than that on the low temperature side. Since the higher temperature side closer to the root side, which is closer to the semiconductor element that is the heat source, contributes more to cooling, it is a fin shape considering fin efficiency. In addition, considering the time when these coolers are lined up side by side, since the gap at the tip of the coolers that are adjacent to each other is large, it can be expected that running wind will flow into the radiating fin base side from this part and cooling efficiency can be improved. Get better.

【0032】[0032]

【0033】[0033]

【0034】また請求項1又は2において、放熱フィン
には一部分を一辺を残して切り込みを入れ90度以下の
角度で上方に折り曲げた形状の切り起こしを設ければ、
放熱フィンの上下方向に空気が移動することが可能であ
るのに加え、フィン表面積を減らすことなく穴を設けた
ことになるので、冷却効率がさらに向上することにな
る。さらにこのものにおいて、切り起こしは折れ線とな
る一辺より切り込み部分が放熱フィン先端側で、切り起
こしの面は車両進行方向に対して平行にすれば、切り起
こし部分は半導体素子に近い側つまり高温側が接続され
たまま、残り部分を切り起こすので、放熱フィンを伝わ
る熱の流れに有効的であり、この部分での冷却効率が高
い。またこのものにおいて、放熱フィンに設けられた切
り起こしは隣り合う上下の放熱フィンで異なる位置とす
れば、請求項と同様、下からの空気の移動は上の放熱
フィン表面を流れながら穴を通って上ヘと移動していく
ので放熱フィンの冷却効率はさらに向上する。
According to the first or second aspect of the present invention, if the heat radiation fin is provided with a notch with a side left, a cut and raised shape bent upward at an angle of 90 degrees or less is provided.
In addition to allowing air to move in the vertical direction of the radiating fins, since holes are provided without reducing the fin surface area, cooling efficiency is further improved. Further, in this cut-and-raised part, the cut-and-raised part is located on the side closer to the semiconductor element, that is, on the high-temperature side, if the cut-and-raised part is located closer to the tip of the heat radiation fin than the one side that is the broken line and the cut-and-raised surface is parallel to the vehicle traveling direction. Since the remaining portion is cut and raised while being connected, it is effective for the flow of heat transmitted through the radiation fins, and the cooling efficiency in this portion is high. In this product, if different positions lanced and below the radiating fins adjacent arranged to the heat radiating fins, same as defined in Claim 7, a hole while the movement of air from the lower flow radiating fin surface of the upper The cooling efficiency of the radiating fins is further improved because it moves upward through the radiating fins.

【0035】[0035]

【0036】[0036]

【0037】[0037]

【0038】請求項に対応する半導体冷却装置は、請
求項1又は2において、放熱フィンは板の内部に冷媒の
流路が形成されその流路には作動液が封入されたもの
で、冷却器形状はこれまで述べてきた単なる板状の放熱
フィンの場合と同じような形であるが、放熱フィンの先
端まで根元側と温度差がつくことなくフィン効率の良い
冷却器となる。
According to an eighth aspect of the present invention, there is provided a semiconductor cooling device according to the first or second aspect, in which the heat radiation fin is formed by forming a coolant passage inside the plate, and the working fluid is sealed in the passage. The shape of the vessel is the same as that of the simple plate-shaped heat radiation fin described above, but the fin has a high fin efficiency without any temperature difference from the root side to the tip of the heat radiation fin.

【0039】請求項に対応する半導体冷却装置は、請
求項1又は2において、半導体素子の取り付く冷却器の
ベース部分は厚みが一様でなく、半導体素子の取り付く
面は平面であるが、その反対の面つまり放熱フィン側の
面が平らでなく、半導体素子の取り付いている部分の中
心部分が最も厚みが大きく、半導体素子から離れた位置
ではそれより厚みが小さくなるようにしたもので、半導
体素子取り付けベース部分の温度勾配を考慮し、放熱フ
ィンのフィン効率を高めるよう半導体素子から遠ざかっ
た部位(半導体素子との温度勾配が大きく温度は低い)
ではベース部分の厚みを薄くしてその部分に取り付く放
熱フィンと半導体素子の温度勾配を大きくすることなく
効率的に冷却できる。加えて、平形形状の半導体素子を
冷却器に向かって押圧する場合、冷却器には曲げ応力が
かかるが、ベース部分の中央が厚いことからたわみも軽
減され、半導体素子の圧接力分布が一様になる利点もも
つ。
A semiconductor cooling device according to a ninth aspect is the semiconductor cooling device according to the first or second aspect , wherein the base portion of the cooler to which the semiconductor element is attached does not have a uniform thickness, and the attachment surface of the semiconductor element is a flat surface. The opposite surface, that is, the surface on the radiation fin side is not flat, the central part of the part where the semiconductor element is attached has the largest thickness, and the thickness is smaller at the position away from the semiconductor element. Considering the temperature gradient of the element mounting base part, the part away from the semiconductor element to increase the fin efficiency of the heat radiation fin (the temperature gradient with the semiconductor element is large and the temperature is low)
Then, the thickness of the base portion can be reduced, and the cooling can be efficiently performed without increasing the temperature gradient between the radiation fin and the semiconductor element attached to the portion. In addition, when pressing a flat semiconductor element toward the cooler, bending stress is applied to the cooler, but since the center of the base part is thick, deflection is also reduced and the contact pressure distribution of the semiconductor element is uniform. There is also an advantage.

【0040】[0040]

【0041】[0041]

【0042】[0042]

【0043】[0043]

【0044】[0044]

【0045】請求項10に対応する半導体冷却装置は、
請求項1または2において、半導体素子は対向する2面
が電極面となる平形形状の素子で、片面を冷却器に押圧
されるが、半導体素子のもう一方の面には主冷却器に比
ぺ小形の補助放熱フィンをはさみこんだもので、半導体
素子から発生する発熱量が一定でなく、瞬時的な過負荷
(ピーク損失)時にその過負荷による瞬時的な温度上昇
を抑制する機能をもつ。
A semiconductor cooling device according to claim 10 is
The ratio according to claim 1 or 2, the element of flat shape which two faces semiconductor element opposing the electrode surface, but is pressed piece surface to the cooler, the main cooler on the other surface of the semiconductor element A small auxiliary heat radiation fin is sandwiched between the elements, and the amount of heat generated from the semiconductor element is not constant, and it has the function of suppressing the instantaneous temperature rise due to the instantaneous overload (peak loss). .

【0046】請求項11に対応する半導体冷却装置は、
請求項10において、補助放熱フィンは主冷却器の放熱
フィンと直交する向きすなわち上下方向にフィン間を空
気が流れる形状としたもので装置密閉部はその密閉部内
を移動する空気の流れに合わせたフィン形状とし補助放
熱フィンの性能を向上してより半導体素子の温度上昇を
抑制することを可能にしている。
A semiconductor cooling device according to claim 11 is
In claim 10 , the auxiliary heat radiation fins are shaped such that air flows between the fins in a direction orthogonal to the heat radiation fins of the main cooler, that is, in the up-down direction, and the device sealing portion is adapted to the flow of air moving in the sealing portion. The fin shape is used to improve the performance of the auxiliary heat radiation fins and to further suppress the temperature rise of the semiconductor element.

【0047】請求項12に対応する半導体冷却装置は、
請求項10において、補助放熱フィンは半導体素子の一
方の電極取り出し用として電気的に接続され、導体を兼
用したもので、部品点数の削減につながる。
A semiconductor cooling device according to claim 12 is
In claim 10 , the auxiliary heat radiation fin is electrically connected for taking out one electrode of the semiconductor element and also serves as a conductor, which leads to a reduction in the number of parts.

【0048】[0048]

【発明の実施の形態】(第1の実施の形態)(請求項
1,に対応) (構成) 図1(a)に本発明の第1の実施形態の半導体冷却器が
電力変換装置に組み込まれ車体床下に艤装された状態を
示す斜視図を示し、図1(b)に図1(a)中のA1−
A1線に沿う断面図(半導体冷却器の縦断面図)を示
す。
BEST MODE FOR CARRYING OUT THE INVENTION (First Embodiment) (Corresponding to Claims 1 and 3 ) (Structure) FIG. 1A shows a semiconductor cooler according to a first embodiment of the present invention as a power conversion device. FIG. 1 is a perspective view showing a state of being assembled and fitted under the floor of the vehicle body, and FIG. 1 (b) shows A1- in FIG. 1 (a).
The sectional view (longitudinal sectional view of a semiconductor cooler) which follows the A1 line is shown.

【0049】冷却器1aは電力変換装置の箱体7に取り
付けられ、その箱体7の内部側は密閉部、外部側は開放
部となる。冷却器1aは半導体素子2の取り付く受熱部
3aと放熱部4とからなり、放熱部4は多数枚(複数
枚)の放熱フィン6aにより構成される。
The cooler 1a is attached to the box 7 of the power converter, and the inside of the box 7 is a hermetically sealed part and the outside is an open part. The cooler 1a includes a heat receiving portion 3a to which the semiconductor element 2 is attached and a heat radiating portion 4, and the heat radiating portion 4 is composed of a large number (a plurality of) of heat radiating fins 6a.

【0050】受熱部3aはその下方が車体中央側、その
上方が車体側方側となるよう箱体7に対し傾いて取り付
けられる。冷却フィン6aはほぼ平板状の板フィン形状
で、多数枚が所定の間隔でほぼ水平に受熱部3aに接続
された形で構成される。受熱部3aと放熱部4は金属材
料により一体に成形されていてもよい。車体8に対して
は放熱フィン6aが車体側方側となるよう配置され、艤
装限界9内におさまるよう艤装される。
The heat receiving portion 3a is attached so as to be inclined with respect to the box body 7 such that the lower portion thereof is on the vehicle body center side and the upper portion thereof is on the vehicle body lateral side. The cooling fins 6a are substantially plate-shaped plate fins, and a large number of cooling fins 6a are connected to the heat receiving portion 3a substantially horizontally at predetermined intervals. The heat receiving portion 3a and the heat radiating portion 4 may be integrally formed of a metal material. The radiating fins 6a are arranged on the vehicle body 8 on the side of the vehicle body, and are mounted so as to fit within the mounting limit 9.

【0051】本実施形態では、1個の冷却器1aにはイ
ンバータ回路1相分の半導体素子2が実装され、この冷
却器1aが3個並んで3相のインバータ回路を構成す
る。車両の前後方向に3個並んだ冷却器1aの放熱部4
は、互いに間隔をあけて並ぶよう受熱部3aの幅(レー
ル長手方向の寸法)よりも放熱フィン6aの幅は小さく
構成されている。 (作用)半導体素子2より発生する熱は受熱部3aを介
して放熱フィン6aに熱伝導され、放熱フィン6aの表
面から大気へと熱放散される。車両駆動用の電力変換装
置では、当然、半導体素子2から熱が発生するのは車両
走行時であり、車両停止時は半導体素子2は通電されな
いので損失を発生することはない。車両走行時は車両に
対して走行風が車体床下に取り付けられた装置に対し流
れる。つまり、周囲から空気が流れ込むことになる。走
行風は、車両走行時、車両の周囲の空気が車両と相対的
に動くことで車両及び、車両と一体になって運動する物
(車両床下に設置された機器類)に対して、はたらくも
のである。
In this embodiment, the semiconductor element 2 for one phase of the inverter circuit is mounted on one cooler 1a, and three coolers 1a are arranged to form a three-phase inverter circuit. The heat dissipating portion 4 of the cooler 1a arranged in three in the front-rear direction of the vehicle
The heat radiating fins 6a have a width smaller than the width (dimension in the rail longitudinal direction) of the heat receiving portions 3a so that they are arranged at intervals. (Operation) The heat generated from the semiconductor element 2 is conducted to the radiation fin 6a through the heat receiving portion 3a, and is dissipated from the surface of the radiation fin 6a to the atmosphere. In the power converter for driving a vehicle, naturally, heat is generated from the semiconductor element 2 when the vehicle is running, and when the vehicle is stopped, the semiconductor element 2 is not energized, so that no loss occurs. When the vehicle is traveling, a wind traveling through the vehicle flows to a device mounted below the floor of the vehicle body. In other words, air will flow in from the surroundings. The running wind acts on the vehicle and objects (equipment installed under the vehicle floor) that move integrally with the vehicle when the air around the vehicle moves relative to the vehicle when the vehicle is running. Is.

【0052】この走行風は、車両走行時、放熱フィン6
a間を流れることになり、放熱フィン6aの表面では空
気流速が(自然対流のみの時と比較し)速くなり、熱伝
達率が向上し放熱フィン6aの放熱性能が向上する。放
熱フィン6aは水平な向きであるため、走行風はフィン
6aの先端から根元側へはいりこんでくることが可能
で、従来、ヒートパイプを使った冷却器では先端側の放
熱フィンに遮られて根元側の放熱フィンには流れにくか
った走行風が本実施形態では放熱フィンの向きが水平で
あることから根元側まで流れ込み放熱フィン6aの全域
にわたって走行風を利用できる。
This traveling wind is generated by the heat radiation fins 6 when the vehicle is traveling.
As a result, the air flow velocity increases on the surface of the heat radiation fins 6a (compared to the case of natural convection only), the heat transfer coefficient improves, and the heat radiation performance of the heat radiation fins 6a improves. Since the radiating fins 6a are oriented horizontally, the traveling wind can come in from the tips of the fins 6a to the root side, and conventionally, in a cooler using a heat pipe, the radiating fins on the tip side are blocked. In the present embodiment, since the direction of the heat radiating fins is horizontal, the running wind, which is hard to flow, flows into the heat radiating fins on the base side and flows to the base side so that the running wind can be used over the entire area of the heat radiating fins 6a.

【0053】又、車両が低速で走行時は、充分な走行風
が得られず、放熱フィン6aから大気へは自然対流によ
る放熱が支配的になる場合があるが、冷却器1aは相毎
に分割して構成してあり、放熱フィン6aがとなりあう
放熱フィン6aとの間に間隔を設けているので、この部
分を自然対流時の上昇気流が通り、放熱フィン6aヘ空
気が流れ込み自然対流による放熱を行うことが可能であ
る。
In addition, when the vehicle is running at a low speed, sufficient traveling wind may not be obtained, and heat radiation by natural convection from the radiation fins 6a to the atmosphere may be predominant, but the cooler 1a is phase by phase. Since the radiation fins 6a are divided, and a space is provided between the radiation fins 6a and the adjacent radiation fins 6a, the upward airflow at the time of natural convection passes through this portion, and the air flows into the radiation fins 6a to cause natural convection. It is possible to dissipate heat.

【0054】さらに、放熱フィン6aは上方の放熱フィ
ンになるにしたがって、より車体側方側へ設置されてお
り、自然対流による空気の流れは下方から上方へ向かう
際に放熱フィン6aに沿って流れ、自然対流時の上昇気
流に対しても放熱フィン6aは有効に大気へ熱放散可能
である。 (効果)本実施形態によれば、車両走行時の走行風が有
効に放熱フィン6a間を流れることでフィン効率が向上
し、冷却器の小形化、高性能化が可能である。
Further, the radiating fins 6a are installed closer to the vehicle body side as they become the upper radiating fins, and the air flow due to natural convection flows along the radiating fins 6a when going upward from below. The radiating fins 6a can effectively dissipate heat to the atmosphere even with respect to an ascending airflow during natural convection. (Effects) According to the present embodiment, the traveling wind when the vehicle is traveling effectively flows between the radiation fins 6a, so that the fin efficiency is improved, and the cooling device can be downsized and the performance can be improved.

【0055】フィン効率が向上することで、冷媒の相変
化を利用した冷却器(放熱フィン全域を同一温度として
フィン効率を向上する)とする必要がなくなり、冷媒を
使わない冷却器が可能となる。冷媒には耐凍結性が要求
されたり、耐環境性が要求されたりするが、本実施形態
の冷却器にはそういった問題が皆無となる。又、冷媒を
封入する為の気密接続部分がなくなり、冷媒漏れの管理
が不要となる。
Since the fin efficiency is improved, it is not necessary to use a cooler that utilizes the phase change of the refrigerant (to improve the fin efficiency by keeping the entire heat radiation fin at the same temperature), and a cooler that does not use the refrigerant is possible. . Although the refrigerant is required to have freezing resistance or environment resistance, the cooler of the present embodiment has no such problems. Further, since there is no airtight connection portion for sealing the refrigerant, it becomes unnecessary to manage the refrigerant leakage.

【0056】冷却器構成部品は大幅に削減され、信頼性
が向上する利点もある。
The cooler component parts are greatly reduced, and the reliability is improved.

【0057】受熱部が傾斜して装置の箱体に取り付くこ
とで、半導体素子の取り付く面を、垂直に取り付く場合
と比較して広くとれ、半導体素子の実装スペースが充分
とれることで、半導体素子の取付にも自由度の多い設計
が可能である。 (第2の実施の形態)(請求項2,に対応) (構成) 図2(a)に本発明の第2の実施形態の半導体冷却器が
電力変換装置に組み込まれ車体床下に艤装された状態を
示す斜視図を、図2(b)に図2(a)のA2−A2線
に沿う断面図(半導体冷却器の縦断面図)を示す。
When the heat receiving part is inclined and attached to the box of the apparatus, the mounting surface of the semiconductor element can be made wider than that in the case where it is mounted vertically, and a sufficient mounting space for the semiconductor element can be secured. A design with a lot of flexibility in mounting is possible. (Second Embodiment) (Corresponding to Claims 2 and 3 ) (Structure) FIG. 2 (a) shows a semiconductor cooler according to a second embodiment of the present invention, which is incorporated in a power converter and mounted under the floor of a vehicle body. 2B is a cross-sectional view (longitudinal cross-sectional view of the semiconductor cooler) taken along line A2-A2 of FIG. 2A.

【0058】本実施形態でも第1の実施形態と同様、放
熱部4が車体側方側となるよう、冷却器1bが電力変換
装置の箱体7に取り付けられ、受熱部3bの半導体素子
2の取り付く内側の面の反対側の面(外面側)には多数
枚の放熱フィン6bが設けられる。受熱部3bは本実施
形態では垂直に箱体7に取り付けられ、これにほぼ平板
状の板フィン形状の多数枚の放熱フィン6bが所定の間
隔で水平に設けられている。放熱フィン6bは金属材料
によって受熱部3bと一体に成形されていてもよい。
In this embodiment as well, as in the first embodiment, the cooler 1b is attached to the box body 7 of the power converter so that the heat radiating portion 4 is on the side of the vehicle body, and the semiconductor element 2 of the heat receiving portion 3b is connected to the cooler 1b. A large number of heat radiation fins 6b are provided on the surface (outer surface side) opposite to the inner surface to be attached. In the present embodiment, the heat receiving portion 3b is vertically attached to the box body 7, and a large number of radiating fins 6b having a substantially plate-like plate fin shape are horizontally provided at predetermined intervals. The radiation fin 6b may be integrally formed with the heat receiving portion 3b by a metal material.

【0059】本実施形態でも、1個の冷却器1bにはイ
ンバータ回路1相分の半導体素子2が実装され、この冷
却器1bが3個並んで3相のインバータ回路を構成す
る。車両の前後方向に3個並んだ冷却器1bの放熱部4
は、互いに間隔をあけて並ぶよう受熱部3bの幅(レー
ル方向の寸法)よりも放熱フィン6bの幅は小さく構成
されている。 (作用)半導体素子2から発生する熱は受熱部3bを介
して放熱フィン6bに熱伝導により伝わり、第1の実施
形態と同様、車両走行時の走行風が放熱フィン6b間を
流れることで放熱フィン6bから大気への放熱性能が向
上する。又、これも第1の実施形態と同様に、冷却器1
bは相毎に分割して構成してあり、放熱フィン6bがと
なりあう放熱フィン6bとの間に間隔を設けているの
で、この部分を自然対流時の上昇気流が通り、放熱フィ
ン6bへ空気が流れ込み自然対流による放熱を行うこと
が可能であるので、車両の低速走行時で走行風が充分に
得られない場合は、自然対流効果により放熱フィン6b
から大気への熱放散が行われる。 (効果)第1の実施形態と同様、走行風を利用し、放熱
フィン6bのフィン効率が向上することで、冷却器の小
形化、高性能化が達成でき、冷媒を使わない冷却器が可
能となる。
Also in this embodiment, the semiconductor element 2 for one phase of the inverter circuit is mounted on one cooler 1b, and three coolers 1b are arranged side by side to form a three-phase inverter circuit. The heat dissipating portion 4 of the cooler 1b arranged in three in the front-rear direction of the vehicle
The heat radiating fins 6b have a width smaller than the width (dimension in the rail direction) of the heat receiving portions 3b so that they are spaced from each other. (Operation) The heat generated from the semiconductor element 2 is transferred to the radiating fins 6b via the heat receiving portion 3b by heat conduction, and the running wind when the vehicle is running flows between the radiating fins 6b as in the case of the first embodiment. The heat dissipation performance from the fins 6b to the atmosphere is improved. In addition, this is also the same as in the first embodiment.
Since b is divided for each phase and a space is provided between the heat radiation fins 6b and the adjacent heat radiation fins 6b, an upward airflow during natural convection passes through this portion and air is directed to the heat radiation fins 6b. Since it is possible to radiate heat due to natural convection, the heat radiation fins 6b can be discharged due to natural convection if sufficient traveling wind is not obtained when the vehicle is traveling at low speed.
Dissipates heat into the atmosphere. (Effect) Similar to the first embodiment, the traveling wind is used to improve the fin efficiency of the radiating fins 6b, so that the cooling device can be downsized and the performance can be improved, and the cooling device using no refrigerant is possible. Becomes

【0060】又、本実施形態では半導体素子の取り付く
面は垂直で、箱体内部の密閉部は長方形断面のスペース
が与えられることになり、この部分に収納される半導体
素子周辺回路部品がデッドスペースの少ない効率のよい
実装が可能である。
Further, in this embodiment, the mounting surface of the semiconductor element is vertical, and the sealed portion inside the box is provided with a space having a rectangular cross section, and the semiconductor element peripheral circuit parts housed in this portion are dead spaces. It is possible to implement with low efficiency.

【0061】さらに冷却器の放熱フィンは受熱部に対し
て直角に設置されるので、冷却器自体の形状もシンプル
で製造しやすい形状である。 (第3の実施の形態)(請求項2,に対応) (構成) 図3(a)に本発明の第3の実施形態の半導体冷却器が
電力変換装置に組み込まれ車体床下に艤装された状態を
示す斜視図を、図3(b)に図3(a)のA3−A3線
に沿う断面図(半導体冷却器の縦断面図)を示す。
Further, since the radiator fins of the cooler are installed at right angles to the heat receiving portion, the shape of the cooler itself is simple and easy to manufacture. (Third Embodiment) (Corresponding to Claims 2 and 3 ) (Structure) FIG. 3 (a) shows a semiconductor cooler according to a third embodiment of the present invention, which is incorporated in a power converter and mounted under the floor of a vehicle body. 3B shows a cross-sectional view (longitudinal cross-sectional view of the semiconductor cooler) taken along line A3-A3 of FIG. 3A.

【0062】本実施形態では冷却器1cの放熱部4は箱
体7の下方に配置される。受熱部3cの片側(箱体7の
内面側)に半導体素子2が取り付けられ、その反対の面
(箱体7の外面側)に放熱フィン6cが受熱部3cに対
し直角に多数枚設けられるのは第2の実施形態と同様で
ある。放熱フィン6cは他の全ての実施形態と同様に放
熱フィン6cは受熱部3cと一体に成形されているとよ
い。 (作用)車体床下の艤装限界9内の最下方は地面に最も
近く走行風が最も有効に活用できる。つまり走行風は、
車両走行時、車両の周囲の空気が車両と相対的に動くこ
とで車両及び、車両と一体になって運動する物(車両床
下に設置された機器類)に対して流れるものであるが、
静止している地面との間が最も空気が相対的に動くこと
になる。
In the present embodiment, the heat dissipation part 4 of the cooler 1c is arranged below the box body 7. The semiconductor element 2 is attached to one side (the inner surface side of the box body 7) of the heat receiving section 3c, and a large number of heat radiation fins 6c are provided on the opposite surface (outer surface side of the box body 7) at right angles to the heat receiving section 3c. Is the same as in the second embodiment. The radiating fin 6c is preferably formed integrally with the heat receiving portion 3c, as in all the other embodiments. (Function) The lowermost part of the outfitting limit 9 under the floor of the vehicle body is closest to the ground, and the traveling wind can be utilized most effectively. In other words, the running wind is
When the vehicle is traveling, the air around the vehicle moves relative to the vehicle and flows to the vehicle and to objects that move integrally with the vehicle (equipment installed under the vehicle floor).
The air moves most relative to the stationary ground.

【0063】本実施形態では放熱フィン6c間を車両走
行時の地面との相対的な空気の動きによる走行風が流れ
放熱フィン6cのフィン効率が向上する。 (効果) 走行風によるフィン効率の向上によって、冷却器の小形
化、高性能化が可能になるが、走行風を最も得やすい艤
装限界最下部にこの放熱部分があることで、その効果は
前述の実施形態以上の効果がある。 (第4の実施の形態)(請求項に対応) 図4(a)に本発明の第4の実施形態の半導体冷却器が
電力変換装置に組み込まれ車体床下に艤装された状態を
示す斜視図を、図4(b)に半導体冷却器単体の斜視図
を示す。
In the present embodiment, the traveling wind flows between the radiation fins 6c due to the movement of air relative to the ground when the vehicle is traveling, and the fin efficiency of the radiation fins 6c is improved. (Effect) By improving the fin efficiency due to the running wind, it is possible to make the cooler smaller and improve its performance. However, since this heat dissipation part is located at the bottom of the outfitting limit where the running wind is most easily obtained, the effect is as described above. There is an effect more than the embodiment of. (Fourth Embodiment) (Corresponding to Claim 3 ) FIG. 4 (a) is a perspective view showing a state in which a semiconductor cooler according to a fourth embodiment of the present invention is incorporated in a power conversion device and is mounted under the floor of a vehicle body. FIG. 4B shows a perspective view of the semiconductor cooler alone.

【0064】本実施形態では、冷却器1dは第2の実施
形態と同様に箱体7にとりつけられるが、冷却器1dの
車体側方側の面には丸棒形状(ピンフィン)の放熱フィ
ン6dが多数本、所定の間隔で受熱部3dに垂直に縦横
に並んでいる。この場合、放熱フィン6dは地面に対し
てほぼ水平となる。
In this embodiment, the cooler 1d is attached to the box body 7 as in the second embodiment, but the radiator fin 6d having a round bar shape (pin fin) is provided on the side surface of the cooler 1d on the vehicle body side. Are arranged vertically and horizontally in the heat receiving portion 3d at predetermined intervals. In this case, the radiation fin 6d is substantially horizontal to the ground.

【0065】本実施形態では、放熱フィン6d間を水平
方向、上下方向の何れにも空気が流れることが可能とな
り、走行風での冷却、車両低速走行時の自然対流何れの
場合でも、放熱フィン6dは有効に放熱可能なフィン形
状である。 (第5の実施の形態)(請求項に対応) 図5(a)に本発明の第5の実施形態の半導体冷却器が
電力変換装置に組み込まれ車体床下に艤装された状態を
示す斜視図を、図5(b)に半導体冷却器単体の斜視図
を示す。
In the present embodiment, the air can flow between the radiating fins 6d both horizontally and vertically, and the radiating fins can be used for both cooling by running wind and natural convection during low-speed running of the vehicle. 6d is a fin shape capable of effectively radiating heat. (Fifth Embodiment) (Corresponding to Claim 3 ) FIG. 5 (a) is a perspective view showing a state in which a semiconductor cooler according to a fifth embodiment of the present invention is incorporated in a power conversion device and is mounted under the floor of a vehicle body. FIG. 5B shows a perspective view of the semiconductor cooler alone.

【0066】本実施形態では多数の幅の狭い板状の放熱
フィン6eが受熱部3eに垂直に所定の間隔で縦横に並
んだ構成の冷却器1eが箱体7に取り付けられる。第4
の実施形態同様、放熱フィン6e間を水平方向、上下方
向の何れにも空気が流れることが可能で、走行風での冷
却、車両低速走行時の自然対流何れの場合でも、放熱フ
ィン6eは有効に放熱可能なフィン形状である。 (第6の実施の形態)(請求項に対応) 図6(a)に本発明の第6の実施形態の半導体冷却器が
電力変換装置に組み込まれ車体床下に艤装された状態を
示す斜視図を、図6(b)に半導体冷却器単体の斜視図
を示す。
In this embodiment, a cooler 1e having a large number of narrow plate-shaped heat radiation fins 6e arranged vertically and horizontally at a predetermined interval perpendicular to the heat receiving portion 3e is attached to the box body 7. Fourth
As in the above embodiment, air can flow between the heat radiating fins 6e both horizontally and vertically, and the heat radiating fins 6e are effective in both cooling by running wind and natural convection when the vehicle is running at low speed. It has a fin shape that can dissipate heat. (Sixth Embodiment) (Corresponding to Claim 3 ) FIG. 6 (a) is a perspective view showing a state in which a semiconductor cooler according to a sixth embodiment of the present invention is incorporated in a power conversion device and is mounted under the floor of a vehicle body. FIG. 6B shows a perspective view of the semiconductor cooler alone.

【0067】本実施形態の冷却器1fは、幅の狭い板状
のフィンをその途中で90度ひねることにより、放熱フ
ィン6fを構成している。符号6f′はひねり部を示し
ている。すなわち、受熱部3f側(根元側)は放熱フィ
ン6fは垂直向きで、先端側は水平向きとなるよう多数
の放熱フィン6fが所定の間隔で受熱部3fに取り付け
られ、冷却器1fを構成している。
In the cooler 1f of the present embodiment, the radiating fins 6f are constructed by twisting a narrow plate-like fin 90 degrees in the middle. Reference numeral 6f 'indicates a twisted portion. That is, a large number of heat radiation fins 6f are attached to the heat receiving portion 3f at predetermined intervals so that the heat radiating fins 6f are vertically oriented on the heat receiving portion 3f side (root side) and the tip end side is horizontally oriented to form the cooler 1f. ing.

【0068】本実施形態でも第4,5の実施形態と同
様、走行風冷却、自然対流冷却の何れにも対応可能な冷
却器としているが、特に走行風の流れやすい放熱フィン
先端側ではフィンは水平方向で走行風の妨げとならぬ向
きとし、自然対流はフィンの温度上昇により発生する上
昇気流によるもので、発熱源に近いフィン根元側がより
自然対流効果があることから、フィン根元は垂直方向の
フィンの向きとし、自然対流効果を充分活かす構成とし
ている。さらに放熱フィン6fの中間のひねり部分に空
気が流れるとそのフィン曲面部分で乱流を促進する効果
も得られる。 (第7の実施の形態)(請求項4,5に対応) (構成) 図7(a)に本発明の第7の実施形態が適用される回路
図を、図7(b)に本発明の第7の実施形態の半導体冷
却器の断面図を示す。
In this embodiment as well, as in the fourth and fifth embodiments, the cooler is compatible with both running wind cooling and natural convection cooling. However, the fins are not provided on the tip side of the radiating fins where running wind easily flows. The horizontal direction does not obstruct the running wind, and the natural convection is due to the ascending air current generated by the temperature rise of the fins, and the fin root side closer to the heat source has more natural convection effect, so the fin root is vertical. The fins are oriented so that the natural convection effect can be fully utilized. Further, when air flows to the twisted portion in the middle of the heat radiation fin 6f, an effect of promoting turbulence in the fin curved surface portion can be obtained. (Seventh Embodiment) (Corresponding to Claims 4 and 5 ) (Structure) FIG. 7A shows a circuit diagram to which the seventh embodiment of the present invention is applied, and FIG. 7B shows the present invention. The sectional view of the semiconductor cooler of a 7th embodiment of is shown.

【0069】本実施形態は、図7(a)に示すように、
半導体素子2aが2個直列に接続され、その両端が電源
の正極、負極に接続され、中間点が出力としてモータヘ
接続される半導体スイッチング回路(1相分)が並列に
3相接続されたインバータ回路からなる電力変換装置で
ある。
In this embodiment, as shown in FIG.
An inverter circuit in which two semiconductor elements 2a are connected in series, both ends thereof are connected to a positive electrode and a negative electrode of a power supply, and a semiconductor switching circuit (for one phase) whose intermediate point is connected to a motor as an output is connected in parallel in three phases. Is a power conversion device.

【0070】図7(b)に示すように、本実施形態で
は、車体8の床下に艤装される電力変換装置の箱体7に
取り付く冷却器は上下2段に分かれて、車体側方側に放
熱部がくるよう設置される。本実施形態では、半導体素
子2aは対向する2面が電極面となる平形半導体素子
で、この電極面を冷却器に押圧して冷却を行う。
As shown in FIG. 7 (b), in this embodiment, the cooler attached to the box body 7 of the electric power converter mounted on the underfloor of the vehicle body 8 is divided into upper and lower stages, and is placed on the side of the vehicle body. It is installed so that the heat dissipation part comes. In the present embodiment, the semiconductor element 2a is a flat semiconductor element having two opposing surfaces serving as electrode surfaces, and the electrode surfaces are pressed against a cooler for cooling.

【0071】上側の冷却器1gの受熱部3gには電力変
換回路の上アーム側の半導体素子2aが、下側の冷却器
1hの受熱部3hには電力変換回路の下アーム側の半導
体素子2aが押圧される。上アーム側の半導体素子2a
は受熱部3gとの間に、熱伝導良好なセラミックス絶縁
板10と導体11を挟んで押圧され、下アーム側の半導
体素子2aはその負極側が受熱部3hに絶縁することな
く直接押圧される。
The heat receiving portion 3g of the upper cooler 1g has the semiconductor element 2a on the upper arm side of the power converter circuit, and the heat receiving portion 3h of the lower cooler 1h has the semiconductor element 2a on the lower arm side of the power converter circuit. Is pressed. Semiconductor device 2a on the upper arm side
Is pressed against the heat receiving portion 3g with the ceramic insulating plate 10 and the conductor 11 having good heat conduction sandwiched therebetween, and the negative arm of the semiconductor element 2a on the lower arm side is directly pressed against the heat receiving portion 3h without being insulated.

【0072】上側の冷却器1g、下側の冷却器1hとも
受熱部3g、3hの車体側方側にはそれぞれ放熱フィン
6g、6hが多数枚構成されるが、その大きさは上側の
冷却器1gの放熱フィン6gの方が、下側の冷却器1h
の放熱フィン6hよりも大きい。(放熱フィン高さが高
い。又は放熱フィン枚数が多い。) (作用)上アーム側の半導体素子2aから発生する熱は
導体11とセラミックス絶縁板10を介して冷却器1g
の受熱部3gに熱伝導され、放熱フィン6gより大気ヘ
熱放散され、下アーム側の半導体素子2aより発生する
熱は直接、冷却器1hの受熱部3hに熱伝導され、放熱
フィン6hより大気へ熱放散される。前述の実施形態と
同様、走行風を利用し大気への熱放散が効率良く行われ
る。
In both the upper cooler 1g and the lower cooler 1h, a large number of heat radiation fins 6g and 6h are formed on the sides of the vehicle body of the heat receiving portions 3g and 3h, respectively. 1g radiation fin 6g is lower side cooler 1h
Is larger than the radiation fin 6h. (The height of the radiation fins is high or the number of the radiation fins is large.) (Operation) The heat generated from the semiconductor element 2a on the upper arm side passes through the conductor 11 and the ceramics insulating plate 10 and the cooler 1g.
Of the semiconductor element 2a on the lower arm side is directly conducted to the heat receiving portion 3h of the cooler 1h, and the heat is dissipated to the atmosphere from the heat radiating fins 6h. Heat is dissipated. Similar to the above-described embodiment, the traveling wind is used to efficiently dissipate heat to the atmosphere.

【0073】上アーム側の半導体素子2aと下アーム側
の半導体素子2aとは許容される温度上昇値は同一であ
るが、下アーム側は冷却器1hと半導体素子2aとの間
に介在するものがなく、冷却器1hに要求される放熱性
能は、上アーム側の冷却器1gと比較し同一性能でなく
低い性能でも許容される。
The upper arm side semiconductor element 2a and the lower arm side semiconductor element 2a have the same allowable temperature rise value, but the lower arm side is interposed between the cooler 1h and the semiconductor element 2a. Therefore, the heat dissipation performance required for the cooler 1h is not the same as that of the cooler 1g on the upper arm side, but is allowed to be low.

【0074】そこで、下アーム側の放熱フィン6hは、
上アーム側の放熱フィン6hと比較して、フィン高さを
低く、又はフィン枚数を少なくする等の方法により放熱
部4の小形化が可能となる。
Therefore, the radiation fin 6h on the lower arm side is
As compared with the heat radiation fins 6h on the upper arm side, the heat radiation portion 4 can be downsized by a method such as reducing the fin height or reducing the number of fins.

【0075】一方、下アーム側の半導体素子2aの負極
側は電力変換回路の最もマイナス側の電位、すなわちア
ース電位であり、本実施形態の(構成)で述べたよう
に、冷却器1hに押圧するに際し、電気的絶縁の必要性
が無く、半導体素子2aは直接、冷却器1hの受熱部3
hに押圧でき、その受熱部3hは直接、箱体7へ取付可
能である。(複数相の下アーム側の半導体素子を相互に
絶縁することなく同一電位の冷却器にとりつけることも
勿論可能である。)上アーム側の半導体素子2aと冷却
器1gの受熱部3gとの間では電気的絶縁を確保するた
めセラミックス絶縁板10が介在され、絶縁沿面距離を
考慮して受熱部3g自体が、下アーム側の受熱部3hよ
りも大きくなる。(言い換えれば設置可能な放熱フィン
枚数は上アーム側の冷却器のほうが多い) さらに、艤装限界9と放熱フィン6g、6hとの関係を
考えると、上アーム側の放熱フィン6gの方が配置上も
上側に配置され、艤装限界9の下側のコーナー部との関
係からフィン高さも上アーム側の放熱フィン6gの方
が、下アーム側の放熱フィン6hよりもフィン高さが高
くできる(車体側方側にのばせる)。
On the other hand, the negative electrode side of the semiconductor element 2a on the lower arm side is the most negative side potential of the power conversion circuit, that is, the ground potential, and is pressed against the cooler 1h as described in (Structure) of this embodiment. In doing so, there is no need for electrical insulation, and the semiconductor element 2a is directly connected to the heat receiving portion 3 of the cooler 1h.
The heat receiving portion 3h can be directly attached to the box body 7. (Of course, it is also possible to attach the semiconductor elements on the lower arm side of a plurality of phases to the cooler of the same potential without insulating them from each other.) Between the semiconductor element 2a on the upper arm side and the heat receiving portion 3g of the cooler 1g. However, the ceramic insulating plate 10 is interposed to ensure electrical insulation, and the heat receiving portion 3g itself is larger than the heat receiving portion 3h on the lower arm side in consideration of the insulation creepage distance. (In other words, the number of radiating fins that can be installed is higher on the cooler on the upper arm side.) Furthermore, considering the relationship between the outfitting limit 9 and the radiating fins 6g and 6h, the radiating fins 6g on the upper arm side are on the upper side. Is also disposed on the upper side, and the fin height of the upper arm side heat radiation fin 6g can be higher than that of the lower arm side heat radiation fin 6h because of the relationship with the lower corner portion of the outfitting limit 9 (vehicle body Extend it to the side).

【0076】前述のように、上アーム側と下アーム側と
では冷却器1g、1hに要求される放熱性能は異なり、
上アーム側の方が下アーム側よりも高い放熱性能を有し
ていることが必要で、構成上必然的に許容される冷却器
の大きさと条件が合致する。又、車両低速走行時の走行
風が不充分な条件下での冷却性能を考えても、上方側に
位置する冷却器1gは少なからずその下方に位置する冷
却器1hの排風温度上昇の影響をうけることからも上方
の冷却器の方が大きく構成できることは望ましい。 (効果) 車両走行時の走行風を有効に利用して冷却器の小形、高
性能化が実現できることは、これまで述べてきた実施形
態と同様であるが、本実施形態では、平形素子を使用し
た際の効率的な半導体素子の冷却器への設置方法を提供
しており、半導体冷却装置全体の小形化、高性能化(む
だのない構成)が可能となる。加えて、車体側方側(比
較的、触手が予想される部位)はアース電位部品で構成
されるので、製品安全上も好ましい。 (第8の実施の形態)(請求項に対応) (構成) 図8(a)に本発明の第8の実施形態の半導体冷却器が
電力変換装置に組み込まれ車体床下に艤装された状態を
示す斜視図を、図8(b)に図8(a)のA8―A8線
に沿う断面図(半導体冷却器の縦断面図)を示す。
As described above, the heat dissipation performance required for the coolers 1g and 1h is different between the upper arm side and the lower arm side.
It is necessary for the upper arm side to have higher heat dissipation performance than the lower arm side, and the size and conditions of the cooler that are inevitably allowed in terms of the structure match. Further, even considering the cooling performance under the condition that the traveling wind is insufficient when the vehicle is traveling at low speed, the cooler 1g located at the upper side is not a little affected by the rise in exhaust air temperature of the cooler 1h located below the cooler 1g. Therefore, it is desirable that the upper cooler can be configured larger. (Effect) It is similar to the above-described embodiments that the cooler can be made compact and high-performance by effectively using the traveling wind when the vehicle is running, but in this embodiment, the flat element is used. In this case, an efficient method for installing the semiconductor element in the cooler is provided, and it is possible to reduce the size of the entire semiconductor cooling device and improve its performance (wasteless configuration). In addition, the side of the vehicle body (the part where the tentacle is expected to be relatively) is composed of the ground potential component, which is preferable in terms of product safety. (Eighth Embodiment) (Corresponding to Claim 6 ) (Structure) FIG. 8A shows a state in which a semiconductor cooler according to an eighth embodiment of the present invention is incorporated in a power conversion device and mounted under the floor of a vehicle body. 8B is a sectional view taken along line A8-A8 of FIG. 8A (a vertical sectional view of the semiconductor cooler).

【0077】本実施形態は、第7の実施形態と同様に、
半導体素子2aは平形素子で、上アーム側と下アーム側
とで冷却器を分割して構成するが、上アーム側、下アー
ム側両方共、半導体素子2aは電気的絶縁無しで直接、
冷却器1i,1jの受熱部3i,3jに押圧される。
This embodiment is similar to the seventh embodiment in that
The semiconductor element 2a is a flat element, and the cooler is divided into an upper arm side and a lower arm side. However, on both the upper arm side and the lower arm side, the semiconductor element 2a is directly connected without electrical insulation.
It is pressed by the heat receiving parts 3i, 3j of the coolers 1i, 1j.

【0078】下アーム側の半導体素子2aは、第7の実
施形態で述べたと同じ理由からその負極側を直接冷却器
1jの受熱部3jに押圧され、箱体7に対しては車体側
方側にその放熱部4が配置されるよう冷却器1jが設置
される。
For the same reason as described in the seventh embodiment, the negative arm side of the semiconductor element 2a on the lower arm side is directly pressed by the heat receiving portion 3j of the cooler 1j, and the side of the vehicle body with respect to the box body 7 side. The cooler 1j is installed so that the heat radiating section 4 is arranged.

【0079】一方、上アーム側の半導体素子2aも下ア
ーム側と同様に、直接、冷却器1iの受熱部3iに押圧
されるが、冷却器1iは箱体7に対しては、絶縁物12
を介して絶縁取付され、放熱部4が下方となるよう箱体
7の下部に設置される。又、下アーム側の半導体素子2
aは、複数相を有する電力変換回路で全ての相において
冷却器の電位はアース電位となり、同一の冷却器への集
約が可能であり、上アーム側の半導体素子2aもその正
極側を冷却器1iの受熱部3iへ押圧すれば、複数相に
おいて同一電位となり、冷却器の集約は可能であること
は言うまでもない。 (作用)車両走行時の走行風が有効に活用できる部位で
ある車体側方側と下方側とに冷却器1i,1jの放熱フ
ィン6i,6jが設置されており、何れの冷却器でも放
熱フィン間を走行風が流れることで有効に冷却可能であ
ることはこれまで述べてきた実施形態と同様である。
On the other hand, the semiconductor element 2a on the upper arm side is also directly pressed by the heat receiving portion 3i of the cooler 1i, like the lower arm side.
It is insulated and attached via the, and is installed in the lower part of the box body 7 so that the heat radiating portion 4 faces downward. Also, the semiconductor element 2 on the lower arm side
a is a power conversion circuit having a plurality of phases, and the potential of the cooler becomes the ground potential in all the phases, and it is possible to combine them into the same cooler, and the semiconductor element 2a on the upper arm side also cools its positive side. It goes without saying that if the heat receiving portion 3i of 1i is pressed, the same potential is obtained in the plurality of phases, and the coolers can be integrated. (Operation) Radiating fins 6i and 6j of the coolers 1i and 1j are installed on the side and the lower side of the vehicle body, which are portions where the running wind when the vehicle is running can be effectively utilized. It is the same as the above-described embodiments that the cooling can be effectively performed by flowing the traveling wind.

【0080】電気的絶縁に関しては、下アーム側の半導
体素子2aについてはその冷却器側電位はアース電位で
あり、冷却器1jの放熱フィン6jが車体側方側に位置
していることは、第7の実施形態と同様である。一方、
上アーム側の半導体素子2aを直接、冷却器に押圧した
ことで、冷却器1iは電位をもつが、箱体7に対しては
絶縁物12で絶縁取付されており、設置事故の心配はな
い。又、箱体7の下部に取り付くことで、触手の恐れの
ない車体下方側へ冷却器1iが配置することになるの
で、製品安全を配慮した製品となる。 (効果) 車両走行時の走行風利用による冷却については、これま
で述べてきた実施形態と同様の効果があるが、加えて、
平形素子で構成する際の部品点数の削減(セラミックス
絶縁板不要)、上アーム、下アーム両方の半導体素子の
冷却器への直接取付による冷却器の小形化が可能であ
る。さらに、箱体7内部で上アーム側、下アーム側の半
導体素子が立体配置となり、電気的接続がより短い導体
で接続可能になり、素子回りの立体インダクタンス実装
が可能となる。 (第9の実施の形態)(請求項1,2に対応) 図9に本発明の第9の実施形態の半導体冷却器の断面図
を示す。
Regarding the electrical insulation, regarding the semiconductor element 2a on the lower arm side, the potential on the cooler side is the ground potential, and the radiation fin 6j of the cooler 1j is located on the side of the vehicle body. This is similar to the seventh embodiment. on the other hand,
Since the semiconductor device 2a on the upper arm side is directly pressed to the cooler, the cooler 1i has a potential, but is insulated and attached to the box body 7 by the insulator 12, so that there is no fear of installation accident. . Further, since the cooler 1i is arranged on the lower side of the vehicle body where there is no fear of tentacles by attaching the cooler 1i to the lower portion of the box body 7, the product is considered in terms of product safety. (Effects) Cooling by using the running wind when the vehicle is running has the same effects as those of the embodiments described above, but in addition,
It is possible to reduce the number of parts when using flat elements (no ceramic insulating plate is required) and to downsize the cooler by directly mounting the semiconductor elements on both the upper and lower arms to the cooler. Further, the semiconductor elements on the upper arm side and the lower arm side are three-dimensionally arranged inside the box body 7, and the conductors can be electrically connected to each other by a shorter conductor, and the three-dimensional inductance mounting around the elements can be performed. (Ninth Embodiment) (Corresponding to Claims 1 and 2 ) FIG. 9 shows a sectional view of a semiconductor cooler according to a ninth embodiment of the present invention.

【0081】本実施形態は、冷却器1kの受熱部3kに
半導体素子2が取り付けられ車体側方側に放熱部4がく
るよう構成されているが、冷却器1kの放熱フィン6k
は水平ではなく、その先端側が上方となるよう傾いて構
成されている。
In the present embodiment, the semiconductor element 2 is attached to the heat receiving portion 3k of the cooler 1k and the heat radiating portion 4 is provided on the side of the vehicle body. However, the heat radiating fins 6k of the cooler 1k are arranged.
Is not horizontal, but is tilted so that its tip side is upward.

【0082】車両走行時の走行風利用に加え、放熱フィ
ン6k間の空気が放熱フィン表面に沿って上方、先端側
へ流れやすくしていることで、自然冷却時の冷却効果を
向上したものである。 (第10の実施の形態)(請求項に対応) 図10に本発明の第10の実施形態の半導体冷却器が電
力変換装置に組み込まれ車体床下に艤装された状態を示
す斜視図を示す。
In addition to the use of the running wind when the vehicle is running, the air between the heat radiating fins 6k is made to easily flow upward along the surface of the heat radiating fins to the tip side, thereby improving the cooling effect during natural cooling. is there. (Tenth Embodiment) (Corresponding to Claim 7 ) FIG. 10 is a perspective view showing a state in which a semiconductor cooler according to a tenth embodiment of the present invention is incorporated in a power conversion device and is mounted under the floor of a vehicle body. .

【0083】本実施形態は、冷却器1lを複数個並べて
箱体7に設置したものであり、放熱フィン6lは板状の
フィンを水平にある間隔で設置しているが、放熱フィン
6lの先端側の幅は根元側(受熱部3l側)の幅よりも
小さく、それぞれの冷却器1lの放熱フィン6l間に、
車体側方へいくにしたがって広くなる間隔を設けたもの
である。
In this embodiment, a plurality of coolers 1l are arranged side by side and installed in the box body 7. As the heat radiation fins 6l, plate-like fins are horizontally installed at a certain interval. The width on the side is smaller than the width on the root side (on the side of the heat receiving portion 3l), and between the radiator fins 6l of the respective coolers 1l,
It is provided with an interval that widens toward the side of the vehicle body.

【0084】この間隔部分により、車両低速時の充分な
走行風が得られない状態での自然冷却効果を増している
のは、第1の実施形態で既に述べた通りであるが、加え
て、走行風の放熱フィンへの取り込みに関しても隣り合
う放熱フィン間の間隔が車体側方側ほど広くなっている
ので、冷却器の受熱部側、根元側の放熱フィン部分にま
で走行風が入り込みやすいという利点がある。又、放熱
フィンのフィン効率からも、先端側は根元側に比べて冷
却に寄与する度合いは低く、その意味からも効率的なフ
ィン形状となる。 (第11の実施の形態) 図11に本発明の第11の実施形態の半導体冷却器単体
の斜視図を示す。
As described in the first embodiment, the natural cooling effect in the state where sufficient traveling wind cannot be obtained when the vehicle is running at low speed is increased by this interval portion. Regarding the intake of running wind into the heat dissipation fins, the distance between adjacent heat dissipation fins is wider toward the side of the vehicle body, so it is easy for the travel air to enter the heat receiving side of the cooler and the heat dissipation fins on the base side. There are advantages. Also, in terms of fin efficiency of the radiation fins, the tip side contributes less to cooling than the root side, and in that sense, the fin shape is efficient. (Eleventh Embodiment) FIG. 11 is a perspective view of a semiconductor cooler unit according to an eleventh embodiment of the present invention.

【0085】本実施形態は、冷却器1mの放熱フィン6
mに穴13を設けた例である。
In this embodiment, the radiation fin 6 of the cooler 1m is used.
This is an example in which a hole 13 is provided in m.

【0086】車両走行時の走行風利用に関しては、これ
まで述べてきた実施形態と同様の効果があり、受熱部3
m側から伝わる熱を効果的に放熱できるが、加えて穴1
3を放熱フィン6mに設けたことで、放熱部4を自然対
流時の上昇気流も通ることになり、車両低速走行時、走
行風が充分得られない場合の性能低下を防止するもので
ある。さらに、本実施形態では、上下に隣り合う放熱フ
ィン6mで穴13の位置が同一ではなくずれていること
から、上昇気流が放熱フィン6mの表面を流れながら上
側へと流れていくので放熱フィン6mの放熱効果は向上
する。 (第12の実施の形態) 図12に本発明の第12の実施形態の半導体冷却器単体
の斜視図を示す。
Regarding the use of traveling wind when the vehicle is traveling, the same effects as those of the above-described embodiments are obtained, and the heat receiving portion 3 is used.
The heat transmitted from the m side can be radiated effectively, but in addition the hole 1
By providing 3 on the radiation fin 6m, the rising airflow at the time of natural convection also passes through the heat radiation portion 4 and prevents performance degradation when the vehicle is running at low speed and sufficient running wind is not obtained. Further, in the present embodiment, since the positions of the holes 13 are not the same in the vertically adjacent radiating fins 6m but deviate from each other, the ascending air current flows upward while flowing over the surface of the radiating fins 6m. The heat radiation effect of is improved. (Twelfth Embodiment) FIG. 12 shows a perspective view of a semiconductor cooler unit according to a twelfth embodiment of the present invention.

【0087】本実施形態では、冷却器1nの放熱フィン
6nに切り起こし14を設け、第11の実施形態と同様
の自然対流時の冷却効果を向上したものである。切り起
こし14は放熱フィンの一部分を一辺を残してくりぬ
き、その部分のみを放熱フィン6nに対し曲げたもの
で、本実施形態では、四角形の1辺を残してくりぬき、
切り起こし14を構成している。
In this embodiment, the heat radiating fins 6n of the cooler 1n are provided with the cut-and-raised parts 14 to improve the cooling effect during natural convection as in the eleventh embodiment. The cut-and-raised part 14 is formed by hollowing out a part of the radiating fin with one side left and bending only that part with respect to the radiating fin 6n.
It constitutes the cut-and-raised part 14.

【0088】半導体素子から発生する熱は当然、放熱フ
ィン6nの根元側すなわち受熱部3n側から熱伝導によ
りフィン先端側へと熱輸送されるので、切り起こし14
はフィン根元側の1辺を残し、フィン先端側を曲げるほ
うが放熱フィン6nの熱輸送上効率が良い。又、この切
り起こし14により放熱フィン6nに設けられたくりぬ
き部分(穴14n)を空気が上昇することになるが、こ
の空気の流れを遮らずに効率良くフィン表面を通るよう
にする為、切り起こし14は上方に90度以下の角度で
曲げている。90度以下の角度としているのは、走行風
がフィン根元側へ流れ込むことも考慮し、それに対して
抵抗とならぬよう配慮したためである。
Naturally, the heat generated from the semiconductor element is transferred from the base side of the heat radiation fin 6n, that is, the heat receiving portion 3n side to the tip side of the fin by heat conduction.
Is better in terms of heat transport of the radiating fins 6n if one side of the fin base side is left and the fin tip side is bent. Also, due to the cut-and-raised parts 14, the air rises up the hollow portion (hole 14n) provided in the radiation fin 6n, but in order to efficiently pass through the fin surface without blocking the flow of this air, The raising 14 is bent upward at an angle of 90 degrees or less. The angle is set to 90 degrees or less in consideration of the fact that the running wind flows into the fin base side, so that the wind does not become a resistance against it.

【0089】本実施形態では第11の実施形態と同様、
放熱フィン群を上下に空気が流れることが可能となり、
自然冷却時の冷却性能も確保される。さらに切り起こし
14は単なる穴と違って放熱面積が減少しないので、さ
らに冷却効果が向上するという利点がある。又、本実施
形態では切り起こし14は放熱フィン6nの同一箇所に
設けた例としているが、第11の実施形態と同様、上下
に隣り合う放熱フィン6nで切り起こし14の位置を異
なる位置として、上方に移動する空気を効率良くフィン
表面を流れるような構成も可能である。 (第13の実施の形態) 図13に本発明の第13の実施形態の半導体冷却器単体
の斜視図を示す。
In this embodiment, similar to the eleventh embodiment,
It is possible for air to flow up and down the heat dissipation fin group,
The cooling performance during natural cooling is also secured. Further, the cut-and-raised part 14 has a merit that the cooling effect is further improved because the heat radiation area is not reduced unlike a simple hole. In addition, in the present embodiment, the cut-and-raised parts 14 are provided at the same position of the heat-radiating fins 6n. A configuration in which the air moving upward can efficiently flow on the fin surface is also possible. (Thirteenth Embodiment) FIG. 13 shows a perspective view of a semiconductor cooling device alone according to a thirteenth embodiment of the present invention.

【0090】本実施形態では、冷却器1oの放熱フィン
6oに、受熱部3o寄りの根元側から先端へつながるス
リット15を設けたものである。本実施形態でも、この
スリット15の部分が第11の実施形態での穴13、第
12の実施形態での切り起こし14のくりぬき部分の穴
14nと同様、空気を上下方向に流す役目をもつことに
なり、自然冷却時での放熱性能の確保につながる。 (第14の実施の形態) 図14に本発明の第14の実施形態の半導体冷却器単体
の斜視図を示す。
In this embodiment, the radiator fin 6o of the cooler 1o is provided with a slit 15 extending from the root side near the heat receiving section 3o to the tip. Also in the present embodiment, the slit 15 has a function of flowing air in the vertical direction, like the hole 13 in the eleventh embodiment and the hole 14n in the hollow portion of the cut-and-raised portion 14 in the twelfth embodiment. This will ensure the heat dissipation performance during natural cooling. (Fourteenth Embodiment) FIG. 14 is a perspective view of a semiconductor cooler unit according to a fourteenth embodiment of the present invention.

【0091】本実施形態の冷却器1pでは、第13の実
施形態の構成に加えて、スリット15により分割される
放熱フィン6pを受熱部3p寄りのスリット15の根元
部分から部分的に曲げた形状とし、その曲げ角度は隣り
合う分割された放熱フィン部分で異なる角度としてい
る。この場合、第13の実施形態で説明した効果に加え
て、放熱フィン6pの曲げにより角度の異なる分割され
たフィン部分での乱流効果があり、さらに放熱性能は向
上する。 (第15の実施の形態) 図15に本発明の第15の実施形態の半導体冷却器単体
の斜視図を示す。
In the cooler 1p of this embodiment, in addition to the structure of the thirteenth embodiment, the heat radiation fin 6p divided by the slit 15 is partially bent from the root of the slit 15 near the heat receiving portion 3p. The bending angle is different between the adjacent divided radiation fin portions. In this case, in addition to the effect described in the thirteenth embodiment, there is a turbulent flow effect in the divided fin portions having different angles due to the bending of the heat radiation fin 6p, and the heat radiation performance is further improved. (Fifteenth Embodiment) FIG. 15 is a perspective view of a semiconductor cooler unit according to a fifteenth embodiment of the present invention.

【0092】本実施形態では、冷却器1qの多数枚の放
熱フィン6qの先端側を熱伝導良好な棒16(例えばア
ルミニウム合金あるいは銅などに代表される金属製丸
棒)で接続することによって、放熱フィン6qの多数枚
に対し温度上昇値を均一化する効果がある。
In the present embodiment, by connecting the tip ends of the large number of heat radiation fins 6q of the cooler 1q with the rod 16 having good thermal conductivity (for example, a metal round rod typified by aluminum alloy or copper), This has the effect of making the temperature rise value uniform for a large number of heat radiation fins 6q.

【0093】半導体素子から発生する熱は熱伝導により
受熱部3qを介して放熱フィン6qに伝わる為、半導体
素子の実装部分から遠い位置にある放熱フィン6qの冷
却効果は少なくなるが、本実施形態によればその放熱フ
ィン6qにもこの棒16により熱伝導が行われ冷却能力
の向上が可能である。
Since the heat generated from the semiconductor element is transferred to the radiation fin 6q through the heat receiving portion 3q by heat conduction, the cooling effect of the radiation fin 6q located far from the mounting portion of the semiconductor element is reduced. According to the above, heat conduction is also performed by the rod 16 to the heat radiation fin 6q, and the cooling capacity can be improved.

【0094】さらに多数枚の放熱フィン6qが先端側で
棒16により互いに機械的に拘束しあうことで、放熱フ
ィン群の剛性アップにつながり、車両走行時の振動条件
に対し、機械的破壊等がなく、振動による騒音の発生を
防止する働きもある。 (第16の実施の形態)(請求項に対応) 図16(a)に本発明の第16の実施形態の半導体冷却
器の縦断面図を示す。図16(b)に図16(a)のA
16部分の詳細断面図を示す。
Further, since a large number of heat radiation fins 6q are mechanically constrained to each other by the rod 16 on the tip side, the rigidity of the heat radiation fin group is increased, and mechanical destruction or the like is caused against vibration conditions when the vehicle is running. It also has the function of preventing the generation of noise due to vibration. (Sixteenth Embodiment) (Corresponding to Claim 8 ) FIG. 16A is a vertical sectional view of a semiconductor cooler according to a sixteenth embodiment of the present invention. FIG. 16B shows A of FIG.
The detailed sectional drawing of 16 parts is shown.

【0095】本実施形態では、冷却器1rは半導体素子
2の取り付く受熱部3rとそれに多数枚の放熱フィン6
rが先端側が上になるよう角度をつけて設けられるが、
放熱フィン6rはその内部に空洞17をもっており、こ
の空洞17の部分に冷媒18が封入される。つまりこの
空洞17が冷媒18の流路となり、放熱フィン6rのそ
れぞれはヒートパイプ化されている。
In this embodiment, the cooler 1r includes a heat receiving portion 3r to which the semiconductor element 2 is attached and a large number of heat radiation fins 6 provided therein.
r is angled so that the tip side is up,
The radiating fin 6r has a cavity 17 therein, and the coolant 18 is enclosed in the cavity 17. That is, the cavity 17 serves as a flow path for the coolant 18, and each of the heat radiation fins 6r is formed into a heat pipe.

【0096】本実施形態によれば、冷媒18の相変化に
より熱が根元側から先端側へとつたわるのでフィン効率
が向上し高性能の冷却器が可能である。放熱フィン6r
は先端を上方に傾け、第9の実施形態で述べた効果をも
つことはもちろん、放熱フィン6rの内、数枚のみを、
この実施形態のようにヒートパイプ化し、第15の実施
形態を適用し、先端側を棒で接続し、放熱フィン6r全
体の放熱性能向上につなげることも可能である。(この
時、先端側を接続する棒は第15の実施形態で述べた金
属製丸棒以外にも、もちろん丸棒形状のヒートパイプで
の構成も、もちろん可能である。) (第17の実施の形態)(請求項に対応) 図17に本発明の第17の実施形態の半導体冷却器の縦
断面図を示す。
According to this embodiment, heat changes from the root side to the tip side due to the phase change of the refrigerant 18, so that fin efficiency is improved and a high performance cooler is possible. Heat dissipation fin 6r
Has the tip tilted upward to obtain the effect described in the ninth embodiment, and, of course, only some of the radiation fins 6r are
It is also possible to form a heat pipe as in this embodiment, apply the fifteenth embodiment, and connect the tip side with a rod to improve the heat dissipation performance of the entire heat dissipation fin 6r. (At this time, of course, the rod for connecting the tip side may be a round rod-shaped heat pipe in addition to the metal round rod described in the fifteenth embodiment.) (Seventeenth embodiment) Form) (corresponding to claim 9 ) FIG. 17 is a vertical cross-sectional view of a semiconductor cooler according to a seventeenth embodiment of the present invention.

【0097】本実施形態では、冷却器1sの受熱部3s
は半導体素子2の実装される部分では厚みが大きく、半
導体素子2から遠ざかるにつれて厚みがうすくなるよ
う、一様の厚みではない。もちろん、受熱部3sの半導
体素子2の取り付く側の面は平面であり、放熱フィン6
s側の面が平らでない構造で厚みをかえている。従って
フィン高さ同一の放熱フィン6sを多数枚つけると、放
熱フィン6s先端部分は車体側方側への突き出し度合い
が異なる。
In the present embodiment, the heat receiving portion 3s of the cooler 1s.
Is not uniform in thickness so that the portion where the semiconductor element 2 is mounted has a large thickness and becomes thinner as the distance from the semiconductor element 2 increases. Of course, the surface of the heat receiving portion 3s on the side to which the semiconductor element 2 is attached is a flat surface, and
The surface on the s side is not flat, and the thickness varies. Therefore, when a large number of heat radiation fins 6s having the same fin height are attached, the degree of protrusion of the heat radiation fins 6s toward the vehicle body side differs.

【0098】本実施形態では、半導体素子2を取り付け
る受熱部3s部分の温度勾配を考慮し、放熱フィン6s
のフィン効率を高めるよう半導体素子2から遠ざかった
部位(半導体素子との温度勾配が大きく温度は低い)で
はべース部分の厚みを薄くしてその部分に取り付く放熱
フィン6sと半導体素子2の温度勾配を大きくすること
なく効率的に冷却できる。加えて、平形形状の半導体素
子を使う際は、冷却器に向かって押圧する為、冷却器に
は曲げ応力がかかるが、受熱部の厚みが半導体素子の押
圧される中央部分が厚いことからたわみも軽減され、半
導体素子の圧接力分布が一様になる利点ももつ。 (第18の実施の形態) 図18に本発明の第18の実施形態の半導体冷却器の縦
断面図を示す。
In this embodiment, in consideration of the temperature gradient of the heat receiving portion 3s where the semiconductor element 2 is attached, the heat radiation fin 6s is provided.
Temperature of the semiconductor element 2 and the heat radiation fin 6s attached to that portion by thinning the thickness of the base portion at a portion distant from the semiconductor element 2 (the temperature gradient with the semiconductor element is large and the temperature is low) so as to improve the fin efficiency. It can be cooled efficiently without increasing the gradient. In addition, when using a flat-shaped semiconductor element, since it is pressed toward the cooler, bending stress is applied to the cooler, but since the thickness of the heat receiving part is large in the central part where the semiconductor element is pressed Also has the advantage that the contact pressure distribution of the semiconductor element becomes uniform. (Eighteenth Embodiment) FIG. 18 is a vertical sectional view of a semiconductor cooler according to an eighteenth embodiment of the present invention.

【0099】本実施形態では、冷却器1tの放熱フィン
6tのフィン高さに関し、多数枚の放熱フィン6tの長
さを互いに異ならせている。すなわち、半導体素子2の
取り付く部分(受熱部3t側)の中心部分が最も長く、
半導体素子2から離れた位置では短くしたもので、半導
体素子2からの位置により放熱フィン6tは冷却へ寄与
する度合いが異なるので、半導体素子2から遠い側に位
置する放熱フィン6tは長さを短くして小形化したもの
である。
In the present embodiment, regarding the fin height of the heat radiation fins 6t of the cooler 1t, the lengths of the many heat radiation fins 6t are different from each other. That is, the central portion of the mounting portion (on the side of the heat receiving portion 3t) of the semiconductor element 2 is the longest,
The heat radiation fins 6t located on the side far from the semiconductor element 2 have a short length because the heat radiation fins 6t contribute to cooling differently depending on the position from the semiconductor element 2 because the heat radiation fins 6t are shortened at a position away from the semiconductor element 2. It has been miniaturized.

【0100】冷却器全体として効率の良い構成が可能と
なるだけでなく、本実施形態でも、平形形状の半導体素
子を使う際は、冷却器に向かって押圧する為、冷却器に
は曲げ応力がかかるが、この曲げに対して放熱フィンは
梁の働きをすることになる。フィン高さが高いほど断面
係数の大きい梁となり、最も曲げ力のかかる半導体素子
中央部分で冷却器の剛性は高く、結果、たわみが軽減さ
れ、半導体素子の圧接力分布が一様になる利点ももつ。 (第19の実施の形態) 図19(a)に本発明の第19の実施形態の半導体冷却
器が電力変換装置に組み込まれ車体床下に艤装された状
態を示す正面図を示し、図19(b)に図19(a)の
左側面図を、図19(c)に図19(a)のB19−B
19線に沿う断面図を示す。
Not only is it possible to construct an efficient cooler as a whole, but also in this embodiment, when a flat semiconductor element is used, since it is pressed toward the cooler, bending stress is applied to the cooler. However, the radiation fin acts as a beam against this bending. The higher the fin height, the larger the cross-section coefficient of the beam, and the higher the rigidity of the cooler in the central part of the semiconductor element where the bending force is most applied. As a result, the deflection is reduced and the pressure contact force distribution of the semiconductor element becomes uniform. Hold. 19th Embodiment FIG. 19A is a front view showing a state in which a semiconductor cooler according to a 19th embodiment of the present invention is incorporated in a power conversion device and is installed under the floor of a vehicle body. 19B is a left side view of FIG. 19A, and FIG. 19C is a B19-B of FIG. 19A.
A sectional view taken along line 19 is shown.

【0101】本実施形態では、冷却器1には保護カバ−
19が冷却器1を覆うように取り付けられ、保護カバ−
19には内外を通気可能とする多数の穴19aが設けら
れ、保護カバ−19の車体側方側となる面の内側には地
面に垂直で冷却器側に傾けた板状の導風板20が設けら
れている。導風板20は保護カバ−19の内側、車両進
行方向に対し中央付近に設けられ、中央部分が冷却器1
側に凸となる形状に曲がった板状のものである。
In this embodiment, the cooler 1 has a protective cover.
19 is attached so as to cover the cooler 1, and a protective cover is provided.
A large number of holes 19a that allow ventilation inside and outside are provided in the inside 19, and a plate-shaped baffle plate 20 which is perpendicular to the ground and inclined to the cooler side is provided inside the surface of the protective cover 19 on the side of the vehicle body. Is provided. The baffle plate 20 is provided inside the protective cover 19 and near the center with respect to the traveling direction of the vehicle.
It has a plate-like shape that is bent to a side.

【0102】本実施形態は、導風板20を用いて、車両
走行時の走行風を効果的に冷却器1側に取り入れるよう
にしたものである。
In this embodiment, the wind guide plate 20 is used to effectively take in the traveling wind when the vehicle is traveling to the cooler 1 side.

【0103】本実施形態によれば、車両の走行方向が何
れの場合でも保護カバ−19に設けた導風板20の内側
の面に沿って走行風が冷却器1側へ導かれ、走行風を風
下側(装置の後部側)の冷却器1にも充分供給できる。 (第20の実施の形態) 図20(a)に本発明の第20の実施形態の半導体冷却
器が電力変換装置に組み込まれ車体床下に艤装された状
態を示す正面図を示し、図20(b)に図20(a)の
B20−B20線に沿う断面図を示す。
According to this embodiment, the traveling wind is guided to the cooler 1 side along the inner surface of the wind guide plate 20 provided on the protective cover 19 regardless of the traveling direction of the vehicle, and the traveling wind is generated. Can be sufficiently supplied to the cooler 1 on the leeward side (rear side of the apparatus). (Twentieth Embodiment) FIG. 20 (a) is a front view showing a state where the semiconductor cooler of the twentieth embodiment of the present invention is incorporated in a power conversion device and is outfitted under the floor of the vehicle body. FIG. 20B is a sectional view taken along the line B20-B20 of FIG.

【0104】本実施形態は、電力変換装置の車体側方側
に複数個の冷却器1が配置される場合で、装置の箱体7
の両端(進行方向に対し)に冷却器1を分けて取り付
け、それぞれに、内外を通気可能とする多数の穴19a
が設けられた保護カバ−19を取り付ける。保護カバ−
19の車体側方側となる面の内側には装置の両端に位置
する冷却器1の近くに、地面に垂直で冷却器1側に傾け
た板状の導風板20aが設げられる。その傾ける方向は
電力変換装置の両端側が車体中央側(放熱フィン部
側)、電力変換装置の中央側が車体側方側となるように
対称的な傾きとしている。(つまり、装置の端部に配置
された冷却器1を向く方向に傾いている。)車両走行
時、走行風の最も得にくい最後部(車両が何れの方向に
も走行することを考えると、当然、電力変換装置の両端
部分となる)の冷却器1に、導風板20aが向くこと
で、何れの方向に車両が走行する場合も、走行風が進行
方向最後部の冷却器にも供給される構成となり、走行風
を有効に利用した冷却が可能である。 (第21の実施の形態) 図21に本発明の第21の実施形態の電力変換装置の平
面図方向の断面図を示す。
In the present embodiment, a plurality of coolers 1 are arranged on the side of the power conversion device on the vehicle body side.
Multiple coolers 1 are attached to both ends (with respect to the traveling direction) of each, and a large number of holes 19a are formed in each to allow ventilation inside and outside.
Attach the protective cover 19 provided with. Protective cover
A plate-shaped air guide plate 20a that is perpendicular to the ground and is inclined toward the cooler 1 side is provided near the cooler 1 located at both ends of the device inside the surface of the vehicle body 19 that is on the side of the vehicle body. The tilting directions are symmetrical so that both ends of the power converter are on the vehicle body center side (radiation fin portion side) and the center of the power converter is on the vehicle body side. (That is, it is inclined in the direction toward the cooler 1 arranged at the end of the device.) When the vehicle is traveling, the rearmost part (the vehicle travels in either direction) in which traveling wind is the least obtainable, Of course, when the vehicle travels in any direction by the baffle plate 20a facing the cooler 1 (which becomes both ends of the power converter), the traveling wind is also supplied to the cooler at the rearmost portion in the traveling direction. As a result, the cooling can be performed by effectively using the traveling wind. (Twenty-first Embodiment) FIG. 21 shows a sectional view in the plan view direction of a power conversion device according to a twenty-first embodiment of the present invention.

【0105】本実施形態は、横に並んだ複数個の冷却器
の内中央の冷却器1uはその両端の隣り合う冷却器1よ
りも小さく(放熱フィンの高さが低く)、保護カバ−1
9の内側に設けられた導風板20の凸部にあわせ、中央
部分の冷却器1uの放熱フィン高さが他の部分よりも小
さくなるよう構成したものである。
In the present embodiment, the cooler 1u at the center of the plurality of coolers arranged side by side is smaller than the coolers 1 adjacent to each other at both ends thereof (the height of the radiation fins is low), and the protective cover-1
In accordance with the convex portion of the baffle plate 20 provided inside 9, the height of the radiating fins of the cooler 1u in the central portion is smaller than that of the other portions.

【0106】走行方向に対し、最も走行風の得にくい最
後部にあたる冷却器1に、導風板20の向きがあってい
ることに加え、すぐ前に位置する冷却器が小さく(放熱
フィンの高さが低く)、走行風が入りやすくなっている
ことから、より最後部での走行風冷却が効率的となる。 (第22の実施の形態)(請求項10,11,12に対
応)
In addition to the direction of the baffle plate 20 being in the cooler 1 which is the rearmost part in which the running wind is hard to be obtained in the running direction, the cooler located immediately in front is small (the height of the radiation fin is high). Since the traveling wind is more likely to enter, the cooling of the traveling wind at the rearmost portion becomes more efficient. (Twenty-second embodiment) (corresponding to claims 10 , 11, and 12 )

【0107】本実施形態は、第2の実施形態で説明した
構成と冷却器1bの放熱部4は同じ構成で、相違点は、
半導体素子は平形の半導体素子2aを用いており、半導
体素子2aと冷却器1bの受熱部3bとの間にはセラミ
ックス絶縁板10、導体11を介して押圧する構成とし
ている点(これも第7の実施形態で説明した構成)に加
え、半導体素子2の反対側の面にこれまで述べてきた冷
却器と比較すると小形の補助フィン21を取り付けた点
である。
In this embodiment, the structure described in the second embodiment is the same as that of the heat radiating section 4 of the cooler 1b.
As the semiconductor element, a flat semiconductor element 2a is used, and the ceramic insulating plate 10 and the conductor 11 are used to press between the semiconductor element 2a and the heat receiving portion 3b of the cooler 1b (this is also the seventh aspect). In addition to the configuration described in the above embodiment), a small auxiliary fin 21 is attached to the surface on the opposite side of the semiconductor element 2 as compared with the cooler described so far.

【0108】平形形状の半導体素子を本発明の各実施形
態それぞれに適用する場合、冷却器の構成上、半導体素
子の一方の面を冷却器に押圧することになるので、片面
冷却となる。
When a flat-shaped semiconductor element is applied to each of the embodiments of the present invention, one side of the semiconductor element is pressed against the cooler due to the structure of the cooler, so that single-sided cooling is performed.

【0109】構成上も簡易であり、多くの利点をもつ冷
却方式であるが、発生する熱に限度があるのは当然であ
る。特に鉄道車両駆動用の電力変換装置ではその発生損
失は一定では無く車両の走行により変わってくる。損失
の変化に応じて、各部位の温度も変化するが、熱時定数
によりその変化の応答は変わり、半導体素子の内部、及
びその近傍では瞬時的な熱負荷に対して温度上昇してし
まう。それを考慮して冷却器1bの所要性能が決まるこ
とになるが、瞬時的な温度上昇がおさえられれば、当
然、冷却器1bの許容最高温度をあげることができ、冷
却器の小形化につながる。
Although the cooling system has a simple structure and many advantages, it is natural that the heat generated is limited. Particularly in a power conversion device for driving a railway vehicle, the generated loss is not constant and varies depending on the running of the vehicle. Although the temperature of each part also changes according to the change in loss, the response of the change changes due to the thermal time constant, and the temperature rises in the semiconductor element and in the vicinity thereof due to an instantaneous heat load. Although the required performance of the cooler 1b is determined in consideration of it, if the instantaneous temperature rise is suppressed, the maximum allowable temperature of the cooler 1b can naturally be raised, which leads to downsizing of the cooler. .

【0110】そこで、本実施形態に示す補助フィン21
を半導体素子のもう一方の面に取り付けることで、主冷
却を行う冷却器1bと比べて、小形の冷却器でも、熱時
定数が小さいことから、瞬時的な過負荷(ピーク損失)
に対しては、主冷却フィンと同等以上に冷却能力をもっ
ており、ピーク損失時の過渡的な素子温度上昇を抑制す
ることが可能となる。ひいては、主冷却フィンの所用熱
処理能力を軽減でき、冷却器の小形化、装置の小形化に
つながる。
Therefore, the auxiliary fin 21 shown in the present embodiment.
By mounting on the other side of the semiconductor element, even a small cooler has a small thermal time constant compared to the cooler 1b that performs main cooling, so instantaneous overload (peak loss)
In contrast, the main cooling fin has a cooling capacity equal to or higher than that of the main cooling fin, and it is possible to suppress a transient increase in element temperature at the time of peak loss. Consequently, the required heat treatment capacity of the main cooling fins can be reduced, which leads to downsizing of the cooler and downsizing of the device.

【0111】又、補助フィン21のフィンの向きは装置
の箱体7内を循環する空気により冷却されるので、少な
くとも上下に空気が流れるよう垂直な向きにはフィン溝
22が設けられており、主冷却の為の冷却器1bとはフ
ィンの向きは異なる。又、補助フィン21は通常アルミ
ニウム又は銅製の熱伝導良好な金属をその材料とし、箱
体内部であることから、電気的絶縁することなく直接半
導体素子2aに押圧されるので、電極として使用でき
る。
Since the fins of the auxiliary fins 21 are cooled by the air circulating in the box 7 of the apparatus, the fin grooves 22 are provided at least vertically so that the air flows vertically. The direction of the fins is different from that of the cooler 1b for main cooling. Further, the auxiliary fin 21 is usually made of aluminum or copper, which is a metal having good thermal conductivity, and is located inside the box body. Therefore, the auxiliary fin 21 is directly pressed against the semiconductor element 2a without electrical insulation, and thus can be used as an electrode.

【0112】[0112]

【発明の効果】本発明によれば車両走行時の走行風を有
効に冷却器の冷却風として活用でき、装置の小形軽量化
につながるだけでなく、装置の構成が簡素化され、部品
種類、部品点数の少ない信頼性の向上した装置が実現で
きる。
According to the present invention, the traveling wind when the vehicle is traveling can be effectively utilized as the cooling wind of the cooler, which not only leads to the reduction in size and weight of the device, but also simplifies the structure of the device and makes it possible to reduce the number of parts, It is possible to realize a device with a small number of parts and improved reliability.

【0113】又、冷媒を使わない冷却方式が採用できる
ので、冷媒封入のための特殊な製造技術が不要になり、
冷媒の漏れ管理等、メンテナンスの向上にもつながる。
さらに冷媒の凍結といった耐環境性を考慮することも無
く、冷媒の及ぼす地球環境ヘの影響も皆無である。加え
て材料の種類がへることで製品の廃棄の際も、問題にな
ることなくリサイクル可能な製品が実現できる。
Further, since a cooling method which does not use a refrigerant can be adopted, a special manufacturing technique for charging the refrigerant is unnecessary,
It also leads to improved maintenance such as refrigerant leak management.
Furthermore, without considering the environment resistance such as freezing of the refrigerant, there is no influence of the refrigerant on the global environment. In addition, by reducing the types of materials, it is possible to realize a product that can be recycled without causing a problem even when the product is discarded.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)はこの発明の第1の実施形態の半導体冷
却器が電力変換装置に組み込まれ車体床下に艤装された
状態を示す斜視図。(b)は図1(a)のA1−A1線
に沿う半導体冷却器の断面図。
FIG. 1A is a perspective view showing a state in which a semiconductor cooler according to a first embodiment of the present invention is incorporated in a power conversion device and is installed under the floor of a vehicle body. 1B is a sectional view of the semiconductor cooler taken along the line A1-A1 of FIG.

【図2】(a)は第2の実施形態の半導体冷却器が電力
変換装置に組み込まれ車体床下に艤装された状態を示す
斜視図。(b)は図2(a)のA2−A2線に沿う半導
体冷却器の断面図。
FIG. 2A is a perspective view showing a state in which the semiconductor cooler of the second embodiment is incorporated in a power conversion device and is installed under the floor of a vehicle body. 2B is a cross-sectional view of the semiconductor cooler taken along the line A2-A2 of FIG.

【図3】(a)は第3の実施形態の半導体冷却器が電力
変換装置に組み込まれ車体床下に艤装された状態を示す
斜視図。(b)は図3(a)のA3−A3に沿う半導体
冷却器の断面図。
FIG. 3A is a perspective view showing a state where the semiconductor cooler of the third embodiment is incorporated in a power conversion device and is installed under the floor of a vehicle body. 3B is a cross-sectional view of the semiconductor cooler taken along line A3-A3 of FIG.

【図4】(a)は第4の実施形態の半導体冷却器が電力
変換装置に組み込まれ車体床下に艤装された状態を示す
斜視図。(b)は図4(a)の半導体冷却器単体の斜視
図。
FIG. 4A is a perspective view showing a state in which the semiconductor cooler of the fourth embodiment is incorporated in a power conversion device and is installed under the floor of a vehicle body. FIG. 4B is a perspective view of the semiconductor cooling device alone of FIG.

【図5】(a)は第5の実施形態の半導体冷却器が電力
変換装置に組み込まれ車体床下に艤装された状態を示す
斜視図。(b)は図5(a)の半導体冷却器単体の斜視
図。
FIG. 5A is a perspective view showing a state where the semiconductor cooler of the fifth embodiment is incorporated in a power conversion device and is installed under the floor of a vehicle body. FIG. 5B is a perspective view of the semiconductor cooler alone of FIG.

【図6】(a)は第6の実施形態の半導体冷却器が電力
変換装置に組み込まれ車体床下に艤装された状態を示す
斜視図。(b)は図6(a)の半導体冷却器単体の斜視
図。
FIG. 6A is a perspective view showing a state in which the semiconductor cooler of the sixth embodiment is incorporated in a power conversion device and is installed under the floor of a vehicle body. FIG. 6B is a perspective view of the semiconductor cooler alone of FIG.

【図7】(a)は第7の実施形態の半導体冷却器の回路
図。(b)は図7(a)の回路を備えた半導体冷却器の
断面図。
FIG. 7A is a circuit diagram of a semiconductor cooler according to a seventh embodiment. 7B is a sectional view of a semiconductor cooler including the circuit of FIG.

【図8】(a)は第8の実施形態の半導体冷却器が電力
変換装置に組み込まれ車体床下に艤装された状態を示す
斜視図。(b)は図8(a)のA8−A8線に沿う半導
体冷却器の断面図。
FIG. 8A is a perspective view showing a state where the semiconductor cooler of the eighth embodiment is incorporated in a power conversion device and is installed under the floor of a vehicle body. 8B is a sectional view of the semiconductor cooler taken along line A8-A8 of FIG.

【図9】第9の実施形態の半導体冷却器の断面図。FIG. 9 is a sectional view of a semiconductor cooling device according to a ninth embodiment.

【図10】第10の実施形態の半導体冷却器が電力変換
装置に組み込まれ車体床下に艤装された状態を示す斜視
図。
FIG. 10 is a perspective view showing a state where the semiconductor cooler of the tenth embodiment is incorporated in a power conversion device and is installed under the floor of a vehicle body.

【図11】第11の実施形態の半導体冷却器単体の斜視
図。
FIG. 11 is a perspective view of a single semiconductor cooler according to an eleventh embodiment.

【図12】第12の実施形態の半導体冷却器単体の斜視
図。
FIG. 12 is a perspective view of a semiconductor cooling device alone according to a twelfth embodiment.

【図13】第13の実施形態の半導体冷却器単体の斜視
図。
FIG. 13 is a perspective view of a single semiconductor cooler according to a thirteenth embodiment.

【図14】第14の実施形態の半導体冷却器単体の斜視
図。
FIG. 14 is a perspective view of a single semiconductor cooler according to a fourteenth embodiment.

【図15】第15の実施形態の半導体冷却器単体の斜視
図。
FIG. 15 is a perspective view of a semiconductor cooling device alone according to a fifteenth embodiment.

【図16】(a)は第16の実施形態の半導体冷却器の
断面図。(b)は図16(a)のA16で示す部位の詳
細な断面図。
FIG. 16A is a sectional view of a semiconductor cooling device according to a sixteenth embodiment. 16B is a detailed cross-sectional view of the portion indicated by A16 in FIG.

【図17】第17の実施形態の半導体冷却器の断面図。FIG. 17 is a sectional view of a semiconductor cooler according to a seventeenth embodiment.

【図18】第18の実施形態の半導体冷却器の断面図。FIG. 18 is a sectional view of a semiconductor cooling device according to an eighteenth embodiment.

【図19】(a)は第19の実施形態の半導体冷却器が
電力変換装置に組み込まれ車体床下に艤装された状態を
示す正面図。(b)は図19(a)の側面図。(c)は
図19(a)のB19−B19線に沿う断面図。
FIG. 19A is a front view showing a state where the semiconductor cooler of the nineteenth embodiment is incorporated in a power conversion device and is installed under the floor of a vehicle body. 19B is a side view of FIG. (C) is sectional drawing which follows the B19-B19 line of FIG. 19 (a).

【図20】(a)は第20の実施形態の半導体冷却器が
電力変換装置に組み込まれ車体床下に艤装された状態を
示す正面図。(b)は図20(a)のB20−B20線
に沿う断面図。
FIG. 20A is a front view showing a state where the semiconductor cooler of the twentieth embodiment is incorporated in a power conversion device and is installed under the floor of a vehicle body. 20B is a sectional view taken along the line B20-B20 of FIG.

【図21】第21の実施形態の電力変換装置の水平方向
の断面図。
FIG. 21 is a horizontal cross-sectional view of a power conversion device according to a twenty-first embodiment.

【図22】第22の実施形態の半導体冷却器の断面図。FIG. 22 is a sectional view of a semiconductor cooler according to a twenty-second embodiment.

【図23】(a)は従来装置を示す斜視図。(b)は図
23(a)のA23−A23線に沿う断面図。(c)は
図23(a)の水平方向の断面図。
FIG. 23A is a perspective view showing a conventional device. 23B is a sectional view taken along the line A23-A23 of FIG. FIG. 23C is a horizontal sectional view of FIG.

【符号の説明】[Explanation of symbols]

1,1a〜1u…冷却器 2,2a…半導体素子 3,3a〜3t…受熱部 4…放熱部 5…ヒートパイプ 6a〜6t…放熱フィン 7…箱体 8…車体 9…艤装限界 10…セラッミックス絶縁板 11…導体 12…絶縁板 13…穴 14…切り起こし 15…スリット 16…棒 17…空洞 18…冷媒 19…保護カバー 20…導風板 21…補助フィン 1, 1a-1u ... Cooler 2, 2a ... Semiconductor element 3, 3a to 3t ... Heat receiving part 4 ... Heat dissipation part 5 ... Heat pipe 6a to 6t ... Radiating fins 7 ... Box 8 ... Body 9 ... Outfitting limit 10 ... Ceramic insulation board 11 ... conductor 12 ... Insulation plate 13 ... hole 14 ... Cut and raised 15 ... Slit 16 ... stick 17 ... Cavity 18 ... Refrigerant 19 ... Protective cover 20 ... Baffle plate 21 ... Auxiliary fin

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−225548(JP,A) 実開 昭57−53646(JP,U) 実開 昭56−126856(JP,U) 実開 昭55−122362(JP,U) (58)調査した分野(Int.Cl.7,DB名) H02M 1/00 B60L 9/18 H02M 7/5387 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-6-225548 (JP, A) Actually opened 57-53646 (JP, U) Actually opened 56-126856 (JP, U) Actually opened 55- 122362 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) H02M 1/00 B60L 9/18 H02M 7/5387

Claims (12)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】鉄道車両の床下に設置される車両駆動用電
力変換装置に使われる冷却器を備えた半導体冷却装置に
おいて、前記冷却器の放熱フィン部分は前記電力変換装
置の車体側方側にあり、前記冷却器の1つの内面に複数
個の半導体素子を取り付け、その取り付け面はその下方
が車体中央側、上方が車体側方側となるよう垂直から傾
けて設置されており、前記冷却器の反対側の外面は大気
へ熱放散する為の複数の放熱フィンが上下方向に所定間
隔を存して形成されており、各放熱フィンは平板状の同
一外形の板フィンで、ほぼ水平または先端が上となるよ
うに傾いた姿勢で上下に並んでいることを特徴とする鉄
道車両用半導体冷却装置。
1. A semiconductor cooling device including a cooler used for a power converter for driving a vehicle, which is installed under the floor of a railway vehicle, wherein a radiator fin portion of the cooler is on a side of a vehicle body of the power converter. A plurality of semiconductor elements are mounted on one inner surface of the cooler, and the mounting surface is installed so as to be inclined from the vertical such that the lower side thereof is the vehicle body center side and the upper side thereof is the vehicle body lateral side. On the outer surface on the opposite side, a plurality of heat radiation fins for heat dissipation to the atmosphere are formed at predetermined intervals in the vertical direction, and each heat radiation fin is a plate fin of the same outer shape, which is almost horizontal or at the tip. A semiconductor cooling device for a railway vehicle, wherein the semiconductor cooling devices are arranged vertically in a tilted posture so that the upper part of the semiconductor part is on the upper side.
【請求項2】鉄道車両の床下に設置される車両駆動用電
力変換装置に使われる冷却器を備えた半導体冷却装置に
おいて、前記冷却器の放熱フィン部分は前記電力変換装
置の車体側方側にあり、前記冷却器の1つの内面に複数
個の半導体素子を取り付け、その反対側の外面は大気へ
熱放散する為の複数の放熱フィンが所定間隔で形成され
ており、各放熱フィンは平板状の同一外形の板フィン
で、ほぼ水平または先端が上となるように傾いた姿勢で
上下に並んでいることを特徴とする鉄道車両用半導体冷
却装置。
2. A semiconductor cooling device having a cooler used for a power converter for driving a vehicle installed under the floor of a railway vehicle, wherein a radiator fin portion of the cooler is on a side of a vehicle body of the power converter. A plurality of semiconductor elements are attached to one inner surface of the cooler, and a plurality of heat radiation fins for heat dissipation to the atmosphere are formed at predetermined intervals on the outer surface on the opposite side, and each heat radiation fin has a flat plate shape. Plate fins with the same outer shape
In, nearly semiconductor cooling device for a railway vehicle according to claim alongside Dei Rukoto vertically in an inclined posture as horizontally or tip is above.
【請求項3】請求項1又は2において、前記冷却器には
インバータ回路あるいはコンバータ回路の一相分の半導
体素子が取り付けられ、この冷却器を3個あるいは2個
横に並べ、前記放熱フィン部分は相毎にまとまって、と
なりの放熱フィン部分とは間隔があいていることを特徴
とする鉄道車両用半導体冷却装置。
3. The cooling device according to claim 1 , wherein a semiconductor element for one phase of an inverter circuit or a converter circuit is attached to the cooling device, and three or two cooling devices are arranged side by side, and the heat radiation fin portion is provided. The semiconductor cooling device for railway vehicles is characterized in that each is grouped for each phase, and there is a space from a radiation fin portion next to each other.
【請求項4】請求項1又は2において、インバータ回路
あるいはコンバータ回路の上アーム側の半導体素子を一
方の冷却器に取り付け、もう一方の冷却器には下アーム
側の半導体素子を取り付け、これら冷却器を互いに近接
して並べて配置したことを特徴とする鉄道車両用半導体
冷却装置。
4. The semiconductor device on the upper arm side of the inverter circuit or the converter circuit according to claim 1 or 2 is attached to one cooler, and the semiconductor device on the lower arm side is attached to the other cooler to cool them. A semiconductor cooling device for railway vehicles, characterized in that the containers are arranged close to each other.
【請求項5】請求項において、前記下アーム側の半導
体素子を取り付けた冷却器は、上アーム側の半導体素子
を取り付けた冷却器よりも外形が小さく、前記電力変換
装置の車体側方側に下アーム側の冷却器が下に位置し、
上アーム側の冷却器が上に位置するよう上下に並べて配
置したことを特徴とする鉄道車両用半導体冷却装置。
5. The method of claim 4, condenser fitted with a semiconductor element of the lower arm side has a smaller outer shape than the condenser fitted with semiconductor elements on the upper arm side, a side of the vehicle body side of the power converter The cooler on the lower arm side is located below
A semiconductor cooling device for a railway vehicle, characterized in that the coolers on the upper arm side are arranged side by side so that they are located above.
【請求項6】請求項において、前記2個の冷却器の一
方は前記電力変換装置の車体側方側に、他方の冷却器は
該装置の下方に、それぞれの半導体素子が装置内部で近
接するよう前記冷却器を配置したことを特徴とする鉄道
車両用半導体冷却装置。
6. The semiconductor device according to claim 4 , wherein one of the two coolers is on a side of a vehicle body of the power conversion device, the other cooler is below the device, and respective semiconductor elements are close to each other inside the device. A semiconductor cooling device for railway vehicles, wherein the cooling device is arranged so as to
【請求項7】請求項1又は2において、前記放熱フィン
は先端側の幅が根元側の幅よりも小さくなっていること
を特徴とする鉄道車両用半導体冷却装置。
7. The semiconductor cooling device for a railway vehicle according to claim 1 , wherein the radiation fin has a width on a tip side smaller than a width on a root side.
【請求項8】請求項1又は2において、前記放熱フィン
はその内部に冷媒の流路が形成されその流路に作動液が
封入されたものであることを特徴とする鉄道車両用半導
体冷却装置。
8. The semiconductor cooling device for a rail vehicle according to claim 1, wherein the heat radiation fin has a coolant passage formed therein, and a working fluid is sealed in the passage. .
【請求項9】請求項1又は2において、前記半導体素子
が取り付く前記冷却器のべース部分は厚みが一様でな
く、半導体素子の取り付く面が平面でかつその反対側に
位置する放熱フィン側の面が平らでなく、半導体素子の
取り付いている部分の中心部分が最も厚みが大きく、半
導体素子から離れた位置ではそれより厚みが小さくなる
ように厚みを変化させたことを特徴とする鉄道車両用半
導体冷却装置。
9. The radiating fin according to claim 1 , wherein a thickness of a base portion of the cooler to which the semiconductor element is attached is not uniform, and a surface on which the semiconductor element is attached is a flat surface and is located on the opposite side. The railway is characterized in that the side surface is not flat, and the thickness is changed so that the central part of the part where the semiconductor element is attached has the largest thickness and the thickness becomes smaller at the position distant from the semiconductor element. Vehicle semiconductor cooling device.
【請求項10】請求項1又は2において、前記半導体素
子は対向する2面が電極面となる平形形状の素子で、片
面を前記冷却器に押圧し、前記半導体素子のもう一方の
面には主冷却器に比べて小形の補助放熱フィンを設けた
ことを特徴とする鉄道車両用半導体冷却装置。
10. The semiconductor element according to claim 1 , wherein the semiconductor element is a flat element having two opposing surfaces serving as electrode surfaces, and one surface of the semiconductor element is pressed against the cooler and the other of the semiconductor elements is pressed. A semiconductor cooling device for a railway vehicle, characterized in that one side is provided with an auxiliary radiation fin that is smaller than the main cooling device.
【請求項11】請求項10において、前記補助放熱フィ
ンはそのフィン間を空気が上下方向に流れるように前記
主冷却器の放熱フィンと直交する向きとなるように設け
たことを特徴とする鉄道車両用半導体冷却装置。
11. The railway according to claim 10 , wherein the auxiliary radiating fins are provided in a direction orthogonal to the radiating fins of the main cooler so that air flows vertically between the fins. Vehicle semiconductor cooling device.
【請求項12】請求項10において、前記補助放熱フィ
ンは半導体素子の一方の電極取り出し用として電気的に
接続され、導体を兼用したことを特徴とする鉄道車両用
半導体冷却装置。
12. The semiconductor cooling device for a railway vehicle according to claim 10 , wherein the auxiliary heat radiation fin is electrically connected for taking out one electrode of the semiconductor element and also serves as a conductor.
JP25687998A 1998-09-10 1998-09-10 Semiconductor cooling equipment for railway vehicles Expired - Fee Related JP3469475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25687998A JP3469475B2 (en) 1998-09-10 1998-09-10 Semiconductor cooling equipment for railway vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25687998A JP3469475B2 (en) 1998-09-10 1998-09-10 Semiconductor cooling equipment for railway vehicles

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003155979A Division JP3887352B2 (en) 2003-05-30 2003-05-30 Railway vehicle power converter

Publications (2)

Publication Number Publication Date
JP2000092819A JP2000092819A (en) 2000-03-31
JP3469475B2 true JP3469475B2 (en) 2003-11-25

Family

ID=17298689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25687998A Expired - Fee Related JP3469475B2 (en) 1998-09-10 1998-09-10 Semiconductor cooling equipment for railway vehicles

Country Status (1)

Country Link
JP (1) JP3469475B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170064865A1 (en) * 2015-08-24 2017-03-02 Kabushiki Kaisha Toshiba Transmitter and electronic device
US9943007B2 (en) 2016-04-15 2018-04-10 Fuji Electric Co., Ltd. Power converter for railroad vehicle
JP2018100069A (en) * 2016-05-31 2018-06-28 富士電機株式会社 Power conversion device for railway vehicle
US10015913B2 (en) 2016-02-15 2018-07-03 Fuji Electric Co., Ltd. Power converter and cooler
JP2018161979A (en) * 2017-03-27 2018-10-18 富士電機株式会社 Railway vehicle electric power conversion device
US10124681B2 (en) 2016-05-31 2018-11-13 Fuji Electric Co., Ltd. Railway vehicle power converter
US10701840B2 (en) 2017-04-24 2020-06-30 Fuji Electric Co., Ltd. Power converter for railroad vehicle
KR20200133883A (en) 2019-05-20 2020-12-01 현대자동차주식회사 Power module with stacked
US11322422B2 (en) 2018-07-04 2022-05-03 Mitsubishi Electric Corporation Vehicle power conversion device

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001135755A (en) * 1999-11-10 2001-05-18 Oki Electric Ind Co Ltd Heat-radiating fin structure
JP2001308566A (en) 2000-04-26 2001-11-02 Auto Network Gijutsu Kenkyusho:Kk Cooling structure of control unit for vehicle
US6826050B2 (en) 2000-12-27 2004-11-30 Fujitsu Limited Heat sink and electronic device with heat sink
JP4098534B2 (en) * 2002-02-28 2008-06-11 三菱電機株式会社 Mobile cooling system
JP3850319B2 (en) * 2002-03-13 2006-11-29 株式会社東芝 Semiconductor cooling device for vehicle
JP4549086B2 (en) * 2004-03-23 2010-09-22 東日本旅客鉄道株式会社 Running wind cooling system for railway vehicles
JP4739802B2 (en) * 2005-04-19 2011-08-03 株式会社東芝 Electric vehicle control device and electric vehicle using the same
JP4568189B2 (en) * 2005-08-11 2010-10-27 株式会社東芝 Railway vehicle power converter
JP4905636B2 (en) * 2005-10-03 2012-03-28 株式会社東芝 Power converter for vehicle
JP4243308B2 (en) 2007-06-11 2009-03-25 三菱電機株式会社 Power converter
JP2009010081A (en) * 2007-06-27 2009-01-15 Mac Eight Co Ltd Socket for light emitting diode
JP5148238B2 (en) * 2007-10-16 2013-02-20 東海旅客鉄道株式会社 High-speed railway vehicle power converter
JP2009124038A (en) * 2007-11-16 2009-06-04 Toyo Electric Mfg Co Ltd Semiconductor cooling device for rooftop electric vehicle control unit
JP5305836B2 (en) * 2008-10-30 2013-10-02 株式会社東芝 Railway vehicle power converter
WO2010109799A1 (en) 2009-03-24 2010-09-30 住友精密工業株式会社 Heat sink
JP5370467B2 (en) * 2009-07-07 2013-12-18 トヨタ自動車株式会社 Heat exchanger
JP5491784B2 (en) * 2009-07-07 2014-05-14 株式会社東芝 Railway vehicle motor drive inverter device
WO2011004815A1 (en) * 2009-07-07 2011-01-13 トヨタ自動車株式会社 Heat exchanger, x-ray examination method for power module provided with said heat exchanger and jig used in said method
CN102473693B (en) * 2009-08-07 2015-09-09 古河Sky株式会社 Radiator
JP2011151924A (en) * 2010-01-20 2011-08-04 Toshiba Corp Power converter for railway vehicle
JP5401419B2 (en) * 2010-08-31 2014-01-29 株式会社日立製作所 Railway vehicle power converter
JP2012248576A (en) * 2011-05-25 2012-12-13 Mitsubishi Shindoh Co Ltd Pin-like fin integrated-type heat sink
JP2013074214A (en) * 2011-09-28 2013-04-22 Fuji Electric Co Ltd Power semiconductor cooling device
KR101588989B1 (en) 2011-12-09 2016-01-26 미쓰비시덴키 가부시키가이샤 Cooling device for under-floor device for vehicle
CN103931094A (en) * 2011-12-13 2014-07-16 富士电机株式会社 Power conversion device
JP5948098B2 (en) * 2012-03-16 2016-07-06 株式会社日立製作所 Railway vehicle power converter, power converter cooler
JP6134127B2 (en) * 2012-11-21 2017-05-24 三菱重工業株式会社 Equipment with heat sink
WO2014155542A1 (en) 2013-03-26 2014-10-02 三菱電機株式会社 Vehicular power conversion device
TWI462693B (en) * 2013-11-27 2014-11-21 Subtron Technology Co Ltd Heat dissipation substrate
WO2016110977A1 (en) 2015-01-08 2016-07-14 三菱電機株式会社 Cooling device for railway vehicle
WO2016157533A1 (en) * 2015-04-03 2016-10-06 株式会社 東芝 Electric power conversion device
WO2016157532A1 (en) * 2015-04-03 2016-10-06 株式会社 東芝 Electric power conversion device
KR101780037B1 (en) * 2015-04-22 2017-09-19 주식회사 엘지화학 Cooling device for battery cell and battery module comprising the same
JP6494408B2 (en) * 2015-05-07 2019-04-03 三菱電機株式会社 Cooling device for vehicle equipment
JP6529868B2 (en) * 2015-09-09 2019-06-12 株式会社東芝 Electric car control device
JP6919190B2 (en) * 2016-04-28 2021-08-18 富士電機株式会社 Power converter for railroad vehicles
JP6825236B2 (en) * 2016-06-07 2021-02-03 富士電機株式会社 Electric power converter for railway vehicles
JP6652467B2 (en) * 2016-08-31 2020-02-26 株式会社日立製作所 Power conversion device and railway vehicle equipped with power conversion device
JPWO2018061193A1 (en) * 2016-09-30 2018-09-27 三菱電機株式会社 Heat sink and power converter
KR102147658B1 (en) * 2017-12-08 2020-08-26 주식회사 케이엠더블유 A cooling apparatus for electronic elements
CN108040453B (en) * 2018-01-23 2023-09-29 珠海格力电器股份有限公司 Radiating fin, radiator with radiating fin and electric box with radiator
US20210016342A1 (en) * 2018-03-16 2021-01-21 Ihi Corporation Object-processing method and device
JP7086699B2 (en) * 2018-04-26 2022-06-20 株式会社東芝 Power converters and railcars
JP7014268B2 (en) * 2020-07-27 2022-02-01 富士電機株式会社 Power converter for railroad vehicles
CN111928521A (en) * 2020-08-28 2020-11-13 珠海格力电器股份有限公司 Heat dissipation device adopting semiconductor refrigeration and control method thereof
US11924998B2 (en) 2021-04-01 2024-03-05 Ovh Hybrid immersion cooling system for rack-mounted electronic assemblies
EP4068928B1 (en) * 2021-04-01 2024-01-31 Ovh Cooling device
WO2022264301A1 (en) * 2021-06-16 2022-12-22 三菱電機株式会社 Electronic device
JP7446528B2 (en) 2021-07-27 2024-03-08 三菱電機株式会社 In-vehicle equipment
WO2023199445A1 (en) * 2022-04-13 2023-10-19 三菱電機株式会社 Electronic apparatus
KR20230161646A (en) * 2022-05-19 2023-11-28 동양피스톤 주식회사 Power module cooling apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170064865A1 (en) * 2015-08-24 2017-03-02 Kabushiki Kaisha Toshiba Transmitter and electronic device
US9867313B2 (en) * 2015-08-24 2018-01-09 Kabushiki Kaisha Toshiba Transmitter and electronic device
US10015913B2 (en) 2016-02-15 2018-07-03 Fuji Electric Co., Ltd. Power converter and cooler
US9943007B2 (en) 2016-04-15 2018-04-10 Fuji Electric Co., Ltd. Power converter for railroad vehicle
JP2018100069A (en) * 2016-05-31 2018-06-28 富士電機株式会社 Power conversion device for railway vehicle
US10124681B2 (en) 2016-05-31 2018-11-13 Fuji Electric Co., Ltd. Railway vehicle power converter
JP2018161979A (en) * 2017-03-27 2018-10-18 富士電機株式会社 Railway vehicle electric power conversion device
US10595436B2 (en) 2017-03-27 2020-03-17 Fuji Electric Co., Ltd. Power converter for railroad vehicle
US10701840B2 (en) 2017-04-24 2020-06-30 Fuji Electric Co., Ltd. Power converter for railroad vehicle
US11322422B2 (en) 2018-07-04 2022-05-03 Mitsubishi Electric Corporation Vehicle power conversion device
KR20200133883A (en) 2019-05-20 2020-12-01 현대자동차주식회사 Power module with stacked

Also Published As

Publication number Publication date
JP2000092819A (en) 2000-03-31

Similar Documents

Publication Publication Date Title
JP3469475B2 (en) Semiconductor cooling equipment for railway vehicles
JP4322910B2 (en) Railway vehicle power converter
JP4322898B2 (en) Railway vehicle power converter
JP5269259B2 (en) Power converter
JP3447543B2 (en) Power converter
EP2469996A2 (en) Cooling device and power conversion device including the same
US6625024B2 (en) Power converter enclosure
JP5581119B2 (en) Cooling device, power converter, railway vehicle
JP5028822B2 (en) Power module cooling device
JP6741561B2 (en) Electric power conversion device for railway vehicles
JP3887352B2 (en) Railway vehicle power converter
US8860213B2 (en) Power converter
KR100619490B1 (en) A semiconductor cooling apparatus
JP5070877B2 (en) Semiconductor power converter
JP2759587B2 (en) Inverter cooling system for electric vehicles
JP6081091B2 (en) Railway vehicle control system
JP3420945B2 (en) Power converter
JP2009033900A (en) Cooling system
JP2007037207A (en) Motor and its electric power distribution component
JP4421132B2 (en) Railway vehicle power converter
US10939586B2 (en) Heat exchanger structure for a rack assembly
WO2022264460A1 (en) Electronic device
JP3879080B2 (en) Cooling device for exothermic electrical equipment for vehicles
JP3850319B2 (en) Semiconductor cooling device for vehicle
WO2022264297A1 (en) Electronic device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees